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Abstract. The purpose of this study is to obtain a decomposi-
tion of the solution to a backward stochastic differential equation
used in the dual problem of mathematical finance. Some explic-
itly solvable equations considered. We convert the equation into
a system of recurrent relations. By solving this system and prov-
ing convergence of the series the solution to the equation can be
determined. In this study, Adomian’s method was applied to
solve the backward stochastic differential equation. An explicit
solution was obtained for some examples.
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Introduction

In a number of works [1, 2], Adomian develops a numerical technique us-
ing special kinds of polynomials for solving non-linear functional equations.
However, Adomian and his collaborators did not develop widely the problem
of convergence.

In this article, we will study by Adomian technique some kind of quadratic
backward martingale equation and prove the convergence of the series. For
example, we consider an equation of the form

ET (m)EαT (m⊥) = c exp{η} (1)

w.r.t. stochastic integrals m =
∫
fsdWs, m

⊥ =
∫
gsdW

⊥
s and real number

c, where (W,W⊥) is two-dimensional Brownian motion and η is a random
variable.

Equations of such type are arising in mathematical finance, and they are
used to characterize optimal martingale measures (see, for example, Biagini
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et al. [3], Mania and Tevzadze [11, 12, 13]). Note that equation (1) can be
applied also to financial market models with infinitely many assets (see M.
De Donno et al. [5]). Biagini et al. [3] considered an exponential equation of
the form

ET (m)

ET (m⊥)
= ce

∫ T
0 λ2sds (2)

(which corresponds to the case α = −1).
Our goal is to show the solvability of the equation (1) using the Adomian

method proving the convergence of series. On the one hand, a simpler proof
of solvability than in [11, 9] is obtained. On the other hand, it allows ob-
taining the approximation of the solution by the partial sums of series. The
proof of the convergence is greatly simplified if we represent equation (1) as
a backward stochastic differential equation (BSDE)∫ T

0

ϕsdWs +

∫ T

0

ψsdWs = c+

∫ T

0

ϕ2
sds+ α

∫ T

0

ψ2
sds+

∫ T

0

λ2sds

in the space of BMO-martingales (see Kazamaki [8]) and use the estimations
of the BMO-norm. The result is resumed in Theorem 1. This result allows
us to find a solution in the form of series with known terms.

Finally, we provide some examples, exactly solvable by Adomian method.

1 The main result

Let (Ω,F , P ) be a probability space with filtration F = (Ft, t ∈ [0, T ]). We
assume that all local martingales with respect to F are continuous. Here T
is a fixed time horizon and F = FT .

LetM be a stable subspace of the space of square integrable martingales
H2. Then its ordinary orthogonalM⊥ is a stable subspace and any element
of M is strongly orthogonal to any element of M⊥. Thus, we have the
decomposition H2 =M

⊕
M⊥ (see, e.g., [6, 7]).

We consider the following exponential equation

ET (m)EαT (m⊥) = c exp{η}, (3)

where η is a given FT -measurable random variable and α is a given real
number. A solution to equation (3) is a triple (c,m,m⊥), where c is strictly
positive constant, m ∈ M and m⊥ ∈ M⊥. Here E(X) := exp(X − 〈X〉/2)
denotes the Doleans-Dade exponential of X.

It is evident that if α = 1, then equation (3) admits an “explicit” solution.
E.g., if α = 1 and η is bounded, then using the unique decomposition of the
martingale E(exp{η}/Ft),

E(exp{η}/Ft) = E exp{η}+mt(η) +m⊥t (η), m(η) ∈M, m⊥(η) ∈M⊥,
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it is easy to verify that the triple c = 1/E exp{η},

mt =

∫ t

0

1

E(exp{η}/Fs)
dms(η), m⊥t =

∫ t

0

1

E(exp{η}/Fs)
dm⊥s (η)

satisfies equation (3).
Our aim is to prove the existence of a series convergent to the unique

solution to equation (3) for η satisfying the following boundedness condition:
B) η is an FT -measurable random variable of the form

