
Armenian Journal of Mathematics

Volume 17, Number 12, 2025, 1–24

https://doi.org/10.52737/18291163-2025.17.12-1-24

The Geodesic Equations in a

Two-Dimensional Finsler Manifold Equipped

with a Matsumoto-Type Metric-II

B. K. Tripathi, V. K. Chaubey and S. Prajapati

Abstract. This paper provides a comprehensive derivation of
geodesic equations in a two-dimensional Finsler space character-
ized by a Matsumoto-type metric. It further explores the geomet-
ric applications of these equations on various surfaces, including
cylinders, spheres, pseudo-spheres, and catenoids. Using illustra-
tive examples and graphs, we analyze the geometric properties
of geodesics for different parametric forms of these surfaces. The
results enhance our understanding of geodesic behavior in Finsler
geometry and shed light on curvature and geometric structures
in diverse contexts.
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Introduction

In 1972, Matsumoto introduced a special Finsler metric by considering the
positively homogeneous function L(α, β) of degree one in α, represented
by
√
aij(x)yiyj, which corresponds to a Riemannian metric, and β(x, y)

expressed as bi(x)yi serves as a one-form metric [5–7].
Let us consider a special form of the class p-power (α, β)-metric, as stud-

ied in [13–15]. Its generalized expression is given by

L(α, β) = α1−p (α + β)p ,

where p ∈ R\0. Notably, when p = −m, this metric transforms into the
following form:

L(α, β) = αm+1 (α + β)−m . (1)
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This form aligns with the Matsumoto-type metric. An intriguing feature of
this metric is its convergence to the Riemannian metric when α exceeds β,
as the ratio α(α + β)−1 tends to 1 in such cases.

Geodesics play a vital role in defining the shortest paths between points
and are fundamental for grasping space geometry. Matsumoto and Park [8]
first explored this concept in 1997, specifically investigating Randers and
Kropina metrics. Additionally, Matsumoto collaborated with H. S. Park
in [9] to extend this concept to the Matsumoto metric, which is used to
measure the slope of a mountain. Subsequently, various authors (see, for
example, [2–4, 10–12]) have examined the differential equations governing
geodesics in two-dimensional scenarios, and their studies have deepened our
understanding of geometric properties within Finsler spaces by exploring
various forms of Finsler metrics.

In this paper, we find out the geodesic equations within a two-dimensional
Finsler space equipped with Matsumoto-type metric defined by equation (1)
and explores its geometric applications on various surfaces like cylinders,
spheres, pseudo-spheres, and catenoids. Through diverse illustrative exam-
ples and graphs, we find out the geometric properties of geodesics for various
parametric forms of cylinders, spheres, and catenoids.

1 Preliminaries

Matsumoto and Park [8,9] wrote out the differential equation of the geodesic
problem in a Finsler space F 2 = (M2, L(α, β)) equipped with the (α, β)-
metric, where the Finsler function L(x, y) relies on both the Riemannian
metric α and the 1-form β, under the following conditions:

(1) The two-dimensional manifold M2 is conceptualized as a surface S that
can be described within a three-dimensional orthonormal coordinate
system Xα, α = 1, 2, 3. The parametric representation of S is given by
Xα = Xα(x1, x2). As S possesses an induced Riemannian metric, we
introduce two tangent vector fields Bi, i = 1, 2, whose components are
defined as Bα

i = ∂Xα/∂xi, and the components of the metric tensor
are aij =

∑
αB

α
i B

α
j .

Considering the isothermal coordinate system xi = (x1, x2) = (x, y)
on the surface S, the Riemannian metric is denoted as α = aE, where
a = a(x, y) > 0 and E represent the Euclidean distance function given
by E =

√
ẋ2 + ẏ2. The computation of Christoffel coefficients for S is

accomplished using the following formula:

Γhij =
akh

2

{
∂ajk
∂xi

+
∂aik
∂xj
− ∂aij
∂xk

}
.
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Subsequently, in the isothermal co-ordinate system (x1, x2) = (x, y),
the Christoffel coefficients Γhij(x, y) are determined as(

Γ1
11,Γ

1
12,Γ

1
22; Γ2

11,Γ
2
12,Γ

2
22

)
=
(ax
a
,
ay
a
,−ax

a
,−ay

a
,
ax
a
,
ay
a

)
.

Note that in this paper, we use the symbol (; ) to signify covariant
differentiation concerning Christoffel symbols within R2.

