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Abstract. In this paper, we consider the blow-up of explicit L1
scheme for time-fractional partial differential equations. Firstly,
we discretize the mentioned equation by the explicit L1 scheme
and obtain the corresponding matrix form. Secondly, we intro-
duce the concept of discrete energy. Based on Nakagawa’s cri-
teria, a suitable adaptive time-stepping strategy is given by the
discrete energy. Thirdly, with the help of lower discrete energy,
the finite blow-up behaviors of numerical solution are studied.
Finally, some numerical examples for verifying the theoretical
results are provided.
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Introduction

The blow-up behavior of the solutions for fractional differential equations
have aroused widespread concern of researchers. In recent years, a lot of
related papers have been published, such as [15,22,27,28]. As an important
kind of fractional differential equations, time-fractional partial differential
equations (TFPDEs) have become a significant object of investigations due
to their demonstrated applications in different areas of science and technol-
ogy. This type of equations is widely used as models to describe many im-
portant physical phenomena such as classical, fluid and quantum mechanics,
plasma and nuclear physics, solid state physics, chemical physics, chemical
kinematics, and so on. Nowadays, the study of blowing-up solutions to TF-
PDEs received great attention. For example, some authors obtained results
on the blow-up of the solutions of time-fractional Burgers equation [1, 25]
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and space-time fractional evolution equations [2]. For more information, the
interest reader can refer the articles [9, 16,22].

As everyone knows, the analytic solutions to the TFPDEs cannot be
easily obtained except for using similarity transformation and the Hirota
bilinear technique [3], Laplace residual power series method [10]. Therefore,
the development of effective numerical methods for TFPDEs is necessary
and important. In the last few years, many numerical approaches, such
as finite difference method [17, 21], finite element method [14, 18], spectral
method [4,30], meshless method [6,13], and wavelet method [23], have been
proposed for TFPDEs. Among these numerical methods, the finite difference
method has played a very important role. During the approximation of
PDEs, for explicit schemes, we know that CFL conditions of time-stepping
restrictions have to be used for the stiffness and positivity [26]. Since fully
implicit discretizations require significantly higher computational costs when
processing a nonlinear algebraic system, this paper considers a numerical
scheme with acceptable computational costs, which is specified by an explicit
L1 scheme.

Recently, much attention has been paid to the consideration of numerical
blow-up for PDEs, for example, the convergence of numerical blow-up time
[12,20] and the numerical blow-up rate [5]. During the reproduction of finite
blow-up time, many approaches have been developed to implement the time
step, such as the adaptive time-stepping approach [19] and the uniform time-
stepping [7,8]. Since the uniform time-stepping is not suitable for simulating
blow-up solutions [24], the main problem is a suitable adaptive time-stepping
strategy.

There are no results concerning the numerical blow-up for TFPDEs. In
this paper, we consider the blow-up of numerical solutions to TFPDEs on
bounded domains with the nonlinear term. To begin this research, we choose
a one-dimensional bounded TFPDEs with Dirichlet boundary conditions and
finite difference methods; in our future study, we will consider more com-
plex problems. For simulating blow-up solutions, Nakagawa’s criteria [19]
is usually implemented by a norm of numerical solutions. Different to [19],
we adapt the time-stepping by a discrete energy to bound the numerical
solutions. The replicative finite blow-up results are proved for any posi-
tive numerical solutions by a lower discrete energy. These results the main
contributions of this paper.

The rest of the paper is organized as follows. In Section 2, we present
the explicit L1 scheme, and the positivity of numerical solutions is studied.
In Section 3, we introduce the concept of discrete energy, upper energy and
lower energy. In Section 4, the numerical blow-up is proved for any positive
solutions to TFPDEs and an adaptive time-stepping strategy based on the
discrete energy is provided. To illustrate the main results, some results are
given in Section 5.
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1 Explicit L1 scheme

Consider the following one-dimensional nonlinear TFPDEs:

CDαt u(x, t) = uxx(x, t) + up(x, t), 0 ≤ x ≤ 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x) � 0, 0 ≤ x ≤ 1,

(1)

where 0 < α < 1, p > 1 and CDαt is the Caputo fractional derivative of
fractional order α which is defined by

CDαt u(x, t) =
1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)α
.

