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Abstract. The main objective of this paper is to study some
new local fractional Hilbert-type inequalities with a general ker-
nel. We apply our main results to non-homogeneous kernels. In
addition, we obtain the best possible constants.
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Introduction

Let p and ¢ be a pair of non-negative conjugate parameters, i.e., 1/p+1/q =
1, p > 1. The well-known Hilbert integral inequality (see, for example, [3], [5]
and [21]) essentially states that

f(x)g(y) T
LI dredy < —— , 1
e T4y rdy < smg”fupng”q (1)

where f € LP(R,) and g € LI(R,) are non-negative functions. The constant
7/(sin(m/p)), appearing on the right-hand side of (T]), is the best possible.
Inequality is significant in mathematical analysis and its applications. A
large number of generalizations and extensions of the Hilbert inequality have
been established, covering various aspects such as different weighted func-
tions, integration domains, types and dimensionality of integrals, etc. For
example, through the application of Hermite-Hadamard inequality, Rassias
et al. in [11] developed some higher-accuracy multidimensional half-discrete
Hilbert-type inequalities. On the other hand, B. Yang et al. in [20] claimed
results concerning Hilbert-type inequalities with non-homogeneous kernels
(for additional results, see also [9,/10,/14}/15,/19]). In the works |13] and [12],
Rassias et al. utilized weight coefficients derive a new, more accurate Hilbert-
type inequalities in the whole plane. This paper establishes new Hilbert-type
inequalities through the application of local fractional integrals.
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Let us briefly remind some fundamental definitions and outcomes of local
fractional calculus (see also [1,2,4,6,17,(18]). Let R*, 0 < a < 1, be an a-type
fractal set of real line numbers. Addition and multiplication operations on
R are defined by a*+b* := (a+b)* and a®-b* = a®b* := (ab)®, a*, b* € R™.
Naturally, with these two operations, R* is a field with additive identity 0*
and multiplicative identity 1.

If a function f is local continuous in the interval (a,b), we denote f €
Cq(a,b). Recently, Q. Liu (see [7]) provided a unified approach to the 2-
dimensional Hilbert-type inequality via fractal integrals. In particular, he
proved that if p > 1, 1/p+1/¢ =1, 0 < a <1, 8,A >0, f,g (>0) €
C,(0,00), then the next inequality holds:

e [ B st

= F)\Lga (F(l + ) /OOO [p(l_ﬁ)_l]afp($)<dx)a);

1 o0 ‘
. l9(1=B)~1or g1 () ( )
X (F(1+a)/0 Yy g4 (7)(dy) ) :

where I',(+), 0 < a < 1, is a local fractal Gamma function defined by
1

To(z) = ——— | E, (=t D (dt),

)= Fray Bt Vi

and F, () denotes the Mittag-Leffler function given by

Eo(z) = ;m

Moreover, it has been shown that the constant appearing on the right-hand
side of the above inequality is the best possible. The famous Hélder inequal-
ity is used to establish Hilbert-type inequalities. A fractal version of the
Holder inequality is proved in [1: let Y7 (1/p;)) =1,p; > 1,i=1,2,...,m,
and let Q be a fractal surface. If F; € C,(Q"), i = 1,2,...,m, then the fol-
lowing inequality holds:

oty Lo mtaa)

1

< H1 (m /Q FP(y, . a)(day)® (dxn)a> MC)

This research constructs a new Hilbert-type inequality including a non-
homogeneous kernel and an optimal constant, employing the approach of
weight functions and local fractional calculus techniques. The equivalent
form and several specific examples are derived as applications.
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1 Main results

The choice of non-conjugate parameters additionally helps in the investiga-
tion of Hilbert-type inequalities. Let p and ¢ be real numbers such that

1 1

p>17q>17_+_217 (3)
2

and let p’ = p/(p — 1) and ¢’ = ¢q/(¢ — 1), respectively, be their conjugate

exponents, that is, 1/p+1/p’ =1 and 1/q + 1/¢’ = 1. Moreover, define

A= 17 + ? (4)
and observe that 0 < A < 1 holds for all p and ¢ as in (3. Especially, the
equality A = 1 holds if and only if ¢ = p/, that is, only if p and ¢ are mutually
conjugate. Alternatively, we have 0 < A\ < 1, and such parameters p and ¢
will be referred to as non-conjugate exponents.

This section begins a discussion of general Hilbert-type and Hardy-Hilbert-
type inequalities including non-conjugate exponents. The following theorem
formulates and illustrates the equivalent relations.

Theorem 1 Let p, ¢ and A be real parameters satisfying and . If o,
Y, fi9 € Co(Ry) and K € Cu(Ry)? are non-negative functions, then the
following inequalities hold and are equivalent:

mira | [ R e o)

1

< (m [ ety @ ) (s [ e’

where

o () = mia) | K@
and

)= e | Koo @)
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Proof. In inequality , the left-hand side can be rewritten as follows:

L 1+a/ / KN, y) f(x) g(y) (d2)* (dy)°

eara ), ¥ <y><%0pwf’q'fp><x>}q
[K(x )™ () (] ) (0) ]
X [(pwr f)P () (Yw29) (y )]1 A (dx)*(dy).

