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Abstract. This article focuses on the determination of ap-
propriate lower bounds for a general term defined as the sum of
two specific integrals. This term has the property of depending
on four functions, one of which is associated with the two inte-
grals involved. Two theorems are established: one with mono-
tonicity and sign assumptions on the functions considered, and
another, more technical, with special primitive-like inequality as-
sumptions on these functions. The connections, advantages and
limitations of these assumptions are discussed in detail.
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1 Introduction

Integrals play a central role in both the theory and application of calculus.
They are used to measure areas, volumes and quantities in a wide variety
of contexts. As integral evaluations often do not have exact solutions, in-
equalities are crucial for estimation. See [1, 2, 4, 7, 16, 17] for an overview
of this topic. In particular, lower bounds on integrals provide valuable in-
sights into minimum values. This is important for understanding worst-case
scenarios, ensuring system stability, and establishing baseline performance
in optimization problems, to name a few. For this reason, recent research
has focused on general integral inequalities to obtain suitable lower bounds.
These results combine simplicity and originality with the ability to adapt to
different mathematical frameworks, see, for example, [3, 5, 6, 8–15,18].

This article makes a new contribution to the topic of general integral
lower bounds. Specifically, given four functions, say f , g, h and k, where
f , g and h are defined on an interval, say [a, b], the aim is to establish
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appropriate lower bounds for the following general term, defined as the sum
of two specific integrals:∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt,

where k(g) is the composition function of k and g. From this sum expression,
we can see that g is common to the two integrals, making them functionally
related. This connection adds some originality to the study. Under certain
assumptions, which are made to be as less restrictive as possible, we obtain
lower bounds of the following form:

α

∫ b

a

f(t)dt+ β

∫ b

a

h(t)dt, (1)

where α depends on some values of g and β depends on some values of k(g).
In fact, we focus on the cases α ∈ {g(a), g(b)} and β ∈ {k[g(a)], k[g(b)]}.
Two theorems are given, with extensive and detailed proofs. The first theo-
rem makes basic assumptions on the functions involved, namely monotonic-
ity assumptions on g and k(g), and sign assumptions on f and h. The
second theorem is more original and innovative, and its statement and proof
are more technical. It makes monotonicity assumptions on g and primitive-
like inequality assumptions of the following forms: for any x ∈ [a, b],∫ b

x

f(t)dt (≤ or ≥) k′[g(x)]

∫ x

a

h(t)dt,

or ∫ x

a

f(t)dt (≤ or ≥) k′[g(x)]

∫ b

x

h(t)dt.

To the best of our knowledge, considering integration intervals with a kind
of dual forms, i.e., [x, b] and [a, x], under a common assumption is a novel
concept in the literature. This contrasts with the assumptions made in
some established results, such as those in [3, 13–15]. While these primitive-
like inequality assumptions are less direct than those formulated in our first
theorem, they have the advantage of overcoming possible restrictive sign
assumptions on f and h, as well as the monotonicity assumption on k(g).
Consequently, f , h and k can be chosen more arbitrarily, including functions
exhibiting local extremes, discontinuities, oscillations, or other complex be-
havior. All of these aspects will be discussed in detail in this article.

The rest of the article is divided into two sections. Section 2 presents the
main results, along with detailed proofs and a discussion of the considered
assumptions. Section 3 provides a conclusion.
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2 Main results

Two main theorems are presented one after the other. Throughout the arti-
cle, it is assumed that the introduced integrals exist (which is not guaranteed
a priori, especially if a→ −∞ or b→ +∞).

2.1 First theorem

The first theorem, which establishes lower bounds of the form described in
Equation (1), is given below.

Theorem 1 Let (a, b) ∈ R2 ∪ {±∞}2 with a < b, and let functions f, g, h :
[a, b] 7→ R and k : R 7→ R be such that f and h are integrable.
S1. Let f be positive and g be non-decreasing. If h is positive and k(g) is
non-increasing or h is negative and k(g) is non-decreasing, then∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(a)

∫ b

a

f(t)dt+ k[g(b)]

∫ b

a

h(t)dt.