Let h = 1/N be the uniform space step with an integer N ≥ 1 and
∆tn = tn+1− tn be the time-stepping for n ≥ 0 and i = 1, 2, . . . , N − 1. The
explicit L1 scheme for (1) is given by

n∑
j=0

uj+1
i − uji

∆tj
ωn,j =

uni+1 − 2uni + uni−1

h2
+ (uni )p,

un0 = unN = 0,

u0
i = u0(ih),

(2)

where

ωn,j =
1

Γ(1− α)

∫ tj+1

tj

(tn+1 − s)−αds, j = 0, 1, . . . , n. (3)

A compact form of (2) is

n∑
j=0

Uj+1 − Uj
∆tj

ωn,j = −ANUn + F (Un), (4)

where

Un = (un1 , u
n
2 , · · · , unN−1)T , F (Un) = ((un1 )p, (un2 )p, . . . , (unN−1)p)T ,

and the triple-diagonal matrix AN is represented by

AN :=
1

h2


2 −1 · · · 0 0
−1 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 2 −1
0 0 · · · −1 2

 ∈ R(N−1)×(N−1).
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From (4), we have

Un+1 =
(γn,n − γn,n−1)I−AN

γn,n
Un+ . . .+

γn,1 − γn,0
γn,n

U1 +
γn,0
γn,n

U0 +
1

γn,n
F (Un),

(5)
where

γn,j =
ωn,j
∆tj

=
1

Γ(1− α)

∫ 1

0

(tn+1 − tj − θ∆tj)−αdθ, j = 0, 1, . . . , n. (6)

Before the detailed discussion, we present the preservation of the positivity
of numerical solutions which can be proved by the mean value theorem for
the definite integral. From (6), we get the following lemma.

Lemma 1 For j = 1, 2, . . . , n, one has γn,j − γn,j−1 > 0.

Define the mesh ratio

rα =
∆tαn
h2

.

Lemma 2 Assume that the time-stepping is not increasing and

rα <
1− 22−α

Γ(2− α)
, (7)

then the numerical solutions Un > 0 for all n ≥ 0.

Proof. By Lemma 1, the coefficients of Uk (k = 0, 1, . . . , n + 1) in (5) are
positive, therefore, we only have to consider the coefficient of Un, that is, to
show that (

1− γn,n−1

γn,n

)
I− 1

γn,n
AN > 0.

From the expression for AN and

γn,n =
1

∆tαnΓ(2− α)
,

we have

1− γn,n−1

γn,n
− 2rαΓ(2− α) > 0,

that is,

rα <
1

2Γ(2− α)

(
1− γn,n−1

γn,n

)
. (8)
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From (3), we get

γn,n−1

γn,n
=

∫ 1

0
(tn+1 − tn−1 − θ∆tn−1)−αdθ∫ 1

0
(tn+1 − tn − θ∆tn)−αdθ

=

(
∆tn

∆tn−1

)α((
1 +

∆tn
∆tn−1

)1−α

−
(

∆tn
∆tn−1

)1−α
)

≤ 21−α − 1.

This relation together with (8) complete the proof. �

In the process of simulating blow-up solutions, an adaptive time-stepping
strategy is needed. The main reason is that the numerical accuracy can be
controlled by posteriori error estimate. Generally speaking, the increments
of numerical solutions must be linearly controllable, that is,

sup
n>0

‖Un+1‖∞
‖Un‖∞

<∞. (9)

In this paper, we consider the blow-up behavior of numerical solutions such
that the criteria (9) holds. Based on (9), the following definition for blow-up
of numerical solutions is naturally introduced.

Definition 1 A numerical solution of (4) blows up in finite time if there is
an adaptive time-stepping such that the criteria (9) holds, lim

n→∞
‖Un‖∞ =∞

and lim
n→∞

tn <∞.

2 Discrete energy

In this section, we introduce the energy function to study the blow-up of the
numerical solutions.

By the positive definiteness of AN , there is an eigenvalue λN > 0 and
its corresponding eigenvector φN ∈ RN−1 (φiN > 0, i = 1, 2, . . . , N − 1) such
that

ANφN = λNφN ,

where
N−1∑
i=1

φiN = 1.

Next, we introduce a discrete energy

En :=
N−1∑
i=1

φiNu
i
n = 〈φN , Un〉, (10)

where 〈φN , Un〉 is the inner product of the eigenvector φN and numerical
solution Un.