η = η̄ + γAT ,

where η̄ ∈ L∞, γ is a constant and A = (At, t ∈ [0, T ]) is a continuous
F -adapted process of finite variation such that

E(var[τ,T ](A)/Fτ ) ≤ C

for all stopping times τ for a constant C > 0.
One can show that equation (3) is equivalent to the following semimartin-

gale backward equation with the square generator:

Yt = Y0 −
γ

2
At − 〈L〉t −

1

α
〈L⊥〉t + Lt + L⊥t , YT =

1

2
η̄. (4)

We use also the equivalent equation of the form

LT + L⊥T = c̄+ 〈L〉T +
1

α
〈L⊥〉T +

1

2
η

w.r.t. (c̄, L, L⊥).
We use notations

|M |
BMO

= inf{C : E
1
2 (〈M〉T−〈M〉τ |Fτ ) ≤ C} ≡ ess sup

τ
E

1
2 (〈M〉T−〈M〉τ |Fτ )

for BMO-norms of martingales, |A|ω = inf{C : E(varTt (A)|Ft) ≤ C} for
norms of finite variation processes, and A ·M for stochastic integrals.

Let us consider the system of semimartingale backward equations

Y
(0)
t = Y

(0)
0 − γ

2
At + L

(0)
t + L

(0)⊥
t , Y

(0)
T =

1

2
η̄,

Y
(n+1)
t = Y

(n+1)
0 −

n∑
k=0

〈L(k), L(n−k)〉t

− 1

α

n∑
k=0

〈L(k)⊥, L(n−k)⊥〉t + L
(n+1)
t + L

(n+1)⊥
t ,

Y
(n+1)
T = 0.
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The sequence Y
(n)
0 = c(n), L(n) + L⊥(n), n = 0, 1, 2, . . ., can be defined conse-

quently by the equations

E(η|Ft) +
γ

2
E(AT |Ft) = c(0) + L

(0)
t + L

⊥(0)
t ,

n∑
k=0

E(〈L(k), L(n−k)〉T |Ft) +
1

α

n∑
k=0

E(〈L(k)⊥, L(n−k)⊥〉T |Ft)

= c(n+1) + L
(n+1)
t + L

⊥(n+1)
t .

Remark 1 If (W,B) is two-dimensional brownian motion andAt =
∫ t
0
a(s,Ws, Bs)ds,

η̄ = 0, then the solution to (4) will be of the form Yt = v(t,Wt, Bt), where
v(t, x, y) is decomposed as series

∑
n v

n(t, x, y) satisfying the system of PDEs

(∂t +
1

2
∆)v0(t, x, y) + a(t, x, y) = 0, v0(T, x, y) = 0,

(∂t +
1

2
∆)vn(t, x, y) +

1

2

n−1∑
k=0

(vkx(t, x, y)vn−k−1x (t, x, y)

+αvky(t, x, y)vn−k−1y (t, x, y)) = 0,

vn(T, x, y) = 0, n ≥ 1.

Equations for vn were obtained by equating Ito’s formulas for vn(t,Wt, Bt)
and equations for Y n

t .

Lemma 1 Let
Yt = Y0 + At +mt, YT = η,

where m is a martingale, η ∈ L∞ and |A|ω <∞. Then m ∈ BMO and

|m|
BMO
≤ |η|∞ + |A|ω. (5)

In particular, if |A|ω < ∞, then the martingale E(AT |Ft) belongs to the
BMO space and

|E(AT |F.)|BMO
≤ |A|ω.

Proof. By the Ito formula,

Y 2
t = Y 2

0 + 2

∫ t

0

Ysdms + 2

∫ t

0

YsdAs + 〈m〉t.

Taking the difference Y 2
τ − Y 2

T and conditional expectations, we have that

Y 2
τ + E(〈m〉T − 〈m〉τ |Fτ ) = E(η2|Fτ )− 2E(

∫ T

τ

YsdAs|Fτ )

≤ |η|2∞ + 2|Y |∞|A|ω. (6)
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Here, E(
∫ T
τ
Ysdms|Fτ ) = 0 as Yt ≤ E(η+ |AT−At||Ft) is bounded and m is a

martingale. Since the right-hand side of (6) does not depend on τ , from (6)
we obtain

|Y |2∞ + |m|2BMO ≤ |η|2∞ + |Y |2∞ + |A|2ω.