The same statement holds when f is negative and g is non-increasing.
S2. Let f be positive and g be non-increasing. If h is positive and k(g) is
non-decreasing or h is negative and k(g) is non-increasing, then∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(b)

∫ b

a

f(t)dt+ k[g(a)]

∫ b

a

h(t)dt.

The same statement is true when f is negative and g is non-decreasing.

Proof. 1. Suppose f is positive and g is non-decreasing. Then we have

f(t)g(t) ≥ f(t)g(a)

for any t ∈ [a, b], which implies that∫ b

a

f(t)g(t)dt ≥
∫ b

a

[f(t)g(a)] dt = g(a)

∫ b

a

f(t)dt.

If f is negative and g is non-increasing, then −f is positive and −g is non-
decreasing, and we also have∫ b

a

f(t)g(t)dt =

∫ b

a

[−f(t)][−g(t)]dt ≥ [−g(a)]

∫ b

a

[−f(t)]dt

= g(a)

∫ b

a

f(t)dt.
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Therefore, in both cases, we have∫ b

a

f(t)g(t)dt ≥ g(a)

∫ b

a

f(t)dt. (2)

Similarly, if h is positive and k(g) is non-increasing, we have

h(t)k[g(t)] ≥ h(t)k[g(b)]

for any t ∈ [a, b], which implies that∫ b

a

h(t)k[g(t)]dt ≥
∫ b

a

{h(t)k[g(b)]} dt = k[g(b)]

∫ b

a

h(t)dt.

If h is negative and k(g) is non-decreasing, then −h is positive and −k(g) is
non-increasing, and we also have∫ b

a

h(t)k[g(t)]dt =

∫ b

a

[−h(t)] {−k[g(t)]} dt ≥ {−k[g(b)]}
∫ b

a

[−h(t)]dt

= k[g(b)]

∫ b

a

h(t)dt.

Therefore, we have ∫ b

a

f(t)g(t)dt ≥ k[g(b)]

∫ b

a

h(t)dt. (3)

Summing the lower bounds in Equations (2) and (3) gives∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(a)

∫ b

a

f(t)dt+ k[g(b)]

∫ b

a

h(t)dt.

2. Suppose f is positive and g is non-increasing. Then we have

f(t)g(t) ≥ f(t)g(b)

for any t ∈ [a, b], which implies that∫ b

a

f(t)g(t)dt ≥
∫ b

a

[f(t)g(b)] dt = g(b)

∫ b

a

f(t)dt.

If f is negative and g is non-decreasing, then −f is positive and −g is non-
increasing, and we also have∫ b

a

f(t)g(t)dt =

∫ b

a

[−f(t)][−g(t)]dt ≥ [−g(b)]

∫ b

a

[−f(t)]dt

= g(b)

∫ b

a

f(t)dt.
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Therefore, in both cases, we have∫ b

a

f(t)g(t)dt ≥ g(b)

∫ b

a

f(t)dt. (4)

Similarly, if h is positive and k(g) is non-decreasing, we have

h(t)k[g(t)] ≥ h(t)k[g(a)]

for any t ∈ [a, b], which implies that∫ b

a

h(t)k[g(t)]dt ≥
∫ b

a

{h(t)k[g(a)]} dt = k[g(a)]

∫ b

a

h(t)dt.

If h is negative and k(g) is non-increasing, then −h is positive and −k(g) is
non-decreasing, and we also have∫ b

a

h(t)k[g(t)]dt =

∫ b

a

[−h(t)] {−k[g(t)]} dt ≥ {−k[g(a)]}
∫ b

a

[−h(t)]dt

= k[g(a)]

∫ b

a

h(t)dt.

Therefore, we have ∫ b

a

f(t)g(t)dt ≥ k[g(a)]

∫ b

a

h(t)dt. (5)

Summing the lower bounds in Equations (4) and (5) gives∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(b)

∫ b

a

f(t)dt+ k[g(a)]

∫ b

a

h(t)dt.

