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Characterization of the Unit Tangent Sphere

Bundle with g-Natural Metric and Almost

Contact B-metric Structure
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Abstract. We consider unit tangent sphere bundle of a Rie-
mannian manifold (M, g) as a (2n + 1)-dimensional manifold
and we equip it with pseudo-Riemannian g-natural almost con-
tact B-metric structure. Then, by computing coefficients of the
structure tensor F , we completely characterize the unit tangent
sphere bundle equipped to this structure, with respect to the
relevant classification of almost contact B-metric structures, and
determine a class such that the unit tangent sphere bundle with
mentioned structure belongs to it. Also, we find some curvature
conditions such that the mentioned structure satisfies each of
eleven basic classes.
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Introduction

As a classical research field in Riemannian geometry, the motif of lifted met-
rics on tangent and unit tangent sphere bundle of a Riemannian manifold
is widely considered by many geometrists till now. The brilliant mathe-
matician, Sasaki, made significant contributions to this field and since then,
his works have been a great inspiration for geometrists to introduce various
types of lifted metrics on tangent and unit tangent sphere bundle of Rieman-
nian manifolds such as g-natural metrics. Abbassi et al., have studied some
properties of g-natural metrics on the unit tangent sphere bundle induced
from g-natural metrics on the tangent bundle ([1, 2, 3, 4, 5]). Furthermore,
in this context, Kowalski ([16, 17, 18, 19, 20]), Boeckx ([7, 8, 9, 10, 11, 12]),
and Calvaruso ([14]) have published some worthy papers.
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The notion of the almost contact structure is another concept of classical
research field in differential geometry of manifolds, first given by Sasaki in
[27]. In [15], authors equipped an almost contact manifold to B-metric, as
a natural extension of an almost complex manifold to the odd dimensional
case, and they introduced a classification of almost contact B-metric man-
ifold with respect to the covariant derivative of the fundamental tensor of
type (1, 1). This classification named the relevant classification, includes
eleven basic classes. By taking seriously the idea of classification with re-
spect to structure tensors, Manev characterized a wide scope of Riemannian
manifolds and obtained valuable results (see [21, 25, 22, 23, 24, 26]).

In this paper, we consider pseudo-Riemannian g-natural almost contact
structure on the unit tangent sphere bundle T1M with B-metric, and we
characterize this structure with respect to the relevant classification of al-
most contact manifold with B-metric introduced in [15]. The work is or-
ganized in the following way. We begin in the section 1 from the study on
the concept of g-natural metrics on the tangent and unit tangent sphere
bundle of a Riemannian manifold (M, g). We proceed to the section 2 to de-
scribe and study the behavior of the structure tensor F on the unit tangent
sphere bundle. The first two sections have been organized to contain all the
necessary geometric machinery for the rest of the paper. The last section
contains our main results: the characterization of the unit tangent sphere
bundle with respect to the relevant classification of almost contact B-metric
manifolds.

1 g-natural metric on sphere bundle

This section contains some necessary information on g-natural metrics on
the tangent and unit tangent sphere bundle.

1.1 g-natural metrics on the tangent bundle

Let (M, g) be an (n+ 1)-dimensional Riemannian manifold, and we denote
by ∇ its Levi-Civita connection. The tangent space TM(x,u) of the tangent
bundle TM at a point (x, u) splits as

(TM)(x,u) = H(x,u) ⊕ V(x,u),

where H and V are the horizontal and vertical spaces with respect to ∇.
Actually, for a vector X ∈ Mx, there exists a unique vector Xh ∈ H(x,u)

(called the horizontal lift of X to (x, u) ∈ TM), such that π∗X
h = X,

where π : TM → M is the natural projection. Also, the vertical lift of
a vector X ∈ Mx is a vector Xv ∈ V(x,u) such that Xv(df) = Xf , for
all functions f on M . It should be noted that we consider 1-forms df on
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M as functions on TM (i.e., (df)(x, u) = uf). The map X → Xh is an
isomorphism between the vector spaces Mx and H(x,u). Similarly, the map
X → Xv is an isomorphism between Mx and V(x,u). Each tangent vector
Z ∈ (TM)(x,u) can be written in the form Z = Xh + Y v, where X, Y ∈Mx,
are uniquely determined vectors. The geodesic flow vector field on TM
is uniquely determined by uh(x,u) = ui( ∂

∂xi
)h(x,u), for any point x ∈ M and

u ∈ TMx, with respect to the local coordinates { ∂
∂xi
} on M.

One can find a comprehensive description of the class g-natural metrics
on the tangent bundle of a Riemannian manifold (M, g) in [2]. Especially,
we express the following characterization.

