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Sums of Positive Integer Powers

with Unlike Exponents
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Abstract. Consider the following problem: given a positive
integer, what is the minimum number of positive integer powers
having unlike exponents greater than one such that their sum is
equal to the given number? We deal with this open question by
presenting some experimental results, indicating some inequal-
ities and relations, presenting some new integer sequences, ob-
taining a bivariate generating function, and eventually proposing
a conjecture.
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Introduction

What do the numbers 15, 23, 55, 62, 71 have in common? They seem to
be the only ones that can be written as sums of not less than five positive
integer powers with different exponents greater than one (unlike powers, or
UP for short, in the following). Let Z denote the set of integers, N the
set of non-negative integers and N+ = N \ {0}. In this paper, we look at
what happens when facing the problem of understanding the behavior of the
function f : N+ → N+ defined as follows:

f(n) = min
k∈N+

{
k
∣∣n =

k∑
i=1

xeii ; x1, . . . , xk, e1, . . . ek∈ N+ ∧ 1 < e1 < · · · < ek

}
.

The following authors found some important results in this sense (note that
some of the xi might possibly be zero in the below cited papers):

– Ford [1] showed that all sufficiently large n ∈ N can be represented as
n = x21 + x32 + · · · + xk+1

k with k = 14. The circle theorem of Hardy and
Littlewood is the main used tool to tackle these kind of problems, and the
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author points out that in this case the theoretical limit of its applicability
is k = 10.

– Liu and Zhao [7] improved Ford’s result, lowering k to 13.
– Laporta and Wooley [6] proved that almost all (from the density point

of view) large integers n can be represented as n = x31 + · · ·+ x108 .
– Roth [10] showed that almost all (from the density point of view) n ∈ N

can be represented as n = x21 + x32 + x43. Halberstam [3] proves a stronger
result, with x3 prime.

– Jabara [4] obtained that every n ∈ Z can be written as x21+x32+x43+x54
with xi ∈ Z.

Obviously, if n =
k∑

i=1

xeii is a valid UP representation (UPr in the fol-

lowing), then f(n) 6 k, and, by considering base 2 expansion, it is easy to
verify that n = 2ab, with b odd, implies

1 6 f(n) 6 2 + blog2 bc

(the bound can be refined by considering the Hamming weight of b). The
results of Ford and Liu and Zhao show actually that there is a constant
U ∈ N such that 1 6 f(n) 6 U . Note that the number of 1s in a minimal
(with the minimum number of addends) UPr is surely smaller than U (the
only n ∈ N for which f(n) = n are 1, 2 and 3; for n > 3, it is always possible
to use at least one addend greater than 1).

While questions concerning sums of powers having equal exponents have
been extensively studied and treated — just think to the four-square theo-
rem, or Waring’s problem — the problem considered in this paper and some
variations of it are still intriguing. In this paper, we present some results ob-
tained by computer search and some “trivial” considerations, together with
a bivariate generating function (g.f.), a conjecture and some new sequences
recently added in OEIS [9].

An abridged version of this paper [2] also focused on educational aspects,
as the problem, although still open, can be easily explained to students of
any age.

1 Preliminary results and considerations

Table 1 contains some values of f(n) for n 6 20. As 1 = 1e for whatever
e ∈ N, in order to avoid having an infinite number of different equivalent
representations, we impose that bases equal to 1, when needed in a UPr, must
have the smallest possible exponent(s), compatibly with (i.e., different from)
the ei appearing in the other addends, if any. We refer to this agreement
with the wording one-power rule. In the following, we assume that for a
minimal UPr the one-power rule is always satisfied.
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n f(n)

1 = 12 1
2 = 12 + 13 2
3 = 12 + 13 + 14 3
4 = 22 1
5 = 22 + 13 2
6 = 22 + 13 + 14 3
7 = 22 + 13 + 14 + 15 4
8 = 23 1
9 = 32 1
10 = 32 + 13 2
11 = 32 + 13 + 14 3
12 = 22 + 23 2
13 = 22 + 23 + 14 3
14 = 22 + 23 + 14 + 15 4
15 = 22 + 23 + 14 + 15 + 16 5
16 = 24 = 42 1
17 = 12 + 24 = 32 + 23 = 42 + 13 2
18 = 12 + 13 + 24 = 42 + 13 + 14 = 32 + 23 + 14 3
19 = 12 + 13 + 24 + 15 = 32 + 23 + 14 + 15 = 42 + 13 + 14 + 15 4
20 = 22 + 24 2

Table 1: Values of f(n) for small values of n.