This concludes the proof. �

In the cases a → −∞ or b → +∞, for any function ` : [a, b] 7→ R, we
set `(a) = limt→−∞ `(t) and `(b) = limt→+∞ `(t). Eventually, the following
complementary cases can be obtained.

Corollary 1 Let (a, b) ∈ R2 ∪ {±∞}2 with a < b, and consider four func-
tions f, g, h : [a, b] 7→ R and k : R 7→ R such that f and h are integrable.
S3. Let f be positive and g be non-decreasing. If h is positive and k(g) is
non-decreasing or h is negative and k(g) is non-increasing, then∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(a)

∫ b

a

f(t)dt+ k[g(a)]

∫ b

a

h(t)dt.
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The same statement holds when f is negative and g is non-increasing.
S4. Let f be positive and g be non-increasing. If h is positive and k(g) is
non-increasing or h is negative and k(g) is non-decreasing, then∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(b)

∫ b

a

f(t)dt+ k[g(b)]

∫ b

a

h(t)dt.

The same statement is true when f is negative and g is non-decreasing.

We have focused mainly on S1 and S2 because of the common form of the
lower bounds in Theorem 1 and the second theorem to come, i.e., Theorem
2. In these cases, the monotonicity of the composition function k(g) can
only be reformulated in terms of the monotonicity of k if the monotonicity
of g is known. The details are given below.

� If g is non-decreasing, then assuming that k is non-decreasing implies
that k(g) is non-decreasing, or assuming that k is non-increasing im-
plies that k(g) is non-increasing.

� If g non-increasing, then assuming that k is non-decreasing implies that
k(g) is non-increasing, or assuming that k is non-increasing implies
that k(g) is non-decreasing.

The assumptions S1 and S2 have the advantage of being simple and can
be checked almost directly. However, they are not satisfied for a wide range
of functions, including those that vary in sign or are non-monotonic. In the
next subsection, we show that the lower bounds established in Theorem 1
are robust under general and more technical assumptions on f , g, h and
k. As mentioned in the introduction, these assumptions are reduced to
monotonicity assumptions on g and primitive-like inequality assumptions
involving the four functions.

2.2 Second theorem

The theorem below is the analogue of Theorem 1, with the same lower
bounds, but different assumptions on f , g, h and k.

Theorem 2 Let (a, b) ∈ R2 ∪ {±∞}2 with a < b, and let functions f, g, h :
[a, b] 7→ R and k : R 7→ R be such that f is integrable, g is differentiable, h
is integrable, k is differentiable, and the following integrals exist:∫ b

a

|g′(u)|du,
∫ b

a

|f(t)|dt,
∫ b

a

|g′(u)||k′[g(u)]|du,
∫ b

a

|h(t)|dt.
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1. Let one of the following two conditions be satisfied:
T1. g is non-decreasing and for any x ∈ [a, b],∫ b

x

f(t)dt ≥ k′[g(x)]

∫ x

a

h(t)dt; (6)

T2. g is non-increasing and for any x ∈ [a, b],∫ b

x

f(t)dt ≤ k′[g(x)]

∫ x

a

h(t)dt. (7)

Then∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(a)

∫ b

a

f(t)dt+ k[g(b)]

∫ b

a

h(t)dt.

2. Let one of the following two conditions be satisfied:
T3. g is non-decreasing and for any x ∈ [a, b],∫ x

a

f(t)dt ≤ k′[g(x)]

∫ b

x

h(t)dt; (8)

T4. g is non-increasing and for any x ∈ [a, b],∫ x

a

f(t)dt ≥ k′[g(x)]

∫ b

x

h(t)dt. (9)

Then∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(b)

∫ b

a

f(t)dt+ k[g(a)]

∫ b

a

h(t)dt.

Proof. 1. Due to the differentiability of g, the following decomposition
holds:

g(t) = [g(t)− g(a)] + g(a) =

∫ t

a

g′(u)du+ g(a).