Therefore,

||m||2BMO ≤ |η|2∞ + |A|2ω,

which implies inequality (5). �

Lemma 2 For the BMO-norms of martingales L(n) +L⊥(n), defined above,
the following estimates are true:

|L(n) + L⊥(n)|
BMO
≤ an(1 + |β|)n|L(0) + L⊥(0)|n+1

BMO
, (7)

where β = 1/α and coefficients an are calculating recurrently from

a0 = 1, an+1 =
n∑
k=0

akan−k.

Proof. Using Lemma 1, it is easy to show that

|L(1) + L⊥(1)|
BMO
≤ a1(1 + |β|)|L(0) + L⊥(0)|2

BMO
,

|L(2) + L⊥(2)|
BMO
≤ a2(1 + |β|)2|L(0) + L⊥(0)|3

BMO
.

Assume that inequality (7) is valid for any k ≤ n and let us show that

|L(n+1) + L⊥(n+1)|
BMO
≤ an+1(1 + |β|)n+1|L(0) + L⊥(0)|n+2

BMO
.

Applying Lemma 1 for Y
(n+1)
t and the Kunita-Watanabe inequality, we have

|L(n+1) + L⊥(n+1)|
BMO
≤

≤ ess supτ
∑n

k=0 E(varTτ (
∑n

k〈L(k), L(n−k)〉+ β〈L⊥(k), L⊥(n−k)〉)|Fτ )

≤
∑n

k=0 ess supτ E
1
2 (varTτ 〈L(k)〉|Fτ )E

1
2 (varTτ 〈L⊥(n−k)〉|Fτ )

+|β|
∑n

k=0 ess supτ E
1
2 (varTτ 〈L⊥(k)〉|Fτ )E

1
2 (varTτ 〈L⊥(n−k)〉|Fτ )

≤
∑n

k |L(k)|
BMO
|L(n−k)|

BMO
+ |β||L⊥(k)|

BMO
|L⊥(n−k)|

BMO

≤ (1 + |β|)
∑n

k=0 |L(k) + L⊥(k)|
BMO
|L(n−k) + L⊥(n−k)|

BMO
.
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Therefore, using inequalities (7) for any k ≤ n, we obtain

|L(n+1) + L⊥(n+1)|
BMO
≤ (1 + |β|)·

·
∑n

k=0 ak(1 + |β|)k|L(0) + L⊥(0)|k+1
BMO

an−k(1 + |β|)n−k|L(n−k) + L⊥(n−k)|n−k+1
BMO

≤ (1 + |β|)n+1|L(0) + L⊥(0)|n+2
BMO

∑n
k=0 akan−k

= an+1(1 + |β|)n+1|L(0) + L⊥(0)|n+2
BMO

,

and the validity of inequality (7) follows by induction. �

Theorem 1 The series
∑

n≥0 L
(n) and

∑
n≥0 L

⊥(n) are convergent in BMO-
space if γ and |η̄|∞ are small enough and the triple of series(∑

n≥0

c(n),
∑
n≥0

L(n),
∑
n≥0

L⊥(n)
)

determine a solution to the equation (4).

Proof. From Lemma 1 applied to Y (0), we obtain

|L(0) + L⊥(0)|
BMO
≤ c0,

where c0 :=
1

2
||η̄||∞ +

γ

2
|A|ω. Using Lemma 2, we get

|L(n) + L⊥(n)|
BMO
≤ an(1 + |β|)n|L(0) + L⊥(0)|n+1

BMO
≤ an(1 + |β|)ncn+1

0 .