(2) Let B = Bα be a constant vector field within the ambient 3-space.
Along the surface S, this constant vector field B can be expressed as

B = biBi + b0N, (2)

where β = b1ẋ+ b2ẏ, and bi = aijb
j denotes the tangential component

of B. Then the Gauss-Weingarten derivation formulae can then be
formulated as

B;j = (bi;jBi + biHijN) + (b0;jN − b0H i
jBi),

where Hij = aikH
k
j represents the second fundamental tensor of surface

S. If B;j = 0, we obtain bi;j = b0H i
j, leading to

bi;j = b0Hij. (3)

This result further leads to bi;j = bj;i, specifically, b1y = b2x, indicating
that bi is a gradient vector field within S.

(3) In the context of the Finslerian surface S, the linear form β originates
from Earth’s gravitational influence, as described in [8]. Consequently,
we assume that the constant vector field B aligns with the X3-axis,
i.e., Ba = (0, 0, G) is a positive constant. This assumption leads to the
expression G2 = aijb

ibj + (b0)2 derived from equation (2). Given that
(a11, a12, a22) = (a2, 0, a2), we can further deduce that(

G

a

)2

= (b1)2 + (b2)2 +

(
b0

a

)2

.

We focus on quantities of degree one by considering G/a as an in-
finitesimal of degree one and neglecting terms of degree two or higher.
Thus, b1, b2, and b0/a are considered to be of degree one. Equation
(3) indicates that β;0/a = (bi;jẋ

iẋj)/a is also an infinitesimal of degree
one. We denote these three infinitesimals of degree one as:

µ =
γ

a2
, ν =

β;0
a
, λ =

β

a2
, (4)

where γ = b1ẏ − b2ẋ.
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The (α, β)-metric F is characterized as a homogeneous function of degree
one in both α and β, as stated in [1]. Under the conditions

Fααα + Fαββ = 0,

Fβαα + Fβββ = 0,

we derive the expression for ω:

ω =
Fαα
β2

= −Fαβ
αβ

=
Fββ
α2

,

which is commonly referred to as the ω-Weierstrass invariant for F (α, β).
Further, Matsumoto and Park [8] derived the differential equations for

an (α, β)-metric in a two-dimensional Finsler space with an isothermal co-
ordinate system (x1, x2) = (x, y) as follows:

(Lα + aEωγ2)Fi(c)− β;0a2ωγ − Lβ(b1y − b2x) = 0, (5)

where ω represents the Weierstrass invariant, and Fi(c) is defined as:

Fi(c) =
a(ẋÿ − ẏẍ)

E3
+

(axẏ − ayẋ)

E
, i = 1, 2.

The equation Fi(c) = 0 describes the geodesics in a given space, typically in
the context of differential geometry. Here, Fi represents a set of equations
related to the geometry, often involving the metric or curvature of the man-
ifold in the associated Riemannian space, and the parameter C denotes a
curve or path within that space.

2 Geodesics in Matsumoto-type (α, β)-metric

space with L = αm+1(α + β)−m

The Finsler metric described by equation (1) is commonly known as a
Matsumoto-type metric. To analyze this metric, we begin by considering
an isothermal coordinate system (x1, x2) = (x, y) on the two-dimensional
manifold (M2, L). Using equation (1) and the concept of partial derivatives,
we can investigate the properties of the Matsumoto-type metric. Specifi-
cally, we can compute the derivatives of the metric components to explore
their implications for curvature and geodesics, which are outlined below:

Lα =
αm {α + (m+ 1)β}

(α + β)m+1
, Lβ = − mαm+1

(α + β)m+1
, ω =

m(m+ 1)αm−1

(α + β)m+2
. (6)

Based on equations (4), (5) and (6), we derive the following result:(
1 +

(m+ 2)aλ

E
+

(m+ 1)a2

E2

(
λ2 +mµ2

))
Fi(c) =

m(m+ 1)a2υµ

E3
.
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This equation establishes the relationship between the parameters a, λ, µ, υ, E,
and the function Fi(c) derived from the initial set of equations. Next, by
neglecting higher-order infinitesimals, we have:

Fi(c) =
m(m+ 1)a2υµ

E3
. (7)

If x from (x, y) is the parameter t, we have (ẋ, ẏ) = (1, y′) and (ẍ, ÿ) = (0, y′′)

with E =
√

1 + y′2 [12]. Therefore, we get

Fi(c) =
ay′′

E3
+

(axy
′ − ay)
E

. (8)

By equating (7) and (8), we obtain the approximate geodesic equation for
L = αm+1(α + β)−m:

y′′ =
m(m+ 1)γβ∗;0

a2
− E2

a
(axy

′ − ay), (9)

where y′ = dy/dx, a =| aij(x) |, γ = b1y
′ − b2 and

β∗;0 = b1;1 + (b1;2 + b2;1)y
′ + b2;2(y

′)2

= b1x + (b1y + b2x)y
′ + b2y(y

′)2

+
1

a
(axb1 + ayb2)(E

∗)2 − 2

a
(ax + ayy

′)(b1 + b2y
′).