Proposition 1 ([2]) Let (M, g) be a Riemannian manifold and G be the
g-natural metric on TM . Then there are six smooth functions αi, βi : R+ →
R, i = 1, 2, 3, such that for every u,X, Y ∈Mx, we have

G(x,u)(X
h, Y h) = (α1 + α3)(r

2)g(X, Y ) + (β1 + β3)(r
2)g(X, u)g(Y, u),

G(x,u)(X
h, Y v) = G(x,u)(X

v, Y h) = α2(r
2)g(X, Y ) + β2(r

2)g(X, u)g(Y, u),
G(x,u)(X

v, Y v) = α1(r
2)g(X, Y ) + β1(r

2)g(X, u)g(Y, u),

where r2 = g(u, u).

There are some well-known examples of Riemannian metrics on the tan-
gent bundle obtained from Riemannian g-natural metrics. In particular, the
Sasaki metric is a special case of Riemannian g-natural metrics with

α1(t) = 1, α2(t) = α3(t) = β1(t) = β2(t) = β3(t) = 0.

1.2 g-natural metric on the unit sphere bundle

The unit tangent sphere bundle over a Riemannian manifold (M, g), is the
hyperspace

T1M = {(x, u) ∈ TM | gx(u, u) = 1},

in TM . The tangent space of T1M , at a point (x, u) ∈ T1M , is given by

(T1M)(x,u) = {Xh + Y v|X ∈Mx, Y ∈ {u}⊥ ⊂Mx}.

A (pseudo)-Riemannian g-natural metric on T1M , is any metric G̃, induced
on T1M by a g-natural metric G on TM . Using [13], we know that G̃ is
completely determined by the values of four real constants, namely

a = α1(1), b = α2(1), c = α3(1), d = (β1 + β3)(1).

Let (M, g) be an (n + 1)-dimensional Riemannian manifold. We start from
an orthogonal basis {e0 = u, e1, . . . , en} on x ∈M . We define δ̃0 = eh0 = uh,



46 F. Firuzi, Y. Alipour Fakhri and E. Peyghan

and δ̃i = ehi , and ∂̃Ti = evi , for i = 1, . . . , n. The metric G̃ on T1M is
completely determined by

G̃(x,u)(δ̃i, δ̃j) = (a+ c)gx(∂i, ∂j) + dgx(∂i, u)gx(∂j, u),

G̃(x,u)(δ̃i, ∂̃
T
j ) = bgx(∂i, ∂j),

G̃(x,u)(∂̃
T
i , ∂̃

T
j ) = agx(∂i, ∂j),

at any point (x, u) ∈ T1M , for all ∂i, ∂j ∈ Mx, with ∂j orthogonal to u (see
[13]). Obviously, we have G̃(δ̃i, δ̃j) = G̃(δ̃i, ∂̃

T
j ) = G̃(∂̃Ti , ∂̃

T
j ) = 0, when i 6= j.

Therefore, the matrix of G̃ with respect to the basis {δ̃0, δ̃1, ∂̃T1 , . . . , δ̃n, ∂̃Tn }
at a point (x, u) is block diagonal:

a+ c+ dr2 0 0 . . . 0 0
0 a+ c b . . . 0 0
0 b a . . . 0 0
...

...
...

. . .
...

...
0 . . . . . . . . . a+ c b
0 . . . . . . . . . b a


,

the determinant of G̃ is (a+c+dr2)αn, and G̃ has eigenvalues a+c+dr2 for
once and 2a+c±

√
c2 + 4b2 (n-times for each of them), where α = a(a+c)−b2.

Further details, including a comprehensive discussion on the signature
of these metrics and those conditions leading these metrics to Riemannian
or pseudo-Riemannian metrics can be found in [13]. With the purpose of
constructing a B-metric structure with an associated g-natural metric on the
unit tangent sphere bundle T1M , it requires to

a+ c+ d > 0, α = a(a+ c)− b2 < 0.

By a simple calculation and using the Schmidt’s orthogonalization pro-
cess, it is easy to check that whenever φ 6= 0, the vector field on TM defined
by

NG
(x,u) =

1√
|(a+ c+ d)φ|

[−buh + (a+ c+ d)uv],

for all (x, u) ∈ TM , is normal to T1M and is unitary at any point of T1M ,
where φ = a(a + c + d) − b2. Now, we define the tangential lift X tG with
respect to G of a vector X ∈Mx to (x, u) ∈ T1M as the tangential projection
of the vertical lift of X to (x, u) with respect to NG that is,

X tG = Xv −G(x,u)(X
v, NG

(x,u))N
G
(x,u) = Xv −

√
|φ|

|a+ c+ d|
gx(X, u)NG

(x,u).

If X ∈ Mx is orthogonal to u, then X tG = Xv. Note that if b = 0, then
X tG coincides with the classical tangential lift X t defined for the case of the
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Sasaki metric. In the general case,

X tG = X t +
b

a+ c+ d
g(X, u)uh.

The tangent space (T1M)(x,u) of T1M at (x, u) is spanned by vectors of the
form Xh and Y tG as follows,

(T1M)(x,u) = {Xh + Y tG|X ∈Mx, Y ∈ {u}⊥ ⊂Mx}, (1)

where X, Y ∈ Mx. Using this fact, the pseudo-Riemannian metric G̃ on
T1M , induced from G, is completely determined by the following identities.