The following lemma gives the equivalence of En and ‖ Un ‖∞. Moreover,
we can use this lemma to give the definitions of lower and upper energy.
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Lemma 3 [29] Assume that the time-stepping is not increasing and (7)
holds, and let cN = max

i=1,2,...,N−1
1/φiN . Then

En ≤‖ Un ‖∞≤ cNEn for all n ≥ 0, (11)

and

Ep
n ≤ 〈φN , F (Un)〉 ≤ cpNE

p
n for all n ≥ 0. (12)

Remark 1 It follows from (11) that the numerical solution Un blows up in
finite time if and only if

sup
n>0

En+1

En
<∞, lim

n→∞
En =∞, lim

n→∞
tn <∞,

which means that the numerical solution and the discrete energy blow up at
the same time.

The discrete energy En can convert (4) from vector form to scalar form.
Thus, by (10), formula (4) becomes

n∑
j=0

(Ej+1 − Ej)γn,j = −〈φN ,ANUn〉+ 〈φN , F (Un)〉.

Hence, by Lemma 3 and the property of the inner product, the discrete
energy satisfies

n∑
j=0

(Ej+1 − Ej)γn,j ≥ −λNEn + Ep
n (13)

and
n∑
j=0

(Ej+1 − Ej)γn,j ≤ −λNEn + cpNE
p
n. (14)

According to (5), (13) and (14), we define the lower and upper energy,
respectively,

γn,nEn+1 = (γn,n−γn,n−1)En+. . .+(γn,1−γn,0)E1+γn,0E0−λNEn+Ep
n (15)

and

γn,nEn+1 = (γn,n−γn,n−1)En+ . . .+(γn,1−γn,0)E1 +γn,0E0−λNEn+cpNE
p

n,
(16)

where E0 = E0 = E0.
The following theorem is very important to simplify our blow-up analysis.
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Theorem 1 Assume that the time-stepping is not increasing and

∆tαn ≤
α

λNΓ(2− α)
. (17)

Then 0 < En ≤ En ≤ En for all n ≥ 0.

Proof. Firstly, we prove that an = γn,n− γn,n−1− λN > 0 under the condi-
tion (17). Since

an + λN = γn,n − γn,n−1

=
1

∆tαnΓ(2− α)
− 1

∆tαn−1Γ(2− α)

((
1 +

∆tn
∆tn−1

)1−α

−
(

∆tn
∆tn−1

)1−α
)
,

we get

∆tαnΓ(2− α)(an + λN) = 1−
(

∆tn
∆tn−1

)α(
1 +

∆tn
∆tn−1

)1−α

+
∆tn

∆tn−1

. (18)

Let

x =
∆tn

∆tn−1

,

then

f(x) = 1− xα(1 + x)1−α + x,

that is,

f(x) = 1 + x

(
1−

(
1 +

1

x

)1−α
)
.

Hence, f(x) is decreasing and

lim
x→∞

x

(
1−

(
1 +

1

x

)1−α
)

= α− 1.

Then by (18), we have

∆tαnΓ(2− α)(an + λN) > α,

thus

an >
α

∆tαnΓ(2− α)
− λN > 0,

and (17) is obtained.
Secondly, the method of mathematical induction is used to prove the

inequality 0 < En ≤ En ≤ En. For n = 0, E0 = E0 = E0 is obvious.
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Assume that 0 < Ek ≤ Ek ≤ Ek for k = 1, 2, . . . , n. From (14), (16) and
γn,n − γn,n−1 − λN > 0, we have

(En+1 − En+1)γn,n

≥(γn,n − γn,n−1)(En − En) + . . .+ γn,0(E0 − E0)− λN(En − En)

+ cpN(E
p

n − Ep
n)

=(γn,n − γn,n−1 − λN)(En − En) + . . .+ γn,0(E0 − E0) + cpN(E
p

n − Ep
n)

≥0,

and thus, En+1 ≥ En+1. Similarity, we can obtain En+1 ≤ En+1 by (13)
and (15). The proof is complete. �

3 Blow-up analysis

In contrast to [19], in this section, we present an adaptive time-stepping
strategy according to the discrete energy. Moreover, we prove that numerical
solutions exhibit the exact finite blow-up behavior for any positive initial
function.