By Lemma 3 of appendix, since

limn→∞
n
√
an = limn→∞

n

√
1

2n+ 1
C2n+2
n+1

= limn→∞
n

√
(2n)!

n!n!
= limn→∞

n

√
(2n)2n

n2n
= 4,

the series is convergent, when c0 <
1

4(1 + |β|)
.

Since

max(|L|
BMO

, |L⊥|
BMO

) ≤ |L+ L⊥|
BMO
≤ |L|

BMO
+ |L⊥|

BMO
,

the convergence
∑

n≥0(L
(n) + L⊥(n)) implies convergence of

∑
n≥0 L

(n) and∑
n≥0 L

⊥(n) and vice versa. �
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The existence of the solution for arbitrary bounded η is proven in [11].
We can prove a slightly more general result.

Proposition 1 There exists a solution to (3) for η = γAT + η̄, with suffi-
ciently small γ and arbitrary bounded η̄.

Proof. Let (c̄, m̄, m̄⊥) be a solution to (3), m̄ ∈ BMO(P) ∩M(P ), m̄⊥ ∈
BMO(P)∩M⊥(P ) for γAT and sufficiently small γ. It is well-known (see [8])
that each BMO-martingale N determines a new probability measure P̃ =
ET (N) ·P . LetM(P̃ ) andM⊥(P̃ ) be images of the Girsanov transformation
n→ 〈n,N〉−n forM(P ) andM⊥(P ), respectively. From the result of [11],
there exists a solution to

ET (m̃)EαT (m̃⊥) = c̃ exp{η̄},

w.r.t P̄ = ET (m̄+m̄⊥) ·P, m̃ ∈ BMO(P̄)∩M(P̄ ), m̃⊥ ∈ BMO(P̄)∩M⊥(P̄ ).
It is easy to verify that m̃ + 〈m̄, m̃〉 ∈ M(P ), m̃⊥ + 〈m̄⊥, m̃⊥〉 ∈ M⊥(P ),
and the triple

(c,m,m⊥) = (c̄c̃, m̄+ m̃+ 〈m̄, m̃〉, m̄⊥ + m̃⊥ + 〈m̄⊥, m̃⊥〉)

is a solution to (3) for η = η̄ + γAT . �

The uniqueness of the solution was proved in [11].

Proposition 2 Let η be an FT -measurable random variable. If there ex-
ists a triple (c,m,m⊥) with c ∈ R+,m ∈ BMO ∩M,m⊥ ∈ BMO ∩M⊥

satisfying equation (3), then such solution is unique.

Now we show that without finiteness of |A|ω either the solution does not
exists or the convergence of series is valid in a week sense.

Example 1 Let α = −1, γ = 2, η̄ = 0, At =
1

2

∫ t
0
(W 2

s + W⊥2
s )ds, F =

(FW,W
⊥

t ), where W,W⊥ is 2-dimensional Brownian motion. Then (4) be-
comes

LT + L⊥T = c+ 〈L〉T − 〈L⊥〉T +
1

2

∫ T

0

(W 2
s +W⊥2

s )ds.

We have

L
(0)
T + L

(0)⊥
T = c0 +

∫ T

0

(T − s)WsdWs +

∫ T

0

(T − s)W⊥
s dW

⊥
s ,

L
n+1)
T + L

(n+1)⊥
T = cn +

n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T , n ≥ 0.
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Let us assume

L
(n)
T =

∫ T

0

(T − s)2n+1αnWtdWs,

L
(n)⊥
T =

∫ T

0

(T − s)2n+1βnW
⊥
t dW

⊥
s .

Then a0 = 1, β0 = 1 and

L
(n+1)
T = c′n +

n∑
k=0

∫ T

0

(T − s)2n+2αkαn−kW
2
s ds

L
(n+1)⊥
T = c′′n −

n∑
k=0

∫ T

0

(T − s)2n+2βkβn−kW
2
s ds, n ≥ 0.