Example 1 In 29 = 12 + 33 + 14, the exponent 3 is “taken” in the power 33

and two powers of 1 are needed to reach 29. Their exponents, having to be
minimal, can only be 2 and 4.

Minimal representations are in general not unique: a “trivial” double
one is 16 = 24 = 42, easily generalizable for every single power ne with
3 < e = e1e2 not a prime number, as ne = (ne1)e2 . For 17 (see Table 1) there
are three of them (according to the one-power rule, 1 is written as 12 in the
first representation and as 13 in the last one): the first and last one could
possibly, upon agreement, be considered as equivalent, while the second one
is “essentially” different. From the table we deduce that U > 5.

One could also consider the number µ(n) of different minimal UPr of n.
It is easy to prove that µ(n) is not bounded (just consider the numbers npk

with p prime, having at least k different minimal UPr). We report some
random curiosities:

• 246 6 n 6 253 are representable as sum of two (and not less) UP – all
of them but 252 in a unique way.



4 E. GARISTA AND A. ZANONI

• 711 6 n 6 721 are all representable as sum of three (and not less) UP.

• Donald Duck’s license plate number – 313 – is the smallest number
with ten different representations with three (and not less) UP: 42 +
63 + 34, 52 + 25 + 28, 52 + 44 + 25, 72 + 23 + 28, 72 + 23 + 44, 92 + 63 +
24, 112 + 26 + 27, 112 + 43 + 27, 132 + 24 + 27, 172 + 23 + 24.

• The above cited “Power rangers”: 15 = 22 + 23 + 14 + 15 + 16, 23 =
22+13+24+15+16, 55 = 52+33+14+15+16, 62 = 12+33+14+25+16,
71 = 22 + 43 + 14 + 15 + 16.

Proposition 1 For all n ∈ N+, k ∈ N one has f(n+ k) 6 f(n) + k.

Proof. We can deduce a UPr of n+k from a representation of n by adding
appropriate powers of 1 (with the ad hoc exponents, according to one-power
rule). �

Lemma 1 Let 1 < h < k ∈ N+ be such that the following conditions are
satisfied:

(1) h+ k is not a prime number,
(2) if h is prime, then h+ k 6= h2.

Then there are 1 < d1 < d2 ∈ N with h+ k = d1d2, and at least one of them
is different from both h and k.

Proof. As k > 2, we have k2 > 2k and h + k < 2k 6 hk < k2; therefore,
h + k 6= hk 6= k2. Let gcd(h, k) = d < k. If d < h or d is composite, there
is nothing to prove, otherwise, d is prime and d = h (i.e., h is prime). Then
h + k 6= h2 as well and, being it composite and having excluded the three
unwanted possibilities (h, h), (h, k), (k, k) for (d1, d2), the thesis follows. �

Proposition 2 If m = ah + bk, n = ak + bh and the hypotheses of Lemma
1 are satisfied, then f(mn) 6 4.

Proof. By applying Lemma 1, h + k = d1d2, with d1 or d2 different from
both h and k. Then mn = (ah+bk)(ak +bh) and ah+k +(ab)h+(ab)k +(bd1)d2

(or (bd2)d1 as last addend) is a valid UPr for mn. �

Proposition 3 Let 1 < h < k ∈ N and δ = (h, k), n = ah+bk, m = ch+dk.
If δ has two different proper divisors then f(mn) 6 4.