G̃(Xh, Y h) = (a+ c)gx(X, Y ) + dgx(X, u)gx(Y, u),

G̃(Xh, Y tG) = bgx(X, Y ),

G̃(X tG , Y tG) = agx(X, Y ),

whereX, Y ∈Mx. It should be noted that by the above equations, horizontal
and vertical lifts are orthogonal with respect to G̃ if and only if b = 0.

1.3 Almost contact pseudo-Riemannian g-natural met-
ric structure on sphere bundle

In this part, we consider unit tangent sphere bundle of a Riemannian man-
ifold as an odd dimensional manifold and equip it with an almost contact
pseudo-Riemannian g-natural metric structure with B-metric.

Definition 1 ([6]) A (2n+ 1)-dimensional manifold M has an almost con-
tact structure if it admits a tensor field ϕ of type (1, 1), a vector field ξ, and
a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.

Then, (1) yields that the tangent space of T1M at (x, u) can be written as

(T1M)(x,u) = span(ξ)⊕ {Xh|X ⊥ u} ⊕ {Y tG |Y ⊥ u}.

Notice that a Riemannian manifold (M, g) with an almost contact structure
(ϕ, ξ, η), satisfies B-metric condition, whenever

g(ϕx, ϕy) = −g(x, y) + η(x)η(y).

At first, we equip the unit tangent sphere bundle with an almost contact
structure with B-metric (ϕ, ξ, η, G̃) and a basis {δ̃i, ∂̃Ti , ξ}, such that δ̃i, ∂̃

T
i ⊥

ξ with respect to G̃, where ξ = ρuh. The following equations define an
almost contact structure on the unit tangent sphere bundle T1M ,

η(δ̃i) = η(∂̃Ti ) = 0, η(ξ) = 1, (2)
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ϕ(δ̃i) = ∂̃Ti , ϕ(∂̃Ti ) = −δ̃i, ϕ(ξ) = 0. (3)

The adapted pseudo-Riemannian g-natural metric on the unit tangent sphere
bundle T1M with almost contact B-metric structure is of the following form

G̃(δ̃i, δ̃j) = (a+ c)g(∂i, ∂j) + dg(∂i, u)g(∂j, u),

G̃(δ̃i, ∂̃
T
j ) = 0,

G̃(∂̃Ti , ∂̃
T
j ) = ag(∂i, ∂j).

Also, pseudo-Riemannian metric G̃ is a B-metric because we have

G̃(ϕδ̃i, ϕδ̃j) = −G̃(δ̃i, δ̃j), G̃(ϕ∂̃Ti , ϕ∂̃
T
j ) = −G̃(∂̃Ti , ∂̃

T
j ).

These equations give us a + c = −a. Moreover, we have the following
equations

asi (y, v)ujgsj(y) = 0,

δ̃i = asiδs,

G̃(δ̃i, δ̃j) = −aδij,

aji (y, v)ast(y, v)gjs(y, v) = δit,

∂̃Ti = asi∂
T
s ,

G̃(∂̃Ti , ∂̃
T
j ) = aδij,

where ati are functions on M and δij is the Kronecker symbol.

Lemma 1 ([6]) The Lie brackets of frame {δ̃i, ∂̃Ti , ξ} of T1M satisfy the
following relations,

[δ̃i, δ̃j] = [ari δr, a
s
jδs] = ari δr(a

s
j)δs − asjδs(ari )δr + aria

s
ju

lR k
srl ∂

T
k ,

[δ̃i, ∂̃
T
j ] = [ari δr, a

s
j∂

T
s ] = ari δr(a

s
j)∂

T
s − asj∂Ts (ari )δr + aria

s
jΓ

p
rs∂

T
p ,

[∂̃Ti , ∂̃
T
j ] = [ari∂

T
r , a

s
j∂

T
s ] = ari∂

T
r (asj)∂

T
s − asj∂Ts (ari )∂

T
r ,

[δ̃i, ξ] = [ari δr, ρu
oδo] = ari δr(ρu

o)δo − ρuoδo(ari )δr + ariρu
oulR k

orl ∂
T
k ,

[∂̃Ti , ξ] = [ari∂
T
r , ρu

oδo] = ari∂
T
r (ρuo)δo − ρuoδo(ari )∂Tr − ariρuoΓpor∂Tp ,

where R denotes the Riemannian curvature tensor on M with gpkR
k

jil =

Rjilp and Γkji denote the Christoffel symbols on M defined by ∇∂i∂j = Γkij∂k,

and ∇u∂i = Γkoi∂k, and ξ = ρuh = δ̃0 = ρuo(∂o)
h.