Thus, we have∫ b

a

f(t)g(t)dt =

∫ b

a

f(t)

[∫ t

a

g′(u)du+ g(a)

]
dt

=

∫ b

a

∫ t

a

f(t)g′(u)dudt+ g(a)

∫ b

a

f(t)dt. (10)

Since the integrals
∫ b

a
|f(t)|dt and

∫ b

a
|g′(u)|du exist, the integral∫ b

a

∫ b

a

|f(t)||g′(u)|dudt
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also exists, and we can change the order of integration using the Fubini
theorem. This gives∫ b

a

∫ t

a

f(t)g′(u)dudt+ g(a)

∫ b

a

f(t)dt

=

∫ b

a

∫ b

u

f(t)g′(u)dtdu+ g(a)

∫ b

a

f(t)dt

=

∫ b

a

g′(u)

[∫ b

u

f(t)dt

]
du+ g(a)

∫ b

a

f(t)dt. (11)

If g′(u) ≥ 0 for any u ∈ [a, b], using Equation (6) for any u ∈ [a, b], we get

g′(u)

[∫ b

u

f(t)dt

]
≥ g′(u)

{
k′[g(u)]

∫ u

a

h(t)dt

}
.

The same inequality can be obtained using Equation (7) in the case when
g′(u) ≤ 0 for any u ∈ [a, b]. Therefore,∫ b

a

g′(u)

[∫ b

u

f(t)dt

]
du+ g(a)

∫ b

a

f(t)dt

≥
∫ b

a

g′(u)

{
k′[g(u)]

∫ u

a

h(t)dt

}
du+ g(a)

∫ b

a

f(t)dt

=

∫ b

a

∫ u

a

g′(u)k′[g(u)]h(t)dtdu+ g(a)

∫ b

a

f(t)dt. (12)

Doing a change of order of integration by the Fubini theorem, which is valid
because ∫ b

a

∫ b

a

|g′(u)||k′[g(u)]||h(t)|dtdu

exists since the integrals
∫ b

a
|g′(u)||k′[g(u)]|du and

∫ b

a
|h(t)|dt exist, we get∫ b

a

∫ u

a

g′(u)k′[g(u)]h(t)dtdu+ g(a)

∫ b

a

f(t)dt

=

∫ b

a

∫ b

t

g′(u)k′[g(u)]h(t)dudt+ g(a)

∫ b

a

f(t)dt

=

∫ b

a

h(t)

{∫ b

t

g′(u)k′[g(u)]du

}
dt+ g(a)

∫ b

a

f(t)dt

=

∫ b

a

h(t) {k[g(b)]− k[g(t)]} dt+ g(a)

∫ b

a

f(t)dt

= k[g(b)]

∫ b

a

h(t)dt−
∫ b

a

h(t)k[g(t)]dt+ g(a)

∫ b

a

f(t)dt. (13)
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Putting Equations (10), (11), (12) and (13) together, we obtain∫ b

a

f(t)g(t)dt ≥ k[g(b)]

∫ b

a

h(t)dt−
∫ b

a

h(t)k[g(t)]dt+ g(a)

∫ b

a

f(t)dt,

which can be rearranged as∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(a)

∫ b

a

f(t)dt+ k[g(b)]

∫ b

a

h(t)dt.

2. Due to the differentiability of g, the following decomposition holds:

g(t) = g(b)− [g(b)− g(t)] = g(b)−
∫ b

t

g′(u)du.

Therefore, we have∫ b

a

f(t)g(t)dt =

∫ b

a

f(t)

[
g(b)−

∫ b

t

g′(u)du

]
dt

= g(b)

∫ b

a

f(t)dt−
∫ b

a

∫ b

t

f(t)g′(u)dudt. (14)

Since ∫ b

a

∫ b

a

|f(t)||g′(u)|dudt

exists because the integrals
∫ b

a
|f(t)|dt and

∫ b

a
|g′(u)|du exist, we can change

the order of integration by the Fubini theorem. Thus, we have

= g(b)

∫ b

a

f(t)dt−
∫ b

a

∫ b

t

f(t)g′(u)dudt

= g(b)

∫ b

a

f(t)dt−
∫ b

a

∫ u

a

f(t)g′(u)dtdu

= g(b)

∫ b

a

f(t)dt−
∫ b

a

g′(u)

[∫ u

a

f(t)dt

]
du. (15)

If g′(u) ≥ 0 for any u ∈ [a, b], using Equation (8) for any u ∈ [a, b], we get

g′(u)

[∫ u

a

f(t)dt

]
≤ g′(u)

{
k′[g(u)]

∫ b

u

h(t)dt

}
.