The lower energy in (15) can be rewritten as

En+1 = ωn + ∆tαnΓ(2− α)f(En), (19)

where f(x) = −λNx+ xp and

ωn =
n∑
l=0

γn,l − γn,l−1

γn,n
El.

We first show the monotonicity of the lower energy.

Lemma 4 Under the condition (17) and

E0 > λ
1
p−1

N , (20)

the lower energy En is an increasing sequence.

Proof. The lemma is proved by the method of mathematical induction.
For n = 0, by (19) and (20), we have

E1 = ω0 + ∆tα0 Γ(2− α)f(E0) > E0.

We suppose that E0 < E1 < · · · < En. Then f(En) > 0 and f(En) >

f(En−1). Hence, from (15) it follows that f(En) =
n∑
l=0

γn,l(El+1 − El).
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Therefore,

f(En−1) =
n−1∑
l=0

γn−1,l(El+1 − El)

=
1

Γ(1− α)

n−1∑
l=0

(El+1 − El)

∫ 1

0

(tn − tl − θ∆tl)−αdθ

>
1

Γ(1− α)

n−1∑
l=0

(El+1 − El)

∫ 1

0

(tn+1 − tl − θ∆tl)−αdθ

=
n−1∑
l=0

γn,l(El+1 − El)

and

En+1 =
n∑
l=0

γn,l − γn,l−1

γn,n
El +

1

γn,n
f(En)

> En −
1

γn,n

n−1∑
l=0

γn,l(El+1 − El) +
1

γn,n
f(En−1)

> En −
1

γn,n

n−1∑
l=0

γn,l(El+1 − El) +
1

γn,n

n−1∑
l=0

γn,l(El+1 − El)

= En,

This completes the proof. �

Assuming that (17) and (20) hold, we define the adaptive time-stepping
from tn to tn+1 as follows:

∆tn = min

{
τ,∆tn−1,

(
τ

‖Un‖p−1
∞

) 1
α

}
. (21)

The following theorem states that the numerical solutions exhibit the
exact finite blow-up behavior.

Theorem 2 Under the conditions (17) and (20), let the adaptive time-
stepping be defined by (21). Then the numerical solution blows up in finite
time if

(i) lim
n→∞

‖ Un ‖∞=∞;

(ii) lim
n→∞

∆tn = 0;

(iii) there exist constants nτ and ρ > 0 such that En+nτ ≥ (1 + ρτ)En;

(iv) lim
n→∞

tn =
∞∑
n=0

∆tn <∞.
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Proof. (i) Suppose that there exists a subsequence Enl such that sup
l
Enl <

∞, then inf
l

∆tnl > 0. By Theorem 1 and Lemma 4, we have sup
n
En < ∞.

Therefore, lim
n→∞

En = E∞ < ∞ and there is a sufficiently small ε > 0 such

that
Γ(2− α)(inf

l
∆tαnl)f(E∞ − ε) > 2ε. (22)

Let N0 > 0 be such that En > E∞ − ε > E0 for n > N0. For sufficiently
large n, we have

ωn =
n∑
l=0

Cn,lEl ≥
n∑

l=N0

Cn,lEl > (E∞ − ε)
n∑

l=N0

γn,l − γn,l−1

γn,n

= (E∞ − ε)
(

1−∆tαn(1− α)

∫ 1

0

(tn+1 − tN0−1 − θ∆tN0−1)−αdθ

)
≥ (E∞ − ε)

(
1− τα(1− α)

∫ 1

0

(tn+1 − tN0−1 − θ∆tN0−1)−αdθ

)
.

Taking into account that 0 < α < 1 and lim
n→∞

tn = ∞, we conclude that for

sufficiently large n, ωn > E∞ − 2ε.
On the other hand, for sufficiently large l, by (22) we get

E∞ > Enl+1 = ωnl + ∆tαnlΓ(2− α)f(Enl
)

> E∞ − 2ε+ Γ(2− α)(inf
l

∆tαnl)f(E∞ − ε)

> E∞ − 2ε+ 2ε

= E∞,

which is a contradiction. Thus, we have lim
n→∞

En = ∞, or equivalently,

lim
n→∞

‖Un‖∞ =∞.

(ii) Combining (21) and the proof of (i), we can show that lim
n→∞

∆tn = 0.

(iii) Let τ > 0 and nτ be defined by

(nτ + 1)1−α − n1−α
τ <

1

4
τΓ(2− α).