2 Structure tensor F

The covariant derivatives of (ϕ, ξ, η) with respect to the Levi-Civita con-
nection ∇ play a fundamental role in the differential geometry on the al-
most contact manifolds. The structural tensor F of the type (0, 3) on
(T1M,ϕ, ξ, η, G̃) is defined by the following way.
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Definition 2 The structure tensor F is defined by

F (x, y, z) = G̃((∇̃xϕ)y, z), (4)

and has the following properties:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ),
(5)

G̃(∇̃xξ, y) = F (x, ϕy, ξ). (6)

The following 1-forms are associated with F ,

θ(z) = G̃ijF (ẽi, ẽj, z), θ∗(z) = G̃ijF (ẽi, ϕẽj, z), ω(z) = F (ξ, ξ, z),
(7)

where G̃ij are the coefficients of the inverse matrix of pseudo-Riemannian
metric G̃ with respect to the basis {ẽi, ξ}, (i = 1, 2, . . . , 2n) at any point
p ∈M and ∇̃ denotes the Levi-Civita connection on T1M.

Proposition 2 The essential coefficients (which may not be zero) of struc-
ture tensors F are of following forms

F (δ̃i, δ̃j, δ̃t) =
a

2
{R(∂i, ∂t, u, ∂j)− R(∂j, ∂i, u, ∂t)},

F (∂̃Ti , ∂̃
T
j , ξ) = −aρ

2
{R(∂j, u, u, ∂i)},

F (∂̃Ti , ∂̃
T
j , δ̃t) =

a

2
{R(∂t, ∂j, u, ∂i)},

F (ξ, δ̃i, δ̃j) =
aρ

2
{R(u, ∂j, u, ∂i)− R(∂i, u, u, ∂j)},

F (δ̃i, δ̃j, ξ) =
aρ

2
{R(∂i, u, u, ∂j)},

where R denotes the Riemannian curvature tensor on M.

Proof. First, we compute F (∂̃Ti , ∂̃
T
j , ∂̃

T
t ), as a zero coefficient. Taking into

account the definition 2 we get

F (∂̃Ti , ∂̃
T
j , ∂̃

T
t ) = −G̃(∇̃∂̃Ti

δ̃j, ∂̃
T
t ) + G̃(∇̃∂̃Ti

∂̃Tj , δ̃t). (8)

Using Koszul formula we obtain

G̃(∇̃∂̃Ti
δ̃j, ∂̃

T
t ) =

1

2
{G̃([∂̃Ti , δ̃j], ∂̃

T
t ) + G̃([∂̃Tt , ∂̃

T
i ], δ̃j) (9)

− G̃([δ̃j, ∂̃
T
t ], ∂̃Ti ) + δ̃jG̃(∂̃Ti , ∂̃

T
t )}

=
1

2
{−asjamt δs(ari )agrm − ariamt asjΓprsagpm − ariasjδs(amt )(agmr)

− ariasjamt Γpsmagpr + asjδs(a
r
ia
m
t agrm)},
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and also,

G̃(∇̃∂̃Ti
∂̃Tj , δ̃t) =

1

2
{G̃([∂̃Ti , ∂̃

T
j ], δ̃t) + G̃([δ̃t, ∂̃

T
i ], ∂̃Tj ) (10)

− G̃([∂̃Tj , δ̃t], ∂̃
T
i )− δ̃tG̃(∂̃Ti , ∂̃

T
j )}

=
1

2
{amt asjδm(ari )agrs + aria

s
ja
m
t Γpmragps + aria

m
t δm(asj)a(gsr)

+ aria
s
ja
m
t Γpsmagpr − amt δm(aria

s
jagrs)}.

Substituting (9) and (10) into (8), we have

F (∂̃Ti , ∂̃
T
j , ∂̃

T
t ) =

1

2
{asjamt δs(ari )agrm + aria

m
t a

s
jΓ

p
rsagpm + aria

s
jδs(a

m
t )(agmr)

+ aria
s
ja
m
t Γpsmagpr + asja

r
i δs(a

m
t )agrm + asja

m
t δs(a

r
i )agrm

+ asja
r
ia
m
t δs(agrm) + amt a

s
jδm(ari )agrs + aria

s
ja
m
t Γpmragps

+ aria
m
t δm(asj)a(gsr) + aria

s
ja
m
t Γpsmagpr − amt δm(aria

s
jagrs)}

=
1

2
{asjamt δs(ari )agrm + aria

m
t a

s
jΓ

p
rsagpm + aria

s
jδs(a

m
t )(agmr)

+ aria
s
ja
m
t Γpsmagpr − asjari δs(amt )agrm − asjamt δs(ari )agrm

− asjariamt δs(agrm) + amt a
s
jδm(ari )agrs + aria

s
ja
m
t Γpmragps

+ aria
m
t δm(asj)a(gsr) + aria

s
ja
m
t Γpsmagpr − amt ariasjδm(agrs)

− amt ari δm(asj)agrs − amt asjδm(ari )agrs}

=
1

2
{ariamt asjΓprsagpm + aria

s
ja
m
t Γpsmagpr − asjariamt δs(agrm)

+ aria
s
ja
m
t Γpmragps + aria

s
ja
m
t Γpsmagpr − amt ariasjδm(agrs)}

=
1

2
{−∇sgrm −∇mgrs} = 0.