The same inequality can be obtained using Equation (9) in the case when
g′(u) ≤ 0 for any u ∈ [a, b]. Thus,

g(b)

∫ b

a

f(t)dt−
∫ b

a

g′(u)

[∫ u

a

f(t)dt

]
du

≥ g(b)

∫ b

a

f(t)dt−
∫ b

a

g′(u)

[
k′[g(u)]

∫ b

u

h(t)dt

]
du

= g(b)

∫ b

a

f(t)dt−
∫ b

a

∫ b

u

g′(u)k′[g(u)]h(t)dtdu. (16)
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Doing the change of order of integration by the Fubini theorem, which is
valid because ∫ b

a

∫ b

a

|g′(u)||k′[g(u)]||h(t)|dtdu

exists since the integrals
∫ b

a
|g′(u)||k′[g(u)]|du and

∫ b

a
|h(t)|dt exist, we get

g(b)

∫ b

a

f(t)dt−
∫ b

a

∫ b

u

g′(u)k′[g(u)]h(t)dtdu

= g(b)

∫ b

a

f(t)dt−
∫ b

a

∫ t

a

g′(u)k′[g(u)]h(t)dudt

= g(b)

∫ b

a

f(t)dt−
∫ b

a

h(t)

[∫ t

a

g′(u)k′[g(u)]du

]
dt

= g(b)

∫ b

a

f(t)dt−
∫ b

a

h(t) {k[g(t)]− k[g(a)]} dt

= g(b)

∫ b

a

f(t)dt−
∫ b

a

h(t)k[g(t)]dt+ k[g(a)]

∫ b

a

h(t)dt. (17)

Putting Equations (14), (15), (16) and (17) together, we obtain∫ b

a

f(t)g(t)dt ≥ g(b)

∫ b

a

f(t)dt−
∫ b

a

h(t)k[g(t)]dt+ k[g(a)]

∫ b

a

h(t)dt,

which can be rearranged as∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ g(b)

∫ b

a

f(t)dt+ k[g(a)]

∫ b

a

h(t)dt.

This concludes the proof. �

To the best of our knowledge, Theorem 2 is a new addition to the lit-
erature. In particular, considering the integration intervals [x, b] and [a, x]
under a common assumption differs from some similar well-established re-
sults presented, for example, in [3, 13–15].

Under specific configurations, the restrictive assumptions in Theorem 1
can imply those in Theorem 2. Some remarks on these aspects are discussed
below.

� If f and h are positive and k is non-increasing, then we have∫ b

x

f(t)dt ≥ 0, k′[g(x)] ≤ 0,

∫ x

a

h(t)dt ≥ 0,

for any x ∈ [a, b], which implies that∫ b

x

f(t)dt ≥ 0 ≥ k′[g(x)]

∫ x

a

h(t)dt,
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for any x ∈ [a, b]. Thus, inequality in Equation (6) holds. Further-
more, if we assume that g is non-decreasing, the assumption T1 in
Theorem 2 is satisfied. This also corresponds to (f positive and g
non-decreasing) and (h positive and k(g) non-increasing), which is a
subcase of assumption S1 in Theorem 1 (since g is non-decreasing and
k is non-increasing imply that k(g) is non-increasing).

The assumption T1 in Theorem 2 is also satisfied for (f positive and
g non-decreasing) and (h negative and k(g) non-decreasing), which is
also a subcase of S1 in Theorem 1.