Note that b1;2 = b2;1 and b1y = b2x.
Hence, we obtain the following result.

Theorem 1 In a two-dimensional Finsler space employing an isothermal
coordinate system (xi), the second-order differential equation (9) provides an
approximation for the geodesics corresponding to the Matsumoto-type metric
L = αm+1(α + β)−m.

3 Some examples in two-dimensional space

employing geodesic

In this section, we shall use the following notation for geometric analysis:

(Xa) = (X, Y, Z), (X i) = (x, y).

Here, Xa represents coordinates in a three-dimensional space, while X i rep-
resents coordinates in a two-dimensional plane.



6 B. K. TRIPATHI, V. K. CHAUBEY AND S. PRAJAPATI

3.1 Analyzing geodesic equations on a circular cylin-
der surface

Example 1 Cylinder with X = ry. We examine a circular cylinder S:
Y 2 + Z2 = r2 and X = ry, which can be parametrically expressed as

S : X = ry, Y = r sinx, Z = r cosx.

From this parametrization, we derive the following basis vectors, B1, B2,
and the normal vector N :

B1 =
∂

∂x
(X, Y, Z) = (0, r cosx,−r sinx), B2 =

∂

∂y
(X, Y, Z) = (r, 0, 0),

N =
B1 ×B2

|B1 ×B2|
= (0,− sinx,− cosx).

Since the metric coefficients are (a11, a12, a22) = (r2, 0, r2), we conclude that
ax = ay = 0. Also, from (2), we have connection coefficients (b1, b2, b0) =
((−G sinx)/r, 0,−G cosx) and (b1, b2) = (−Gr sinx, 0). Then

β;0 = −Gr cosx and γ = −Gr sinxy′.

Consequently, we have the induced metric and β-term:

α2 = r2
(
dx2 + dy2

)
, β = −Gr sinx dx.

Therefore, (9) gives the approximate differential equation of geodesic
for a Matsumoto-type (α, β)-metric (1) under the conditions of the above
example in the form

y′′ − m(m+ 1)

2
G2(sin 2x) y′ = 0,

which has a solution

y = c1

∫ x

1

e−
1
4
G2m(1+m) cos 2xdx+ c2. (10)

Example 2 Cylinder with Y = ry. Consider the circular cylinder described
by S : X2 + Z2 = r2 and Y = ry with parametric representation

S : X = r cosx, Y = ry, Z = r sinx.

From this parametrization, we derive the following basis vectors, B1, B2,
and the normal vector N :

B1 = (−r sinx, 0, r cosx), B2 = (0, r, 0), N = (− cosx, 0,− sinx).
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The corresponding metric coefficients aij and the connection coefficients bi

and bi are

(a11, a12, a22) = (r2, 0, r2), (b1, b2, b0) =

(
G

r
cosx, 0,−G sinx

)
,

(b1, b2) = (Gr cosx, 0).

Additionally, we have ax = ay = 0. Then

β;0 = −Gr sinx and γ = Gr cosxy′.

Consequently, the following expressions for α2 and β-term are obtained from
the induced metric:

α2 = r2
(
dx2 + dy2

)
, β = Gr cosxdx.

Thus, equation (9) provides the approximate differential equation of geodesic
of a Matsumoto-type (α, β)-metric (1) under the conditions of this example:

y′′ +
m(m+ 1)

2
G2(sin 2x) y′ = 0,

which has the solution

y = c1

∫ x

1

e
1
4
G2m(1+m) cos 2xdx+ c2. (11)

Thus, from Examples 1 and 2, we have

Proposition 1 The differential equations for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as examined in Examples
1 and 2 for a circular cylinder, are expressed as follows:

y′′ ∓ m(m+ 1)

2
G2(sin 2x) y′ = 0,

and their solutions, respectively, are expressed as

y = c1

∫ x

1

e∓
1
4
G2m(1+m) cos 2xdx+ c2.

Since the solution derived in the above proposition cannot be obtained
analytically, we resort to numerical methods using Python. For this purpose,
we set G = 1 and c2 = 0, as it serves merely as a shifting parameter. We
then explore the behavior of the solution for various values of c1 = 1, 2, 3
and m = 1, 2, 3. The results corresponding to these parameter variations are
presented in Figure 1.