Now we compute F (∂̃Ti , ∂̃
T
j , ξ). Taking into account the definition 2 and

using Koszul formula we have

F (∂̃Ti , ∂̃
T
j , ξ) = G̃(∇̃∂̃Ti

ξ, δ̃j)

=
1

2
{G̃([∂̃Ti , ξ], δ̃j) + G̃([δ̃j, ∂̃

T
i ], ξ)− G̃([ξ, δ̃j], ∂̃

T
i )}

=
1

2
{−ariasj∂Tr (ρuo)agos + ariρu

o∂Tr (asj)agos

− ariasjρuoulR k
sol agkr} =

1

2
{−ariasjρuoulR k

sol agkr}.

So we have F (∂̃Ti , ∂̃
T
j , ξ) = −aρ

2
{R(∂j, u, u, ∂i)}. Similarly, it can be shown

that our assertion is valid for other essential coefficients of the structure
tensor F . �
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Lemma 2 The associated 1-forms with respect to structure tensor F on
(T1M,ϕ, ξ, η, G̃) are of the following forms

θ(δ̃i) = −Ric(∂i, u),

θ∗(δ̃i) = 0,

ω(δ̃i) = 0,

θ(∂̃Ti ) = 0,

θ∗(∂̃Ti ) = −Ric(∂i, u),

ω(∂̃Ti ) = 0,

θ(ξ) = −Ric(u, u),

θ∗(ξ) = 0,

ω(ξ) = 0,

where Ric denotes the Ricci curvature tensor on M.

Proof. Using Proposition 2, the Bianchi identity and (7) we have

θ(δ̃t) = G̃bcF (eb, ec, δ̃t) =
−1

a
gbcF (δ̃b, δ̃c, δ̃t) +

1

a
gbcF (∂̃Tb , ∂̃

T
c , δ̃t)

=
−1

a
gbc{−a

2
R(∂c, u, ∂b, ∂t) +

a

2
R(∂b, ∂c, u, ∂t)}

+
1

a
gbc{a

2
R(∂b, u, ∂c, ∂t)}

=
1

a
gbc{a

2
R(∂c, u, ∂b, ∂t)−

a

2
R(∂b, ∂c, u, ∂t) +

a

2
R(∂b, u, ∂c, ∂t)}

=
1

2
gbc{2R(∂c, u, ∂b, ∂t)} = gbcR(∂c, u, ∂b, ∂t) = −gbcR(∂b, ∂t, u, ∂c)

= −Ric(∂t, u),

and also,

θ∗(ξ) = G̃bcF (eb, ϕec, ξ) = −1

a
gbcF (δ̃b, ϕδ̃c, ξ) +

1

a
gbcF (∂̃Tb , ϕ∂̃

T
c , ξ)

= −1

a
gbcF (δ̃b, ∂̃

T
c , ξ)−

1

a
gbcF (∂̃Tb , δ̃c, ξ) = 0.

Similarly, we can prove the other equations. �

3 Classification of the unit tangent sphere

bundle

A classification of the almost contact B-metric manifold with respect to the
structure tensor F is given in [15]. This classification includes eleven basic
classes F1, . . . ,F11. Their intersection is the special class F0 determined
by the condition F (x, y, z) = 0. Hence, F0 is the class of almost contact B-
metric manifolds with∇-parallel structures, i.e.,∇ϕ = ∇ξ = ∇η = ∇G̃ = 0.
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This classification is determined by the following relations.

F1 : F (x, y, z) =
1

2n
{G̃(x, ϕy)θ(ϕz) + G̃(ϕx, ϕy)θ(ϕ2z)

+ G̃(x, ϕz)θ(ϕy) + G̃(ϕx, ϕz)θ(ϕ2y)};
F2 : F (ξ, y, z) = F (x, ξ, z) = 0, S

x,y,z
F (x, y, ϕz) = 0, θ = 0;

F3 : F (ξ, y, z) = F (x, ξ, z) = 0, S
x,y,z

F (x, y, z) = 0;

F4 : F (x, y, z) = −θ(ξ)
2n
{G̃(ϕx, ϕy)η(z) + G̃(ϕx, ϕz)η(y)};

F5 : F (x, y, z) = −θ
∗(ξ)

2n
{G̃(x, ϕy)η(z) + G̃(x, ϕz)η(y)};

F6/7 :

{
F (x, y, z) = F (x, y, ξ)η(z) + F (x, z, ξ)η(y),
F (x, y, ξ) = ±F (y, x, ξ) = −F (ϕx, ϕy, ξ), θ = θ∗ = 0;

F8/9 :

{
F (x, y, z) = F (x, y, ξ)η(z) + F (x, z, ξ)η(y),
F (x, y, ξ) = ±F (y, x, ξ) = +F (ϕx, ϕy, ξ);

F10 : F (x, y, z) = F (ξ, ϕy, ϕz)η(x);

F11 : F (x, y, z) = η(x){η(y)ω(z) + η(z)ω(y)};

where S is a notation for the cyclic sum by three arguments.
Now we characterize the five essential coefficients of the structure tensor

F on T1M as follows.