With the conjugate parameters ¢/, p’, 1/(1 — A) > 1, the local fractional
Holder’s inequality applied to the above relation produces

s

s (v | (v [ K an®) (o moan)
N [ (e | K@ @) et an*
(e [ eerrowr) (fi [Ceerwwr)

Finally, we obtain ([5)) by using the definitions of the functions w;, ws, through
the Fubini theorem.

The next part will demonstrate the equivalence of inequalities ([5)) and @
Assume that inequality is valid. Defining the function

o) = 000 (s | Ko sanr)

and using , we can write

L e
1+a/ / K (2, y)f(2) (dz)* (dy)°

< (rra [ty )’1’ (v | °°<W2g)q<y>>3

= (ﬁ / Oo(wwlf)p(w)(dw)“); |

<ﬁ /Omwcuz)—q ( (2, )f <dw>) <dy>q/>q,

that is, we get @

e
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Now assume, that inequality @ holds true. Then, the application of the
local fractional Holder inequality yields

1+a || K@@t
- | e ”(m | K@) ) ()

L
7

s(ﬁ/ ) (5 M/ K/ @)d) ) <dy>a>q
“(rrsa /Owwwzguxdy))

< (v [ m(sowlfm)(dx)a)’l’ (v | °°<ww2g>q<y><dy>a)‘l’ ,

which implies . Hence, inequalities and @ are equivalent. []

Further, we will consider weight function that involve real differentiable
functions v(z). More precisely, we assume that v(z) > 0, v'(z) > 0 (z € R,),
with v(07) = 0, v(c0) = 0.

In the following, we assume that h € C,(R) is a non-negative function.
Additionally, we define

k) = ﬁ / " h(yrn(de)e

under assumption k(n) < oo.
We will now provide our results using a general kernel.

Theorem 2 Let p, q and \ be real parameters satisfying and , and
let A1, Ay € Ry If f,g € Cu(Ry) are non-negative functions, then the
following inequalities hold and are equivalent:

1 > > « «
s | [ e

<17 @Ak () (s [ o o)

1 o aq(A1+A2) =21 10 \a(1—q) q a
(ﬁ bt g <y><dy>) )

1+«

RS

Qe



6 P. VUKOVIC

and

(i [ B F e

1+«

(e | P sea)

< kr (p'Al)k'i(q’Ag) (ﬁ /OOO iEap(Al_i_Aﬂ_Zé;)fp(a?)(dx)a) P . (8)

q 1
7

(dy)“> ’

Proof. Let us substitute functions K (z,y) = h(zv(y)), o(z) = 24 and
(Y ouv)(y) = [v(y)]**2[v'(y)]” ¢ in inequality (5]). Evidently, these substitu-
tion is well defined since v is injective. Then

1 = = (67 e}
mirs L [ P e et ) )

< |ra | et sy

X [;) /ooo[v(y)]"‘q“ [0 ()] (wy 0 v)(y)gq(y)(dy)a} ’

I'l+a

where
o) = (e [ Mo @)
and N
(2000 = (prra | Hevt)e @)’
Now, by substitution ¢t = zv(y), we obtain
q aq Az—a 1 > —aq' Az @
Wi (z) = 274 Tt a) /0 h(t)t (dt) 9)

= k(g Ag)a A,

where we used the definition of function k(-). Similarly, we obtain

/

(w2 0 0) (y) = [v(y)]" Mk (p'Ay). (10)

Finally, from relations @ and , we get . Due to the equivalence of
and @, we can prove in a similar way. [

In the case of conjugate exponents (A = 1), setting p’ = ¢ and ¢’ = p,
from Theorem 2, we obtain the following result.
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Theorem 3 Let 1/p+1/¢g =1, p > 1, and let A1, Ay € Ry. If f,g €
Co(Ry) are non-negative functions, then the following inequalities hold and
are equivalent:

1 = > « «
mira | [ e @t @)
1 oo

<L (m/o xap(A1+A2)afp(x)(dx)a)zlﬁ

(v [ P g@)

1

.
ond
(i | ot ers ey
(s [ rnseane) @)’
<1 [ o) (12
ahere

L = ki(gA)k> (pAy). (13)

The primary objective of achieving the optimal constant is to minimize
constant L defined by , in a form devoid of exponents, by appropriate
selection of parameters A; and As. Therefore, it is logical to establish the
following condition

pAz = qAy, (14)

since in this setting k(pAs2) = k(gA;). Consequently, constant L from The-
orem [3 is transformed into

Additionally, under assumption , inequalities and can be re-
vised as follows:

<L [m /O gerihi—e f”(x)(dx)ar

! - apqAs—arf, ./ a(l—q) q a %
: {ﬁfo ()] [0 ()] g% (y) (dy) } (15)

1+«

1 > > « «
i | [ )@t @)
1 o0
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and
(s [ [ [ty soaer] )
<1 e [ ] (16

Our main aim is to demonstrate that the constants on the right-hand

sides of inequalities and are best possible. This is the essence of
the following theorem.