In Figure 1, the first graph illustrates the behavior of the function given
in equation (10) for different values of c1 and m. Since the integrand is
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Figure 1: Variation of y = c1
∫ x
1
e∓

1
4
G2m(1+m) cos 2xdx for various values of c1

and m

always positive, all curves increase monotonically, though their steepness
and overall height vary. Increasing c1 scales the graph vertically, producing
taller curves, while the parameter m influences the growth rate: smaller m
results in a smoother, slower rise, whereas larger m produces sharper upward
bends beyond x ≈ 3, leading to much faster growth (as evident in the yellow
and brown curves). Between x = 2 and x = 4 several curves temporarily
flatten due to the oscillatory cosine factor reducing the integrand, but all
eventually rise again, demonstrating how the parameters control both the
pace and magnitude of growth. In Figure 1, the second graph illustrates
the variation of equation (11) under the same conditions. All curves in-
crease monotonically because the integrand remains positive, though their
profiles change with parameter values. A larger c1 scales the curves verti-
cally, resulting in higher growth, while increasing m causes a sharper rise
beyond x ≈ 2.5, leading to steep bends and eventual saturation. The yellow
and brown curves (c1 = 3,m = 3 and c1 = 2,m = 3) exhibit the most
rapid growth, approaching a plateau quickly, whereas smaller m values pro-
duce smoother, more gradual increases. Overall, the figure highlights that
c1 primarily determines the amplitude, while m governs the steepness and
saturation behavior of the function.

Example 3 Cylinder with X = rx. Consider the circular cylinder S: Y 2 +
Z2 = r2, X = rx. In parametric form, this can be expressed as

S : X = rx, Y = r sin y, Z = r cos y.

From this parametrization, we derive the following basis vectors, B1, B2,
and the normal vector N :

B1 = (r, 0, 0), B2 = (0, r cos y,−r sin y), N = (0, sin y, cos y).
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The corresponding metric coefficients aij and the connection coefficients bi

and bi are

(a11, a12, a22) = (r2, 0, r2), (b1, b2, b0) =

(
0,
−G
r

sin y,G cos y

)
,

(b1, b2) = (0,−Gr sin y).

Additionally, we have, ax = ay = 0. Then

β;0 = −Gr cos yy′2 and γ = Gr sin y.

Consequently, we obtain the induced metric and β-term:

α2 = r2
(
dx2 + dy2

)
, β = −Gr sin y dy.

Therefore, equation (9) yields the approximate differential equation for the
geodesic of a Matsumoto-type (α, β)-metric (1) under the conditions of this
example as

y′′ +
m(m+ 1)

2
G2(sin 2y) y′2 = 0.

This is a non-linear second-order differential equation for which the solution
is an implicit function given by

x =
1

c1

∫
e−

m(m+1)G2

4
cos 2ydy + c2. (12)

Example 4 Cylinder with Y = rx. We consider the circular cylinder de-
fined by S: X2 + Z2 = r2 and Y = rx. In parametric form, this cylinder
can be represented as

S : X = r cos y, Y = rx, Z = r sin y.

From this parametrization, we derive the following basis vectors, B1, B2,
and the normal vector N :

B1 = (0, r, 0), B2 = (−r sin y, 0, r cos y), N = (cos y, 0, sin y),

while the corresponding metric coefficients aij and the connection coefficients
bi and bi are

(a11, a12, a22) = (r2, 0, r2), (b1, b2, b0) =

(
0,
G

r
cos y,G sin y

)
,

(b1, b2) = (0, Gr cos y).
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Then

β;0 = −Gr sin yy′2 and γ = −Gr cos y.

Consequently, we have the induced metric and β-term:

α2 = r2
(
dx2 + dy2

)
, β = Gr cos ydy.

Therefore, equation (9) provides the approximate differential equation for
the geodesic of a Matsumoto-type (α, β)-metric (1) under the conditions of
this example:

y′′ − m(m+ 1)

2
G2(sin 2y) y′2 = 0,

which has a solution

x =
1

c1

∫
e

m(m+1)G2

4
cos 2ydy + c2. (13)

Proposition 2 The differential equations for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as examined in Examples
3 and 4 for a circular cylinder, are expressed as follows:

y′′ ± m(m+ 1)

2
G2(sin 2y) y′2 = 0,

and their solutions, respectively, are expressed as

x =
1

c1

∫
e∓

m(m+1)G2

4
cos 2ydy + c2.