Now we will use the formula

h = Eh+

∫ T

0

E(Dth|Ft)dWt +

∫ T

0

E(D⊥t h|Ft)dW⊥
t , h ∈ H2,

to get integrands of the stochastic integral representation. Taking stochastic
derivatives Dt, D

⊥
t and conditional expectations on both sides, we obtain

(T − s)2n+3αnWt = 2
n∑
k=0

αkαn−kWt

∫ T

t

(T − s)2n+2ds

=
2

2n+ 3
Wt(T − t)2n+3

n∑
k=0

αkαn−k,

(T − s)2n+3βnW
⊥
t = − 2

2n+ 3
W⊥
t (T − t)2n+3

n∑
k=0

βkβn−k,

which means that

αn+1 =
2

2n+ 3

n∑
k=0

αkαn−k, βn+1 = − 2

2n+ 3

n∑
k=0

βkβn−k, n ≥ 0.

Introducing α(s) =
∑∞

n=0 αns
2n+1 and β(s) =

∑∞
n=0 βns

2n+1, one obtains

α′(s) = α0 +
∞∑
n=0

(2n+ 3)αn+1s
2n+2

= 1 + 2
∞∑
n=0

n∑
k=0

(αkαn−k)s
2n+2 = 1 + 2a2(s),

β′(s) = β0 +
∞∑
n=0

(2n+ 3)βn+1s
2n+2

= 1− 2
∞∑
n=0

n∑
k=0

βkβn−ks
2n+2 = 1− 2β2(s),
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i.e.,

α′(s) = 1 + 2a2(s), α(0) = 0,

β′(s) = 1− 2β2(s), β(0) = 0.

Thus,

α(s) =
1√
2

tan(
√

2s), β(s) = − 1√
2

tanh(
√

2s).

If T <
π

2
√

2
, series are convergent (not in BMO-space) and (c, L, L⊥) is

defined as c =
1

2
ln cos(

√
2T )cosh(

√
2T ) (by calculations in the appendix),

Lt =
1√
2

∫ t

0

tan(
√

2s)WsdWs, L
⊥
t = − 1√

2

∫ t

0

tanh(
√

2s)W⊥
s W

⊥
s .

When T >
π

2
√

2
, a local martingale L satisfying LT − 〈L〉T =

1

2

∫ T
0
W 2
t dt

does not exist (despite the fact that
∫ T
0
W 2
t dt is p-integrable for each p ≥ 1),

since from ET (2L) = e
∫ T
0 W 2

t dt, it follows that Ee
∫ T
0 W 2

t dt = EET (2L) ≤ 1,

which contradicts to Ee
∫ T
0 W 2

t dt =∞ (see Appendix).

In the next example, exact solution to (4) also exists, however, it does
not belong to the extreme cases considered in [12, 13].

Example 2 Let α = −1, γ = 2, η̄ = 0, At =
∫ t
0
WsW

⊥
s ds, F = (FW,W

⊥

t ),
where W,W⊥ is a two-dimensional Brownian motion. Then (4) becomes

LT + L⊥T = c+ 〈L〉T − 〈L⊥〉T +

∫ T

0

WsW
⊥
s ds. (8)

We have

L
(0)
T =

∫ T

0

(T − s)W⊥
s dWs, L

(0),⊥
T =

∫ T

0

(T − s)WsdW
⊥
s ,

L
(n+1)
T + L

(n+1)⊥
T = cn +

n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T , n ≥ 0.

We assert that

L
(n)
T =

∫ T

0

(T − s)2n+1(αnWs + βnW
⊥
s )dWs,

L
(n)⊥
T =

∫ T

0

(T − s)2n+1(βnWs − αnW⊥
s )dW⊥

s ,
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where α0 = 0, β0 = 1 and

αn+1 =
2

2n+ 3

n∑
k=0

(αkαn−k − βkβn−k), βn+1 =
4

2n+ 3

n∑
k=0

αkβn−k, n ≥ 0.