Proof. As there exist d1, d2 6∈ {1, h, k} such that d1 6= d2 with h = d1h1, k =
d1k1 and h = d2h2, k = d2k2, we can write

mn = (ah + bk)(ch + dk) = (ac)h + ahdk + bkch + (bd)k

= (ac)h + ad1h1dd1k1 + bd2k2cd2h2 + (bd)k

= (ac)h + (ah1dk1)d1 + (bk2ch2)d2 + (bd)k

The exponents h, d1, d2, k are all different, hence a UPr is obtained, and the
thesis follows. �
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Proposition 4 Let n =

f(n)∑
i=1

xeii be a minimal UPr for n ∈ N+ and let

e0 = lcm(e1, . . . ef(n)). Then f(ae0n) 6 f(n) for all a ∈ N+.

Proof. Let e′i = e0/ei, i.e., e0 = e′iei. Then

ae0n = ae0
f(n)∑
i=1

xeii =

f(n)∑
i=1

(xia
e′i)ei ,

thus f(ae0n) 6 f(n). �

The inequality may be strict: if n = 2 = 12 + 13, then e0 = lcm(2, 3) = 6.
Let a = 2, then f(ae0n) = f(26 · 2) = f(27) = 1 < 2 = f(2).

Proposition 5 Let n =

f(n)∑
i=1

xei. Then f(xen) 6 f(n) for e ∈ N.

Proof. As

xen = xe
f(n)∑
i=1

xei =

f(n)∑
i=1

xei+e

and ei 6= ej imply that ei + e 6= ej + e, a valid UPr for xen is obtained and
the thesis follows. �

Note that, in general, the inequality cannot be substituted by an equality.
The smallest counterexamples with different decreases are summarized in
Table 2.

n f(n) e m = 2en f(m)
56 = 23 + 24 + 25 3 5 1792 = 82 + 123 2
72 = 23 + 26 2 1 144 = 122 1

120 = 23 + 24 + 25 + 26 4 1 240 = 122 + 43 + 25 3
200 = 23 + 26 + 27 3 1 400 = 202 1

2104 = 23 + 24 + 25 + 211 4 3 16832 = 25 + 75 2

Table 2: Smallest strict inequality cases (Proposition 5).

Proposition 6 is an easy corollary of Proposition 1 using the numbers in
Table 1.

Proposition 6 If f(n) = 1, i.e., n = xe, then f(n + 1) 6 2, f(n + 2) 6 3,
f(n+ 3) 6 4. In addition,

– If e > 3, then f(n+ 4) 6 2, f(n+ 5) 6 3, f(n+ 6) 6 4.
– If e > 3, the following holds as well: f(n + 8) 6 2, f(n + 9) 6 2,

f(n+ 10) 6 3, f(n+ 11) 6 4, f(n+ 12) 6 3, f(n+ 13) 6 4.
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2 Generating function

For a generic power series S = S(x) =
∑
i>0

six
i, we define [xi]S(x) = si. In

order to represent the generating function F (x) = 1+
∑
i>0

f(i)xi of f , set, first

of all, Pk(x) =
∑
i>0

xi
k

. Let Ir define a sequence (i1, . . . , ir) ∈ Nr of integers

1 < i1 < · · · < ir; let I∗r be the set of all such sequences, and let I =
⋃
r>1

I∗r .

Setting PIr(x) =
r∏

j=1

Pij(x), we obtain f(n) = min
Ir∈I
{r | [xn]PIr(x) > 0} and

F (x) = 1 + x+ 2x2 + 3x3 + x4 + 2x5 + 3x6 + 4x7 + x8 + x9 + · · · .

Given a polynomial p(y) =
m∑
i=0

aiy
i ∈ N[y], let p(j)(y) be its jth derivative,

with p(0)(y) = p(y). We define the order of p(y) to be the smallest exponent
such that the coefficient ai in the corresponding monomial is not zero and
denote it by ord(p) = min

i∈[0,m]
{i | ai 6= 0} (having in mind the convention that,

if p(y) is the zero polynomial, then ord(p) = −∞).

One could be tempted to consider the infinite product P (x) =
∏
i>2

Pi(x)

as the g.f. counting the number of different possible ways, with no restriction
at all, for which a number can be obtained as whatever sum of unlike powers,
but, as x1

k
= x for every k ∈ N, infinite “different” instances of x would

contribute to the product, making it not well defined. We therefore apply
some workaround that will permit to obtain both f(n) and µ(n) (considering
the one-power rule).