Since the solution (12) is expressed as an implicit function, Python was
employed to numerically analyze its behavior for G = 1, c2 = 0, and varying
values of c1 and m (1, 2, and 3). The resulting curves, illustrated in the
first graph of Figure 2, depict the dependence of x on y for the specified
parameter sets. Increasing m enhances the curvature and oscillatory nature
of the curves, while variations in c1 modify the horizontal scaling, causing
the profiles to stretch or compress accordingly. The parameter c2 simply
translates the curves along the x-axis without affecting their shape. Overall,
the figure demonstrates how changes in c1 and m influence the nonlinear
mapping between x and y, producing families of smooth, S-shaped curves
with distinct widths and slopes. In comparison, the second graph of Figure 2
presents the variations of functions (13) for the same parameter values. Each
colored curve represents a unique parameter combination, where m primarily
controls the steepness and curvature—largerm values yield more pronounced
S-shaped behavior while c1 determines the horizontal scaling, compressing
or expanding the curves with increasing or decreasing magnitude.
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Figure 2: Variation of x = 1
c1

∫
e∓

m(m+1)G2

4
cos 2ydy for various values of c1

and m

Example 5 Cylinder with Z = ry. Consider the circular cylinder defined
by S: X2 + Y 2 = r2 and Z = ry. The parametric form of this cylinder is
given by

S : X = r cosx, Y = r sinx, Z = ry.

From this parametrization, we derive the following basis vectors, B1, B2,
and the normal vector N :

B1 = (−r sinx, r cosx, 0), B2 = (0, 0, r), N = (cosx, sinx, 0).

The corresponding metric coefficients aij and the connection coefficients bi

and bi are

(a11, a12, a22) = (r2, 0, r2), (b1, b2, b0) =

(
0,
G

r
, 0

)
, (b1, b2) = (0, Gr).

Then

β;0 = 0 and γ = −Gr.

Consequently, we have the induced metric and β-term:

α2 = r2
(
dx2 + dy2

)
, β = Grdy.

Using equation (9), we derive the approximate differential equation for the
geodesic of a Matsumoto-type (α, β)-metric (1) under these conditions as

y′′ = 0,

which simplifies to the linear solution

y = C1x+ C2,

where C1 and C2 are constants.
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Example 6 Cylinder with Z = rx. Consider the circular cylinder defined
by S : X2 + Y 2 = r2 and Z = rx. The parametric representation of this
cylinder is

S : X = r cos y, Y = r sin y, Z = rx.

From this parametrization, we derive the following basis vectors, B1, B2,
and the normal vector N :

B1 = (0, 0, r), B2 = (−r sin y, r cos y, 0), N = (− cos y,− sin y, 0),

and the corresponding metric coefficients aij and the connection coefficients
bi and bi given by

(a11, a12, a22) = (r2, 0, r2), (b1, b2, b0) =

(
G

r
, 0, 0

)
, (b1, b2) = (Gr, 0).

Then

β;0 = 0 and γ = Gry′.

Consequently, we obtain the induced metric and β-term:

α2 = r2
(
dx2 + dy2

)
, β = Grdx.

Using equation (9), we derive the approximate differential equation for the
geodesic of a Matsumoto-type (α, β)-metric (1) under these conditions as

y′′ = 0,

which simplifies to the linear solution

y = C1x+ C2,

where C1 and C2 are constant.
Thus, from Examples 5 and 6, we have

Proposition 3 The differential equation for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as analyzed in Examples
5 and 6 for a specific form of a circular cylinder, is expressed as follows:

y′′ = 0,

and is solution is given by

y = c1x+ c2.

Futher, we use Python programming to obtain a numerical solution by
setting c2 = 0, as it acts as a shifting parameter. We examine various values
of c1 = 1, 2, 3 and the results of these variations are represented as straight
lines, which are shown in Figure 3.
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Figure 3: Variation of y = c1x+ c2

3.2 Analysis of geodesic equations for revolution sur-
faces using Matsumoto-type (α, β)-metric

In this section, we analyze the geodesic equations for revolution surfaces
where the axis of revolution is parallel to a constant vector field B. The
surface S is given by the parametric equations

X = g(u) cos y, Y = g(u) sin y, Z = f(u).

Using the coordinates (u, y), we derive the basis vectors B1 and B2:

B1 = (g′ cos y, g′ sin y, f ′) , B2 = (−g sin y, g cos y, 0) .

The normal vector N is:

N =
1

F
(−f ′ cos y,−f ′ sin y, g′) , F =

√
(f ′)2 + (g′)2.

The metric coefficients aij and the connection coefficients bi and bi are

(a11, a12, a22) =
(
F 2, 0, g2

)
,
(
b1, b2, b0

)
=

(
Gf ′

F 2
, 0,

Gg′

F

)
,

(b1, b2) = (Gf ′, 0) .