Proposition 3 The essential coefficients of F on (T1M,ϕ, ξ, η, G̃) men-
tioned in the Proposition 2, satisfy the following relations.

i) F (δ̃i, δ̃j, δ̃t) ∈ F3;

ii) F (∂̃Ti , ∂̃
T
j , δ̃t) ∈ F2;

iii) F (δ̃i, δ̃j, ξ) , F (∂̃Ti , ∂̃
T
j , ξ) ∈ F6;

iv) F (ξ, δ̃i, δ̃j) ∈ F10.

Proof. We only prove the first item. Using Proposition 2 and some direct
calculations we have S

i,j,t
F (δ̃i, δ̃j, δ̃t) = 0, therefore, F (δ̃i, δ̃j, δ̃t) belongs to F3.

�

Remark 1 ([15]) Let (M,ϕ, η, ξ, g) be an almost contact manifold with B-
metric. Using the decomposition of the space F , we define the corresponding
subclasses of the class of almost contact manifolds with B-metric with respect
to the covariant derivative of the structure tensor field ϕ. An almost contact
manifold with B-metric is said to be in the class Fi (i = 1, . . . , 11), if the
structure tensor F belongs to the class Fi. In a similar way we define the
classes Fi ⊕ Fj, etc. It is clear that 211 classes of almost contact manifolds
with B-metric are possible.
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Here, according to Proposition 3 and Remark 1 we express main theorem of
the present paper.

Theorem 1 (Characterization of (T1M,ϕ, ξ, η, G̃)) Let M be an (n+1)-
dimensional Riemannian manifold and we denote by (T1M,ϕ, ξ, η, G̃) its unit
tangent sphere bundle equipped with pseudo-Riemannian g-natural almost
contact B-metric structure. Then T1M with mentioned structure belongs to
the class F2 ⊕F3 ⊕F6 ⊕F10.

Proof. According to Proposition 3, the essential coefficients (and obviously
the zero coefficients) of the structure tensor F belong to the class F2⊕F3⊕
F6⊕F10. Therefore, (T1M,ϕ, ξ, η, G̃) belongs to the class F2⊕F3⊕F6⊕F10.
�

Now, we focus on the essential coefficients of the structure tensor F , in order
to find some curvature conditions such that the essential coefficient satisfy
some basic classes.

Proposition 4 The essential coefficients of the structure tensor F on the
unit tangent sphere bundle (T1M,ϕ, ξ, η, G̃) mentioned in the Proposition 2,
satisfy the following relations.

i) F (δ̃i, δ̃j, δ̃t) ∈ F1 ⇐⇒

R(∂i, ∂t, u, ∂j)− R(∂j, ∂i, u, ∂t) =
1

an
{gijRic(u, ∂t)− gitRic(u, ∂j)};

ii) F (δ̃i, δ̃j, δ̃t) ∈ F2 ⇐⇒ R(∂i, u, u, ∂j) = 0, R(∂j, ∂i, u, ∂t) = 0;

iii) F (∂̃Ti , ∂̃
T
j , δ̃t) ∈ F1 ⇐⇒

R(∂t, ∂j, u, ∂i) =
−1

an
{−gijRic(u, ∂t) + gitRic(u, ∂j)};

iv) F (∂̃Ti , ∂̃
T
j , δ̃t) ∈ F3 ⇐⇒ R(∂t, ∂j, u, ∂i) + R(∂t, ∂i, u, ∂j) = 0;

v) F (δ̃i, δ̃j, ξ) ∈ F4 ⇐⇒ R(∂j, u, u, ∂i) = 1
an
gijRic(u, u);

vi) F (∂̃Ti , ∂̃
T
j , ξ) ∈ F4 ⇐⇒ R(∂j, u, u, ∂i) = 1

an
gijRic(u, u).

Proof. Direct computation yields the truthfulness of our assertion. �
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3.1 Characterization of the unit tangent sphere bun-
dle (T1M,ϕ, ξ, η, G̃) under some curvature condi-
tions

In this part, we focus on each of the eleven basic classes separately, in order
to find some conditions such that structure tensors F satisfy each of classes
under those curvature conditions.

Theorem 2 Let M be an (n + 1)-dimensional Riemannian manifold and
we denote by (T1M,ϕ, ξ, η, G̃) its unit tangent sphere bundle equipped with
pseudo-Riemannian g-natural almost contact B-metric structure. Then,

i) (T1M,ϕ, ξ, η, G̃) ∈ F1 ⇐⇒

R(∂i, ∂t, u, ∂j)− R(∂j, ∂i, u, ∂t) =
1

an
{gijRic(u, ∂t)− gitRic(u, ∂j)},

R(∂t, ∂j, u, ∂i) =
1

an
{gijRic(u, ∂t)− gitRic(u, ∂j)}, R(∂i, u, u, ∂j) = 0;