First, we introduce a new variable y, associated with the number of ad-
dends. Second, we consider the 1k addends by collecting them in a separate
factor, containing all monomials xiyi with i = 0, . . . , u = U representing the
sum of i (powers of) 1s. The resulting bivariate g.f. is therefore

F (x, y) =

(
u∑

i=0

(xy)i

)∏
k>2

(
1 + y

∑
i>2

xi
k

)

=
1− (xy)u+1

1− xy
∏
k>2

(
1 + y

∑
i>2

xi
k

)
= 1 +

∑
n>1

cn(y)xn

with cn(y) =
n∑

i=0

cn,iy
i. Then f(n) = ord(cn) and µ(n) = cn,ord(cn). The

polynomials cn(y) are, so to say, complete if u = ∞. From the obtained
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results from our experiments we conjecture that it should be u = 3: at most
three powers of 1 are really needed. In that case F (x, y) would be

F (x, y) = 1 + yx+ y2x2 + y3x3 + (y4 + y)x4 + (y5 + y2)x5 + (y6 + y3)x6

+ (y7 + y4)x7 + (y8 + y5 + y)x8 + (y9 + y6 + y2 + y)x9

+ (y10 + y7 + y3 + y2)x10 + (y11 + y8 + y4 + y3)x11 + · · ·

For example, the monomials of the polynomial c9(y) = y9 + y6 + y2 + y all
have unit coefficient and tell therefore that there is only one way to represent
9 as a sum of, respectively, one (y) power, 32, two (y2) powers, 12 + 23, six
(y6) powers, 22 + 13 + 14 + 15 + 16 + 17, or nine (y9) powers, 12 + · · ·+ 110.
With u = 3, the result would be

F (x, y) = 1 + yx+ y2x2 + y3x3 + yx4 + y2x5 + y3x6 + y4x7 + yx8

+ yx9 + (y3 + y2)x10 + (y4 + y3)x11 + (y4 + y2)x12 + · · ·

Consider ζ(n) : N→ {0, 1} defined as

ζ(n) =

{
0, if n = 0,

1, otherwise,

with ζ(x) = ζ(kx) for any k ∈ N+.

Proposition 7 If 0 6= p(y) ∈ N[y], then

ord(p) =

deg(p)∑
i=1

i ζ(p(i)(0))
i−1∏
j=0

(
1− ζ

(
p(i)(0)

))
.

Proof. The idea is to look at the coefficients one at a time, starting from
the constant term, and find the first one which is not equal to zero. The
result is the corresponding exponent of y. If a0 6= 0, then the result is zero,
otherwise, if a1 6= 0, then the result is one, and so on up to deg(p), at worst.
For example, if n = 3, we would have

ord(p) = (1− ζ(a0))
(
ζ(a1) + (1− ζ(a1))

(
2ζ(a2) + (1− ζ(a2))(3ζ(a3)

))
= ζ(a1)(1− ζ(a0)) + 2ζ(a2)

1∏
i=0

(
1− ζ(ai)

)
+ 3ζ(a3)

2∏
i=0

(
1− ζ(ai)

)
.

As ai = p(i)(0)/i!, the thesis follows considering that ζ(ai) = ζ(aii!) =
ζ(p(i)(0)) and by extending the above computation by classical induction. �

By applying Proposition 7 to the polynomials cn(y) and keeping in mind
that cn,0 = 0, we finally obtain

f(n) = ζ(c′n(0)) +
n∑

i=2

i ζ
(
c(i)n (0)

) i−1∏
j=1

(
1− ζ

(
c(j)n (0)

))
.
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Figure 1: Percentage values f(n)/n for numbers not greater than n for
n ∈ [102, 105].