From these coefficients, we derive

α2 = F 2 (du)2 + g2 (dy)2 , β = Gf ′du.

To convert the coordinates into an isothermal coordinate system, we take

x =

∫
F

g
du. (14)

With this transformation, the metric α and the β-term become

α2 = g(u)2
(
dx2 + dy2

)
, β = G

f ′g

F
dx. (15)
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Example 7 Geodesic equations on a sphere with constant curvature +1.
We consider the sphere, a surface of constant curvature +1, with functions
g(u) = r cosu and f(u) = r sinu. Here, F = r. Using the integral transfor-
mation, we obtain

x =

∫
secu du =

1

2
log

(
1 + sinu

1− sinu

)
.

From (1 + sinu)/(1− sinu) = e2x, we find 1/cosu = coshx, which implies
du = dx/coshx. Consequently, from equation (14), we derive

α2 =
r2

cosh2 x
(dx2 + dy2), β =

Gr

cosh2 x
dx,

(b1, b2, b0) =

(
G

r
sechx, 0,−G tanhx

)
, (b1, b2) = (Gr sechx, 0).

From here we obtain b1x = −Gr sechx tanhx, b2x = b1y = b2y = 0 and
a = r/ coshx. Thus, ax = −r sechx tanhx and ay = 0. Then

β;0 = −Gr sechx tanhx(y′2) and γ = Gr sechx(y′).

Therefore, (9) provides the approximate differential equation for the geodesics
in the form

y′′ = tanhx
{

(1−m(m+ 1)G2)y′3 + y′
}
. (16)

Proposition 4 The differential equation for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as examined in Example
7 for a specific form of a sphere, is given by (16).

The differential equation (16) is a nonlinear second-order differential
equation. An analytical solution reveals that y = const is a trivial solu-
tion, while the general solution is quite complex. To simplify our analysis,
we set G = 1, which reduces the equation to

y′′ = tanhx
{

(1−m(m+ 1))y′3 + y′
}
.

The equation remains in nonlinear form; its solution is given by

y = ±
∫ √

c1 coshx

1− Ac21 cosh2 x
dx+ c2,

where A = 1−m(m+1). Since the solution is analytically complex, numeri-
cal methods were employed using Python to examine its behavior for c2 = 0
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and varying values of c1 = 1, 2, 3 and m = 1, 2, 3. The resulting variations of
the curves are presented in Figure 4. The plot illustrates both the positive
and negative branches of the function, represented by solid and dashed lines,
respectively. Each colored pair of curves corresponds to a unique combina-
tion of parameters, as indicated in the legend. The parameter c1 primarily
affects the amplitude and horizontal scaling of the curves, while m controls
the rate of divergence and steepness near the origin. As c1 and m increase,
the curves diverge more rapidly from the origin, indicating stronger non-
linear growth. The symmetry between the positive and negative branches
confirms that the function is even in y, exhibiting mirror-image behavior
with respect to the x-axis. Overall, Figure 4 highlights how variations in
c1 and m govern the bifurcated nature of the function, producing symmet-
ric pairs of curves that expand outward with distinct steepness and spread
characteristics.

Figure 4: Variation of y = ±
∫ √

c1 coshx
1−Ac21 cosh

2 x
dx+ c2

Example 8 Cylinder with constant curvature +1. We consider the cylinder,
a surface of constant curvature +1, with functions g(u) = r and f(u) = u.
Here, F = 1. Using the integral transformation, we obtain

x =

∫
1

r
du, du = rdx.

Consequently, from equation (14), we derive

α2 = r2(dx2 + dy2), β = Grdx,
(b1, b2, b0) = (G, 0, 0), (b1, b2) = (G, 0).

From here we obtain b1x = b2x = b1y = b2y = 0 and a = r. Then ax = ay = 0
and

β;0 = 0, γ = Gy′.
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Therefore, (9) provides the approximate differential equation for the geodesics
in the form

y′′ = 0, (17)

which has a linear solution

y = C1x+ C2,

where C1 and C2 are constants.

Proposition 5 The differential equation for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as examined in Example
8 for a cylinder with constant curvature +1, is given by equation (17). The
solution to this differential equation is the equation of straight lines.

We use Python programming to obtain a numerical solution by setting
c2 = 0, as it acts as a shifting parameter. We examine various values for
c1 = 1, 2, 3 and the results of these variations are represented as straight
lines, which are shown in Figure 5.