ii) (T1M,ϕ, ξ, η, G̃) ∈ F2 ⇐⇒ R(∂i, u, u, ∂j) = 0, R(∂j, ∂i, u, ∂t) = 0;

iii) (T1M,ϕ, ξ, η, G̃) ∈ F3 ⇐⇒

R(∂t, ∂j, u, ∂i) + R(∂t, ∂i, u, ∂j) = 0, R(∂i, u, u, ∂j) = 0;

iv) (T1M,ϕ, ξ, η, G̃) ∈ F4,F5 ⇐⇒ R(∂t, ∂j, u, ∂i) = 0, R(∂j, u, u, ∂i) = 0;

v) (T1M,ϕ, ξ, η, G̃) ∈ F6,F7 ⇐⇒ R(∂t, ∂j, u, ∂i) = 0, R(∂j, u, u, ∂i) = 0;

vi) (T1M,ϕ, ξ, η, G̃) ∈ F8,F9 ⇐⇒ R(∂t, ∂j, u, ∂i) = 0, R(∂j, u, u, ∂i) = 0;

vii) (T1M,ϕ, ξ, η, G̃) ∈ F10,F11 ⇐⇒

R(∂t, ∂j, u, ∂i) = 0, R(∂j, u, u, ∂i) = 0.

Proof. We use Proposition 3 and Proposition 4 in the proof as follows.

i) It is obvious that all zero coefficients of the structure tensor F sat-
isfy F1, hence, we concentrate on the five essential coefficients. Using
Proposition 4, it is clear that the structure tensors F (δ̃i, δ̃j, δ̃t) and
F (∂̃Ti , ∂̃

T
j , δ̃t), belong to the class F1 if and only if R(∂i, ∂t, u, ∂j) −

R(∂j, ∂i, u, ∂t) = 1
an
{gijRic(u, ∂t)− gitRic(u, ∂j)} and R(∂t, ∂j, u, ∂i) =

−1
an
{−gijRic(u, ∂t) + gitRic(u, ∂j)}. Also, direct calculations show that

F (δ̃i, δ̃j, ξ), and F (∂̃Ti , ∂̃
T
j , ξ), and F (ξ, δ̃i, δ̃j) belong to F1 if and only

if R(∂i, u, u, ∂j) vanishes. Therefore, our assertion is valid.
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ii) First, we consider the essential coefficients of the structure tensors
F . A glimpse into Proposition 3 shows that one of the five essen-
tial coefficients of the structure tensor F belongs to F2. Moreover,
using Proposition 4 we have F (δ̃i, δ̃j, δ̃t) belongs to F2 if and only
if R(∂i, u, u, ∂j) = R(∂j, ∂i, u, ∂t) = 0. Also, the structure tensors
F (δ̃i, δ̃j, ξ), and F (∂̃Ti , ∂̃

T
j , ξ), and F (ξ, δ̃i, δ̃j) belong to F2 if and only

if R(∂i, u, u, ∂j) = 0. Now we focus on zero coefficients. We con-
sider F (δ̃i, δ̃j, ∂̃

T
t ) as a zero coefficient and a computation shows that

SF (δ̃i, δ̃j, ϕ∂̃
T
t ) vanishes if and only if R(∂j, ∂i, u, ∂t) = 0. All the other

coefficients of the structure tensor F belong to F2 without any con-
ditions. Therefore, T1M belongs to F2 if and only if R(∂i, u, u, ∂j) =
R(∂j, ∂i, u, ∂t) = 0.

iii) Using Proposition 3 we know that one of the five essential coefficients of
F belongs to F3. Thus, we concentrate on other essential coefficients.
Taking advantage of Proposition 4, it can be shown that F (∂̃Ti , ∂̃

T
j , δ̃t)

belongs to F3 if and only if R(∂t, ∂j, u, ∂i) + R(∂t, ∂i, u, ∂j) = 0. Also,
the structure tensors F (δ̃i, δ̃j, ξ), and F (∂̃Ti , ∂̃

T
j , ξ), and F (ξ, δ̃i, δ̃j) be-

long to F3 if and only if R(∂i, u, u, ∂j) vanishes. Obviously, all zero
coefficients of the structure tensor F belong to F3, so the result holds.

iv) It is clear that all zero coefficients of the structure tensors F belong
to F4, hence, we concentrate on essential coefficients. Direct computa-
tions show that F (δ̃i, δ̃j, δ̃t) and F (∂̃Ti , ∂̃

T
j , δ̃t) belong to F4 if and only if

both equations R(∂i, ∂t, u, ∂j)−R(∂j, ∂i, u, ∂t) = 0 and R(∂t, ∂j, u, ∂i) =
0 hold. Also, using Proposition 4, the structure tensors F (δ̃i, δ̃j, ξ) and
F (∂̃Ti , ∂̃

T
j , ξ) belong to F4 if and only if R(∂j, u, u, ∂i) = 1

an
gijRic(u, u).