Theorem 4 Let 1/p+1/q=1,p > 1, and let Ay, Ay € R,. If the parame-
ters Ay and As satisfy condition , then the constant factor L* is the best
possible in inequalities (15)) and (|16]).

Proof. 1t suffices to prove that constant L* is the best possible in in-

equality since and are equivalent. For this purpose, put
flx) =275 ey and §ly) = [o(y)] ™7 <[ (9)]* - X0, Now,

let us suppose that inequality holds for the functions f(x) and g(y).
According to local fractional calculus, we have

1 % -
el R LI TO,
1 1

“trra ) T = aray

The substitution ¢ = v(y) yields

i | B g ) e
_ U e e — L
_F(l—Jra)/o [o(y)] [ ()] (dy) = S o) (18)

Now assume that there is a positive constant M < L* such that inequal-
ity (15]) is still valid if we replace L* with M. Hence, if we include rela-

tions and in inequality with the constant M instead of L*, we
have

1 e > ry ~ o «
I - s / / h(zo(y)) F@)(y)(dz)* (dy)
M

m[”(l)F- (19)
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Further, let us we estimate the left-hand side of inequality . By using
the Fubini theorem and substitution ¢ = zv(y) (see also [§]), we obtain

~ 1

I = e | B )
1

<reray [ e e o

1 ! ——QE / [e%
- Fr [ e

X {F(; / h h(t)t_o‘qu_f(dt)a} (dy)®

L+ a) Jyy)

- ﬁ | v o
I'(1 —I—a) /(y S
F(l—i—a) /1,( e ) (d)°
1 & 1)

I'l+a) /o F(l—l—a)
) h(t)t M=% (de)®

[v(1)]* 1 > —agA1—%¢ o
=T+ a)T(1+a) /m) h(t)t (d?)

eT'(1+a)\I'(1 4+ «

I [v(1)]* /Oo h@)t—anl—af(dt)a), (20)

F(l + Oé) v(1)

SRR S | (S i [v(y)]apAz*?[U’(@J)]‘W@/)“)

Now, relations and yield

1 o) [w(1)]es [ ac

— h(t)t™ M (dt —/ ()t N5 (dt)
F(1+a)/0 (®) " (dt)” L1+ a) Jym ®) (dt)
— e°T(1+ )] < M[v(1)]7 .

For e — 07, by local fractional Fatou lemma (cf. [18]), we have

which contradicts with the assumption that the constant M is less than L*.
O
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Below we provide some collaries of Theorem {4 We used kernel h;(t) =

(14¢)~**, where s > 0. In the following, we assume that
2 — 2 —
A= py=="70 (21)
2q 2p
Then constant L* from Theorem B] becomes

L = k(pAs) =k (1 . 2)

1 ey s s
- d a:Ba 50
F(1+a)/0 Aty (2 2)

and we obtain the following consequence from Theorem [4]

Corollary 1 Let 1/p+1/g=1,p>1, and let s > 0. If f,g € C,(Ry) are
non-negative functions, then the following inequalities hold and are equiva-

lent:
e ), ) T e
<. 3) [ [ o]
" {ﬁ /ooo[“@”“q“‘5>‘“[v'<y>]a<l—q>gq<y><dy>°‘}
and

(it o0 7 [t [ ] )

<5 (55) [y [ o]

s S

where constant B, (5, 5) 18 the best possible.

The constant that appears in our second example is expressed in terms
of local fractional hypergeometric function defined by

1 1 1
(b—1)a 1— (e=b—1)a 1— —aq e
Ba(bc—b)T(1 +a) /0 =) (1=2t)™2(dt)",

where ¢ > 0> 0, [z] < 1.
Let ho(t) = (1 +t + max{1,t})"**, 0 < s < 2, and let A; and Ay be
defined by (21). Using following formula (see also [16])

m /01 the <1 + %t) - (dt)”

= B (B +1,1),F° (s,5+ 1,ﬁ+2;—%) .

2 Fi¥(a,b; ¢ 2) =
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for constant L* from Theorem [4] we can write

L= k(pAs) =k (1-3)

- i) T e
- T(l+a) )y (1+t+max{l,t})es

- / T ey / Tt
T +a) )y (2+t)es L(1+a) )y (1+2t)s
1
— gl-asp (f 1) refs 2.2 4122, 99
5 t) (s gig g (22)

Setting v(y) = y and ha(t) in Theorem {4} we obtain the following result
with non-homogeneous kernel.

Corollary 2 Let 1/p+1/qg =1, p > 1, and let 0 < s < 2. If f,g €
Co(Ry) are non-negative functions, then the following inequalities hold and
are equivalent:

1 Y f(@)g(y) af e
P2(1+a)/0 /0 (1 4+ zy + max{1, zy})* (dz)*(dy)
—1 ooo‘pl’%’apx z)®

<M [ [ e @]

x {ﬁ /O N y“q“‘g)‘“gq(y)(dy)“}

= Yy

and

(rrra [ v e, arm e <df>°‘r)

1

3=

where the best possible constant M is defined by .
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