Indeed,

L
(n+1)
T + L

(n+1)⊥
T = cn

+
n∑
k=0

∫ T

0

(T − s)2n+2(αkWs + βkW
⊥
s )(αn−kWs + βn−kW

⊥
s )ds

−
n∑
k=0

∫ T

0

(T − s)2n+2(βkWs − αkW⊥
s )(βn−kWs − αn−kW⊥

s )ds

=
n∑
k=0

∫ T

0

(T − s)2n+2[(αkαn−k − βkβn−k)W 2
s − (αkαn−k − βkβn−k)W⊥2

s

+2(αkβn−k + βkαn−k)WsW
⊥
s ]ds+ cn, n ≥ 0.

Using representation of integrands by stochastic derivatives, we get

(T − t)2n+3(αn+1Wt + βn+1W
⊥
t )

= E[Dt(
n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T )|Ft]

= 2
n∑
k=0

[(αkαn−k − βkβn−k)Wt + (αkβn−k + βkαn−k)W
⊥
t ]

∫ T

0

(T − s)2n+2ds

=
2(T − t)2n+3

2n+ 3

n∑
k=0

[(αkαn−k − βkβn−k)Wt + (αkβn−k + βkαn−k)W
⊥
t ],

(T − t)2n+3(βn+1Wt − αn+1W
⊥
t )

= E[D⊥t (
n∑
k=0

〈L(k), L(n−k)〉T −
n∑
k=0

〈L(k)⊥, L(n−k)⊥〉T )|Ft]

= 2
n∑
k=0

[−(αkαn−k − βkβn−k)W⊥
t + (αkβn−k + βkαn−k)Wt]

∫ T

0

(T − s)2n+2ds

=
2(T − t)2n+3

2n+ 3

n∑
k=0

[−(αkαn−k − βkβn−k)W⊥
t + (αkβn−k + βkαn−k)Wt].



ADOMIAN’S DECOMPOSITION METHOD APPLIED TO AN EXPONENTIAL EQUATION 11

Equating the coefficients at W,W⊥, we obtain the desired formula. One can
also check that (see Appendix)

lim sup
n→∞

n
√
|αn| =

2
√

2

π
, lim sup

n→∞

n
√
|βn| =

2
√

2

π
.

Thus,

∞∑
n=0

E
1
2 |L(n)

T + L
(n)⊥
T |2 =

∞∑
n=0

(
4(α2

n + β2
n)

∫ T

0

(T − s)4n+2sds

) 1
2

=
∞∑
n=0

√
α2
n + β2

n√
(n+ 1)(4n+ 3)

T 2n+2,

which means that series
∞∑
n=0

(L(n) + L(n)⊥)

is convergent as quadratic integrable martingales, when T < d
π

2
√

2
.

Introducing α(s) =
∑∞

n=0 αn and s2n+1, β(s) =
∑∞

n=0 βns
2n+1, one ob-

tains

Lt =

∫ t

0

(α(T − s)Ws + β(T − s)W⊥
s )dWs,

L⊥t =

∫ t

0

(β(T − s)Ws − α(T − s)W⊥
s )dW⊥

s .

(9)

On the other hand, we can derive ODE for the pair (α, β):

α̇(s) = 2α2(s)− 2β2(s), α(0) = 0,

β̇(s) = 1 + 4α(s)β(s), β(0) = 0.
(10)

Indeed,

α̇(s) = α0 +
∞∑
n=0

(2n+ 3)αn+1s
2n+2

= 2
∞∑
n=0

n∑
k=0

(αkαn−k − βkβn−k)s2n+2 = 2α2(s)− 2β2(s),

β̇(s) = β0 +
∞∑
n=0

(2n+ 3)βn+1s
2n+2

= 1 + 4
∞∑
n=0

n∑
k=0

αkβn−ks
2n+2 = 1 + 4α(s)β(s).
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Equation (10) is easy to solve, if we pass to the equation for complex-variable
function z(s) = α(s) + iβ(s):

ż(s) = i+ 2z2(s), z(0) = 0.

It is obvious that z(s) =
1

1− i
tan((1 + i)s) is a solution. We have

z(s) =
1

2
(1 + i)

sin((1 + i)s) cos((1− i)s)
| cos((1 + i)s)|2

=
1

4
(1 + i)

sin(2s) + i sinh(2s)

| cos((1 + i)s)|2

=
1

4

sin(2s)− sinh(2s) + i(sin(2s) + sinh(2s))

cos2(s) cosh2(s) + sin2(s) sinh2(s)
.