Moreover, the structure tensor F (ξ, δ̃i, δ̃j) belongs to F4 if and only
if R(∂j, u, u, ∂i) = 0. Notice that these equations are equivalent to
R(∂t, ∂j, u, ∂i) = 0 and R(∂j, u, u, ∂i) = 0 which prove our claim for
the class F4.

For the class F5, the fact that θ∗(ξ) = 0 implies that essential coeffi-
cients of the structure tensors F belong to F5 if and only if they vanish
i.e. R(∂i, ∂t, u, ∂j) − R(∂j, ∂i, u, ∂t) = 0, and R(∂t, ∂j, u, ∂i) = 0, and
R(∂j, u, u, ∂i) = 0. These equations are equivalent to R(∂t, ∂j, u, ∂i) = 0
and R(∂j, u, u, ∂i) = 0. So the result holds.

v) Proposition 3 shows that F (δ̃i, δ̃j, ξ) and F (∂̃Ti , ∂̃
T
j , ξ) belong to F6

and also, it can be checked that F (δ̃i, δ̃j, δ̃t), and F (∂̃Ti , ∂̃
T
j , δ̃t), and

F (ξ, δ̃i, δ̃j) belong to F6 if and only if R(∂i, ∂t, u, ∂j)−R(∂j, ∂i, u, ∂t) =
0, and R(∂t, ∂j, u, ∂i) = 0, and R(∂j, u, u, ∂i) = 0. These equations are
equivalent to R(∂t, ∂j, u, ∂i) = 0 and R(∂j, u, u, ∂i) = 0. By repeating
this procedure, we obtain same results for the class F7. Therefore, our



56 F. Firuzi, Y. Alipour Fakhri and E. Peyghan

claim holds.

vi) The proof of this item is completely similar to the previous one.

vii) Taking into account Proposition 3, one of the five essential coefficients
of F belongs to F10. Using Proposition 2 and some standard calcu-
lations, it is easy to see that the structure tensors F (δ̃i, δ̃j, ξ), and
F (∂̃Ti , ∂̃

T
j , ξ), and F (δ̃i, δ̃j, δ̃t), and F (∂̃Ti , ∂̃

T
j , δ̃t) belong to F10 if and

only if R(∂i, ∂t, u, ∂j)−R(∂j, ∂i, u, ∂t) = 0, and R(∂t, ∂j, u, ∂i) = 0, and
R(∂j, u, u, ∂i) = 0. These equations are equivalent to R(∂t, ∂j, u, ∂i) = 0
and R(∂j, u, u, ∂i) = 0. So the result holds. For the class F11 we can
use the same method.

�

Remark 2 According to Theorem 3.10 in [15], the decomposition F1⊕ . . .⊕
F11 is orthogonal and hence, all mutual intersections of these classes are
reduced to the class F0, i.e., Fi ∩ Fj = F0 (i = 1, . . . , 11).

Corollary 1 Theorem 2 shows that (T1M,ϕ, ξ, η, G̃) belongs to nine of the
eleven basic classes under one condition. More precisely, if R(∂i, u, u, ∂j) =
R(∂j, ∂i, u, ∂t) = 0 then (T1M,ϕ, ξ, η, G̃) ∈ F2 ∩ F4 ∩ . . . ∩ F11. Tak-
ing into account Remark 2, if R(∂i, u, u, ∂j) = R(∂j, ∂i, u, ∂t) = 0 then
(T1M,ϕ, ξ, η, G̃) ∈ F0.

Corollary 2 Items five and six of Proposition 4 imply that if R(∂j, u, u, ∂i) =
1
an
gijRic(u, u), then F (δ̃i, δ̃j, ξ), F (∂̃Ti , ∂̃

T
j , ξ) ∈ F4. Also, using Theorem 3 it

is obvious that F (δ̃i, δ̃j, ξ), F (∂̃Ti , ∂̃
T
j , ξ) ∈ F6. Therefore, if R(∂j, u, u, ∂i) =

1
an
gijRic(u, u), then Remark 2 implies that F (δ̃i, δ̃j, ξ), F (∂̃Ti , ∂̃

T
j , ξ) ∈ F4 ∩

F6 = F0. In other words, if R(∂j, u, u, ∂i) = 1
an
gijRic(u, u), then essen-

tial coefficients F (δ̃i, δ̃j, ξ), F (∂̃Ti , ∂̃
T
j , ξ) must be zero and then Proposition

2 implies that three other essential coefficients of F must be zero too. So,
if we have R(∂j, u, u, ∂i) = 1

an
gijRic(u, u), then all five essential coefficients

of the structure tensor F must be zero and consequently if R(∂j, u, u, ∂i) =
1
an
gijRic(u, u), then (T1M,ϕ, ξ, η, G̃) ∈ F0.

Corollary 3 Let M be a flat (n+1)-dimensional Riemannian manifold and
T1M its unit tangent sphere bundle. Using Proposition 2, all essential coef-
ficients of F are zero and hence, (T1M,ϕ, ξ, η, G̃) belongs to the intersection
of eleven basic classes, i.e., (T1M,ϕ, ξ, η, G̃) ∈ F0.
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