� If f is negative, h is positive and k is non-decreasing, then we have∫ b

x

f(t)dt ≤ 0, k′[g(x)] ≥ 0,

∫ x

a

h(t)dt ≥ 0,

for any x ∈ [a, b], which implies that∫ b

x

f(t)dt ≤ 0 ≤ k′[g(x)]

∫ x

a

h(t)dt,

for any x ∈ [a, b]. The inequality in Equation (7) holds. Further-
more, if we assume that g is non-increasing, the assumption T2 in
Theorem 2 is satisfied. This also corresponds to (f negative and g
non-increasing) and (h positive and k(g) non-increasing), which is a
subcase of assumption S1 in Theorem 1 (since g is non-increasing and
k is non-decreasing imply that k(g) is non-increasing).

The assumption T2 in Theorem 2 is also satisfied for (f negative and
g non-increasing) and (h negative and k(g) non-decreasing), which is
also a subcase of S1 in Theorem 1.

� If f is negative, h is positive and k is non-decreasing, then we have∫ x

a

f(t)dt ≤ 0, k′[g(x)] ≥ 0,

∫ b

x

h(t)dt ≥ 0,

for any x ∈ [a, b], which implies that∫ x

a

f(t)dt ≤ 0 ≤ k′[g(x)]

∫ b

x

h(t)dt,

for any x ∈ [a, b]. The inequality in Equation (8) holds. Further-
more, if we assume that g is non-decreasing, the assumption T3 in
Theorem 2 is satisfied. This also corresponds to (f negative and g
non-decreasing) and (h positive and k(g) non-decreasing), which is a
subcase of assumption S2 in Theorem 1.
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The assumption T3 in Theorem 2 is also satisfied for (f negative and
g non-decreasing) and (h negative and k(g) non-increasing), which is
also a subcase of S2 in Theorem 1.

� If f and h are positive and k is non-increasing, then we have∫ x

a

f(t)dt ≥ 0, k′[g(x)] ≤ 0,

∫ b

x

h(t)dt ≥ 0,

for any x ∈ [a, b], which implies that∫ x

a

f(t)dt ≥ 0 ≥ k′[g(x)]

∫ b

x

h(t)dt,

for any x ∈ [a, b]. The inequality in Equation (9) holds. Further-
more, if we assume that g is non-increasing, the assumption T4 in
Theorem 2 is satisfied. This also corresponds to (f positive and g
non-increasing) and (h positive and k(g) non-decreasing), which is a
subcase of assumption S2 in Theorem 1.

The assumption T4 in Theorem 2 is also satisfied for (f positive and
g non-increasing) and (h negative and k(g) non-increasing), which is
also a subcase of S2 in Theorem 1.

These are particular examples of assumptions that are common to Theo-
rems 1 and 2.

Naturally, there are many functions that do not satisfy S1 and S2 in
Theorem 1 but satisfy T1, T2, T3 or T4 in Theorem 2. In particular,
Theorem 2 can be applied to cases where the behavior of the functions is
complex or irregular, such as oscillatory functions or those with variable
signs in the integration domain. In a sense, it extends the applicability
of the integral lower bounds established in Theorem 1 to a wider class of
problems. This versatility highlights the importance of Theorem 2 in ad-
vancing the integral-based techniques needed in mathematical analysis and
its applications.

3 Conclusion

We have shown relevant integral inequalities, with a focus on lower bounds
depending on four functions f , g, h and k. These inequalities have the
following general form:∫ b

a

f(t)g(t)dt+

∫ b

a

h(t)k[g(t)]dt ≥ α

∫ b

a

f(t)dt+ β

∫ b

a

h(t)dt,
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with α ∈ {g(a), g(b)} and β ∈ {k[g(a)], k[g(b)]}. The main theorem (i.e.,
Theorem 2) makes original primitive-like inequality assumptions, allowing
the consideration of complex functions beyond those satisfying the basic
monotonicity and sign assumptions. This flexibility has potential applica-
tions in various fields where integral inequalities are fundamental, such as
mathematical analysis, probability theory, and functional inequalities. Fu-
ture work could explore refining these inequalities under alternative con-
ditions. Additionally, the developed technique could be extended to other
integral inequalities involving non-standard function classes, or even multi-
dimensional integrals.
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