Hence, we can write the explicit solution

α(s) =
1

4

sin(2s)− sinh(2s)

cos2(s) cosh2(s) + sin2(s) sinh2(s)
,

β(s) =
1

4

sin(2s) + sinh(2s)

cos2(s) cosh2(s) + sin2(s) sinh2(s)

of (10) and conclude that it exists on whole [0,∞), since the denominator

does not vanish. Despite of convergence of series only for T <
π

2
√

2
, the

pair (9) is a solution to (8) for each T .

Finally, we consider exponential equation of the form (2) with λt =√
2(Wt −W⊥

t ) defining the variance-optimal martingale measure

ET (−
∫ ·
0

λsdWs +m⊥)

for the price process Xt = X0 +
∫ t
0
λsds + Wt. Inserting L = m/2 and

L⊥ = −m⊥/2, one obtains

LT + L⊥T = c+ 〈L〉T − 〈L⊥〉T +

∫ T

0

(Ws −W⊥
s )2ds.

As in previous example, the solution can be found in the form

Lt =

∫ t

0

(α(T − s)Ws + β(T − s)W⊥
s )dWs,

L⊥t =

∫ t

0

(β(T − s)Ws − α(T − s)W⊥
s )dW⊥

s ,
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where pair (α, β) satisfy ODE

α̇ = 2(α2 − β2 + 1), α(0) = 0,

β̇ = 4αβ − 2, β(0) = 0.

For z = α + iβ, we get ODE

ż = 2z2 + 2− 2i = 2z2 + 2
3
2 e−i

π
4

with solution
z(t) = 2

1
4 e−i

π
8 tan(2

5
4 e−i

π
8 t).

Therefore,

α(t) = Re(2
1
4 e−i

π
8 tan(2

5
4 e−i

π
8 t)), β(t) = Im(2

1
4 e−i

π
8 tan(2

5
4 e−i

π
8 t)),

and

ET
(
−
√

2

∫ ·
0

(Ws −W⊥
s )dWs + 2

∫ ·
0

(β(T − s)Ws − α(T − s)W⊥
s )dW⊥

s

)
is the variance-optimal martingale measure.

A Appendix

The formula Ee−T 2
∫ 1
0 W

2
t dt = 1/

√
cosh(

√
2T ) is derived in [10]. Similarly, we

can prove

Proposition 3 One has

Ee
∫ T
0 W 2

t dt =



1√
cos(
√

2T )
, if T <

π

2
√

2
,

∞, if T ≥ π

2
√

2
.

Proof. Let en(t) be orthonormal basis in L2[0, 1]. Then

Ee
∫ T
0 W 2

t dt = EeT 2
∫ 1
0 W

2
t dt = EeT 2

∑∞
n=1(

∫ 1
0 en(t)Wtdt)2

Since

E(

∫ 1

0

en(t)Wtdt)(

∫ 1

0

em(t)Wtdt) =

∫ T

0

en(t)

∫ T

0

(t ∧ s)em(s)dsdt,

it is convenient to use the orthonormal basis of eigenvectors of the operator∫ T
0

(t ∧ s)f(s)ds in L2[0, 1]. From λf(t) =
∫ T
0

(t ∧ s)f(s)ds follows that
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λf ′′(t) = −f(t), f(0) = 0, f ′(1) = 0. Function sinµπt satisfies these
conditions iff µ2 = 1/λ and µ = −1/2 + n. Thus,

λn =
1

(n− 1/2)2π2
, en(t) =

√
2 sin((n− 1/2)πt), n ≥ 1,

and

E(

∫ 1

0

en(t)Wtdt)(

∫ 1

0

em(t)Wtdt) = λn

∫ 1

0

en(t)em(t)dt = 0, n 6= m.