Figure 5: Variation of y = c1x+ c2

Example 9 Pseudo-sphere with constant negative curvature -1. We con-
sider the pseudo-sphere, a surface of constant curvature -1, with the func-
tions g(u) = sechu and f(u) = u− tanhu. The derivatives and correspond-
ing transformations are given by

f ′ = tanh2u, F = tanhu

Using the transformation, we obtain

x =

∫
sinhudu, du =

dx

sinhu
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Substituting these into equation (14), we derive

α2 =
1

x2
(dx2 + dy2), β = G

√
1− x2
x2

dx,

(b1, b2, b0) =

(
G, 0,−G

x

)
, (b1, b2) =

(
G

x2
(1− x2), 0

)
.

From here we obtain b1x = −2G/x3, b2x = b1y = b2y = 0 and a = 1/x. Then
ax = −1/x2 and ay = 0. Thus,

β;0 = −G
x3

(1 + y′2) +
G

x
(y′2 − 1), γ =

G

x2
(1− x2)y′.

Therefore, (9) yields the approximate equation of geodesics as

y′′ = m(m+ 1)G2 (1− x2)
x

y′
[
(y′2 − 1)− (1 + y′2)

x2

]
+

(1 + y′2)

x
y′. (18)

Proposition 6 The differential equation for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as examined in Example
9 for a pseudo-sphere with constant curvature −1, is given by (18).

The obtained equation is a highly nonlinear second-order differential
equation, and its complexity makes finding an analytical solution extremely
difficult, despite the existence of the trivial solution y = const. Assign-
ing G = 1 does not significantly reduce this complexity, as the equation
remains challenging to solve both analytically and numerically. However,
when G = 0, the geometry of the manifold changes from Finslerian to Rie-
mannian, resulting in a simplified and more tractable form of the nonlinear
differential equation

y′′ =
(1 + y′2)

x
y′. (19)

Thus, we can state the following corollary of Proposition 6.

Corollary 1 The differential equation for geodesics of the Matsumoto-type
metric in a two-dimensional Riemannian manifold, as examined in Example
9 for a pseudo-sphere with constant curvature −1, is given by (19).

The solution to the above nonlinear differential equation, obtained using
Python programming, is given by

y = ± sin−1 c1x+ c2.

Further, we utilize Python programming to obtain a numerical solution by
setting c2 = 0, since it serves as a shifting parameter. We examine various
values for c1 =: 0, 0.5, 1. The results of these variations are given on Figure 6.
It clearly illustrates that the curves for c1 = 0.5 and c1 = 1 coincide.
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Figure 6: Variation of y = ± sin−1 c1x+ c2

Example 10 Catenoid with constant curvature -1. In this example, we con-
sider the catenoid, a surface with constant curvature −1, with the functions
g(u) = r coshu/r and f(u) = u. Here f ′ = 1 and F = coshu/r. Substitut-
ing integral transformation

x =

∫
1

r
du, du = rdx,

into equation (14), we derive

α2 = r2 cosh2 x(dx2 + dy2), β = Grdx,

(b1, b2, b0) = (G sech2 x, 0, G tanhx), (b1, b2) = (G, 0).

From here we obtain b1x = b2x = b1y = b2y = 0 and a = r coshx, and thus,
ax = r sinhx, ay = 0. Then

β;0 = G tanhx(y′2 − 1), γ = Gy′.

Therefore, (9) yields the following approximate equation of geodesics

y′′ = tanhxy′
(
m(m+ 1)G2(y′2 − 1)

r2 cosh2 x
− (y′2 + 1)

)
. (20)

Proposition 7 The differential equation for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as examined in Example
10 for a catenoid with constant curvature −1, is given by (20).

This is a highly nonlinear second-order differential equation, making an
analytical solution extremely difficult, though the trivial solution y = const
exists. Even with G = 1, the equation remains complex and challenging
to solve analytically or numerically. However, setting G = 0, reduces the
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system to a Riemannian manifold, simplifying the equation into a more
tractable nonlinear form

y′′ = − tanhxy′(y′2 + 1). (21)

Thus, we can state the following corollary of Proposition 7.

Corollary 2 The differential equation for geodesics of the Matsumoto-type
metric in a two-dimensional Riemannian manifold, as examined in Example
7 for a catenoid with constant curvature −1, is given by (21).

The solution to the above nonlinear differential equation, obtained using
Python programming, is given by

y = ±
∫

A√
cosh2 x− A2

dx+B.

Therefore, type of solution depends on the value of A. There are three types
of solutions:

1. If A > 1, then y = ± sinh−1
sinhx√
A2 − 1

+B.

2. If A < 1, then y = ± tan−1
tanhx√
1− A2

+B.