3 Experimental results and sequences of

sums of unlike powers

Let v = 1, . . . , 5 and pv(n) be the percentage ratio of the number of integers
1 6 x 6 n such that f(x) = v and n. We report in Figure 1 the graphics
of pv(n) for n 6 100000 (logarithmic scale is used in abscissas). As one
can see, the numbers that can be written with exactly three UP – minimal
representation – tend more and more, from the density point of view, to
dominate. It is well known that the set of perfect powers (OEIS sequence
A001597) has density zero in N (see Nyblom’s paper [8] for more details),
that is lim

n→∞
P (n)/n = 0, where P (n) = {m ∈ N+ | m 6 n ∧ f(m) = 1}.

From the results of our experiments we suppose that p5(n) = 500/n and the
graph, even if very partial, is globally a witness of Roth’s result [10].

OEIS sequence A070049 concerns the sum of two perfect powers, but with
not necessarily different exponents, while A327609 contains single perfect
powers and sums of two of them. The sequence consisting of the integer
values n = xe11 + xe22 (with x1, x2 > 0 and 1 < e1 < e2) that are not perfect
powers,

2, 5, 10, 12, 17, 20, 24, 26, 28, 31, 33, 37, 40, 41, 43, 44, 48, 50, 52, . . .

is the sequence A351062. Something similar happens for sequence A074499
(three powers). The sequence, considered in this paper, formed by integers
n such that f(n) = 3 is A351066, beginning with

3, 6, 11, 13, 18, 21, 29, 34, 38, 42, 45, 47, 51, 53, 56, 58, 60, 66, 69, . . .

https://oeis.org/A001597
https://oeis.org/A070049
https://oeis.org/A327609
https://oeis.org/A351062
https://oeis.org/A074499
https://oeis.org/A351066
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The sequence given by sums of four — and not less — UP (with unlike
exponents greater than 1) is A351063, beginning with

7, 14, 19, 22, 30, 35, 39, 46, 54, 61, 67, 70, 78, 87, 94, 99, 103, 110, . . .

not to speak, obviously, about the sequences A351064 and A351065, gener-
ated, respectively, by f(n) and µ(n).

In the website https://sum-of-unlike-powers.jimdosite.com mini-
mal UPrs for n 6 40000 are freely available. By computer search, we tested
for minimal UPrs with at most four addends all n 6 1.4 ·107: the only miss-
ing numbers were the five “Power Rangers”, and for all n at most three 1s
were needed. This lead us to the following conjecture, similar to Kløve’s [5].

Conjecture: For any n∈N+, f(n)6 5, and f(n)= 5 iff n = 15, 23, 55, 62, 71.

In a minimal UPr, many different exponents appear. An interesting point
is the following one: what is the smallest number m(e) for which exponent
e = 2, 3, . . . is mandatory for the/a minimal UPr of m(e)?

If e is a prime number greater than 5, it is clear that m(e) = 2e. If
the conjecture is true, as no more than four addends suffice for n > 71,
exponents with more than three nontrivial divisors are never needed. For
example, as x12 can be considered also as a square, a third, fourth, and
sixth power, and there are (worst case, according to the conjecture) at most
other three addends, it is always possible to rewrite a twelfth power as a
power with the remaining “free” exponent(s). Two examples follows. We
can rewrite the addend 212 in other ways, so that exponent 12 is not really
needed:

4108 = 22 + 23 + 212 = 22 + 23 + 46 = 22 + 23 + 84

4331 = 122 + 33 + 26 + 212 = 122 + 33 + 84 + 26

If the conjecture is true, exponents e with more than three proper divisors
will not have to be used necessarily, so that the only ones to be considered are
e = p, p2, p3, p4, pq with p, q primes. It is not difficult to answer this question
for small values of e by looking at Table 1. These and other interesting
particular values are shown in Table 3, with m(16) still to be determined.

e m(e) e m(e) e m(e) e m(e)

2 1 8 1506 14 30235 20 ×
3 2 9 520 15 32827 21 2099366
4 3 10 1303 16 ? 22 4383551
5 7 11 2048 17 131072 23 8388608
6 15 12 × 18 × 24 ×
7 128 13 8192 19 524288 25 33554464

Table 3: Values of m(n) for small values of n ∈ N.

https://oeis.org/A351063
https://oeis.org/A351064
https://oeis.org/A351065
https://sum-of-unlike-powers.jimdosite.com
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