From Lemma 4, we have

ωn+nτ−1 =
n+nτ−1∑
l=0

γn+nτ−1,l − γn+nτ−1,l−1

γn+nτ−1,n+nτ−1

El

≥
n+nτ−1∑
l=n

γn+nτ−1,l − γn+nτ−1,l−1

γn+nτ−1,n+nτ−1

El

≥ γn+nτ−1,n+nτ−1 − γn+nτ−1,n−1

γn+nτ−1,n+nτ−1

En

≥
(

1− 1

4
τΓ(2− α)

)
En.

(23)
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Further, assume that

λNEn+nτ <
1

2
Ep
n+nτ−1

and

∆tαn+nτ−1E
p
n+nτ−1 ≥ τEn,

for sufficiently large n. From (19) and (23), we get

En+nτ = ωn+nτ−1 + ∆tαn+nτ−1Γ(2− α)(−λNEn+nτ−1 + Ep
n+nτ−1)

≥
(

1− 1

4
τΓ(2− α)

)
En +

1

2
∆tαn+nτ−1Γ(2− α)Ep

n+nτ−1

≥
(

1− 1

4
τΓ(2− α)

)
En +

1

2
τΓ(2− α)En

= (1 + ρτ)En,

where ρ = 1
4
Γ(2− α) > 0.

(iv) For sufficiently large n, we assume that ∆tαnE
p
n ≥ ταEn. From

Lemma 3 and Theorem 1, we have

∆tn+nτ ≤ τ

(
1

‖Un+nτ‖
p−1
∞

) 1
α

≤ τ

(
1

Ep−1
n+nτ

) 1
α

≤ τ

(
1

Ep−1
n+nτ

) 1
α

≤ τ

(
1

(1 + ρτ)p−1Ep−1
n

) 1
α

≤ τ

(
1

(1 + ρτ)p−1 τα

∆tαn

) 1
α

= ∆tn

(
1

1 + ρτ

) 1
α(p−1)

,

thus

sup
n

∆tn+nτ

∆tn
≤
(

1

1 + ρτ

) 1
α(p−1)

< 1.

The proof is complete. �

4 Numerical examples

In this section, we present three examples to illustrate the main results. We
adapt the time-stepping by (21) and set N = 10, τ = 0.1. For the sake
of intuitiveness and convenience, we draw the curves of ‖Un‖∞ under the
double logarithmic coordinates.
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Consider the following TFPDEs:

CDαt u(x, t) = uxx(x, t) + u2(x, t), 0 ≤ x ≤ 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = 25 sin(πx), 0 ≤ x ≤ 1.

(24)

In Figure 1, we draw the curves of ‖Un‖∞ with different α ∈ (0, 1). It can be
seen that the numerical solutions blow up for all selected α. Furthermore,
the blow-up times are increasing as the parameter α gets bigger and bigger.
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(d) α = 0.9

Figure 1: The curves of ‖Un‖∞ for (24) with different α

For the TFPDEs

CD0.6
t u(x, t) = uxx(x, t) + up(x, t), 0 ≤ x ≤ 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = 15 sin(πx), 0 ≤ x ≤ 1,

(25)

we draw the curves of ‖Un‖∞ with different p in Figure 2. It can be seen that
numerical solutions blow up in finite time. Moreover, the numerical solutions
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Figure 2: The curves of ‖Un‖∞ for (25) with different p

blow up faster as p is increasing. As it has been proved, the blow-up results
are consistent with Theorem 2.

To illustrate the influence of initial condition to the blow-up behaviors,
we consider

CD0.8
t u(x, t) = uxx(x, t) + u2(x, t), 0 ≤ x ≤ 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(26)

In Figure 3, we draw the curves of ‖Un‖∞ with different u0(x). It can be
seen that the initial condition has important influence on blowing up of
the numerical solutions. Moreover, the blow-up with large initial function is
quite fast, which is the same as the analytical case for the nonlinear fractional
ordinary differential equations [11], and this phenomena is also in agreement
with Theorem 2.
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(a) u0(x) = 15 sin(πx)
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(b) u0(x) = 45 sin(πx)
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(c) u0(x) = 65 sin(πx)
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(d) u0(x) = 115 sin(πx)

Figure 3: The curves of ‖Un‖∞ for (26) with different u0(x)
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