Since random variables (
∫ 1

0
en(t)Wtdt) are orthogonal and normal, they are

also independent. Hence, taking into account the Parseval identity and
infinite product decomposition of cos(

√
2t), one gets

EeT 2λnW 2
1 =

∞∏
n=1

1√
1− 2T 2

(n−1/2)2π2

√√√√ ∞∏
n=1

1

1− 8T 2

(2n−1)2π2

=
1√

cos(
√

2T )
,

if
√

2T < π/2.

One can easily check that

E exp

(∫ π
2
√
2

0

W 2
t dt

)
= lim

T↑ π
2
√
2

E exp

(∫ T

0

W 2
t dt

)
= lim

T↑ π
2
√
2

1√
cos(
√

2T )
=∞.

If T >
π

2
√

2
, then Ee

∫ T
0 W 2

t dt > Ee
∫ π

2
√
2

0 W 2
t dt =∞. �

Lemma 3 Let (an)n≥0 be a solution to the system of recurrent equations

a0 = 1, an+1 =
n∑
k=0

akan−k. (11)

Then an =
1

4n+ 2

(
2n+2
n+1

)
.

Proof. For the series u(λ) =
∑∞

n=0 anλ
n from (11), we get equation u(λ) =

1 + λu2(λ) with the roots u(λ) =
1

2λ
(1 ±

√
1− 4λ). The equality u(λ) =

1

2λ
(1+
√

1− 4λ) is impossible since the decomposition of the right hand side

is starting from the term
1

λ
. Therefore, equality an =

1

4n+ 2

(
2n+2
n+1

)
follows
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from the Taylor expansion of 1−
√

1− 4λ, since

u(λ) =
1

2λ
(1−

√
1− 4λ) = −1

2

∑
n≥1

1
2
(1
2
− 1) · · · (1

2
− n+ 1)

n!
(−4)nλn−1

=
1

2

∑
n≥1

(2− 1) · · · (2n− 2− 1)

2nn!
4nλn−1 =

1

2

∑
n≥1

(2n− 3)!!

n!
2nλn−1

=
1

2

∑
n≥1

1

2n− 1

(
2n

n

)
λn−1.

�

Lemma 4 Let (αn, βn)n≥0 be a solution of the system

α0 = 0, β0 = 1,

αn+1 =
2

2n+ 3

n∑
k=0

(αkαn−k − βkβn−k),

βn+1 =
4

2n+ 3

n∑
k=0

αkβn−k, n ≥ 0.

Then

αn−1 = 2n
22n − 1

π2n
ζ(2n) cos (

π

2
n),

βn−1 = 2n
22n − 1

π2n
ζ(2n) sin (

π

2
n), n ≥ 1,

(12)

where ζ(s) is the zeta function.

Proof. The tangent function admits the Taylor series expansion:

tanx =
∞∑
n=1

22n+1(22n − 1)ζ(2n)
x2n−1

(2π)2n
.

It is clear that

1 ≤ ζ(n) = 1 +
∞∑
k=1

1

(k + 1)n
≤ 1 +

∫ ∞
1

1

xn
dx = 1 +

1

n− 1

n→∞→ 1.

For the series

tan((1 + i)x) =
∞∑
n=1

22n+1(22n − 1)ζ(2n)
2n−1/2ei

π
4
(2n−1)x2n−1

(2π)2n
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radius of convergence is
π

2
√

2
since

2n

√
22n+1(22n − 1)ζ(2n)

2n−1/2

(2π)2n
→ 2
√

2

π
.

From

1

1− i
tan((1 + i)s) =

1√
2
ei
π
4

∞∑
n=1

22n+1(22n − 1)ζ(2n)
2n−1/2ei

π
4
(2n−1)s2n−1

(2π)2n

=
∞∑
n=1

23n(22n − 1)ζ(2n)
ei
π
2
n

(2π)2n
s2n−1

=
∞∑
n=0

(22n+2 − 1)
2n+1

π2n+2
ζ(2n+ 2)ei

π
2
(n+1)s2n+1,

equations (12) follows. �
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