3. If A = 1, then y = ± ln | sinhx|+B.

Since in all the solutions, B only acts as a shifting parameter, it is set to
the origin while varying A, as shown in Figures 7 and 8. In Figure 7, as A
increases, the curves flatten, showing reduced steepness. The positive and
negative branches are symmetric about the x-axis, indicating even functional
behavior with A controlling curvature and vertical spread. Figure 8 shows
both branches of y = ± ln | sinhx|; they are symmetric about the x-axis,
with a singularity at x = 0 and grow nearly linearly for large |x| reflecting
the logarithmic nature of sinhx.

Example 11 Infinite cone with constant curvature 0. Consider the infinite
cone, which has a constant curvature of zero. The parametric equations for
this surface are given by g(u) = ru and f(u) = ru. To find the geodesic
equations, we start with the derivatives and the corresponding transforma-
tions

f ′ = r, F =
√

2r.
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Figure 7: Variation of y = ± sinh−1
sinhx√
A2 − 1

+ B and y =

± tan−1
tanhx√
1− A2

+B

Figure 8: Variation of y = ± ln | sinhx|+B

Using equation (14), we derive the transformation x =
√

2 log u. From this,

we get the relationship u = e
x√
2 , which implies

du =
e

x√
2

√
2
dx.

Using equation (15), we obtain the following expressions for α2 and β:

α2 = r2e
√
2x(dx2 + dy2), β =

Gr√
2
e

x√
2dx.

The connection coefficients are given by

(b1, b2, b0) =

(
G

2r
, 0,

G√
2

)
, (b1, b2) = (Gr, 0).
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From here we determine b1x = b2x = b1y = b2y = 0, a = re
x√
2 , and thus,

ax = r√
2
e

x√
2 and ay = 0. Then

β;0 =
Gr√

2
(y′2 − 1), γ = Gry′.

These expressions allow us to derive the approximate differential equation
for the geodesics:

y′′ =
m(m+ 1)√

2
G2y′

(
y′2 − 1

)
e−
√
2x − y′√

2

(
1 + y′2

)
. (22)

Proposition 8 The differential equation for geodesics of the Matsumoto-
type metric in a two-dimensional Finsler manifold, as examined in Example
11 for an infinite cone with constant curvature of zero, is given by (22).

The differential equation (22) is a second-order nonlinear equation char-
acterized by highly complex terms, making an analytical solution extremely
difficult if not impossible to obtain, despite the existence of the trivial solu-
tion y = const. To simplify the analysis, one might consider setting G = 1;
however, this does not significantly ease the difficulty, as the equation re-
mains analytically and numerically intractable. Alternatively, setting G = 0,
we transform the manifold from Finslerian to Riemannian geometry. Under
this condition, the equation reduces to a more manageable nonlinear form

y′′ = − y′√
2

(
1 + y′2

)
. (23)

Thus, we can state the following corollary of Proposition 8.

Corollary 3 The differential equation for geodesics of the Matsumoto-type
metric in a two-dimensional Riemannian manifold, as examined in Example
11 for for an infinite cone with constant curvature of zero, is given by (23).

The solution to nonlinear differential equation (23), obtained using Python
programming, is given by

y = ±A
∫

e
−x√

2√
1− A2e−x

√
2

+B.

Further, we use Python programming to obtain a numerical solution by
setting B = 0 as it acts as a shifting parameter. From the equation above,
it is clear that if we set A = 0, the curve will align with the y-axis. If we
consider values of A greater than 1, the denominator will turn into a complex
function, complicating the equation further. Therefore, we examine various
values of A = 0.5, 0.7, 0.9, and the results of these variations are presented
in Figure 9.
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Figure 9: Variation of y = ±A
∫ e

−x√
2√

1− A2e−x
√
2

+B

4 Conclusion

This paper offers a thorough derivation of geodesic equations in a two-
dimensional Finsler space equipped with Matsumoto-type metric, as pre-
sented in Theorem 1. It further investigates the geometric applications of
these equations on various surfaces, including cylinders, spheres, pseudo-
spheres, and catenoids, and provides solutions to the nonlinear differential
equations of the geodesic detailed in Propositions 2–8. In cases where the
analysis becomes complex and cannot be solved analytically in Finslerian
space, results are derived in Riemannian space, as outlined in Corollaries
1, 2, and 3. Moreover, we employ Python programming to visualize varia-
tions through graphs, which analyze the geometric properties of geodesics.
The findings significantly enhance our understanding of geodesic behavior
in Finsler geometry and illuminate curvature and geometric structures in
various contexts.
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