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Uniqueness theorem for sequences of

piecewise polynomial functions.1

K. A. Keryan

Abstract. In the paper sequences of piecewise polynomial
functions are considered, where each of the function is the pro-
jection of subsequent ones. A reconstruction theorem is proved
for such sequences converging in measure from its limit if the
majorant of the sequence satisfies some condition.
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Introduction

It is well known that there are trigonometric series converging a.e. to 0 and
having at least one non-zero coefficient (see e.g. [13, Chapter IX, Theorem
6.14]). One can easily construct such series by Haar, Walsh and Franklin
systems.

In the papers [1], [3] uniqueness questions were considered for a.e. con-
verging or summable trigonometric series. Clearly, such questions should be
considered under some restrictions.

For Haar series, G.G. Gevorkyan in [5], proved in particular the following
theorem

Theorem 1 If the Haar series

∞∑
n=1

anχn(x) (1)

converges a.e. to f(x) and

lim
λ→∞

λµ{x ∈ [0, 1];S∗(x) > λ} = 0, (2)
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where S∗(x) is the majorant of partial sums of the series (1), then the coef-
ficients of series (1) are reconstructed by the following formulas

an = lim
λ→∞

∫ 1

0

[f(x)]λχn(x)dx,

where

[f(x)]λ =

{
f(x), for |f(x)| ≤ λ
0, for |f(x)| > λ.

Afterwards this theorem was generalized by V. Kostin in [10] for gener-
alized Haar series and by the author in [9] for generalized Haar series under
weaker conditions.

Similar results on uniqueness were also obtained for the Franklin system
(see [6],[7]).

Note that partial sums of the series (1) are piecewise constant. Here
we are interested in generalization Theorem 1 for piecewise polynomial se-
quences with (2) replaced by a weaker condition as in [9].

1 Definitions and the main result.

In order to formulate the result let us give some necessary definitions.
Let r ∈ N. Denote by S(r)

n the space of piecewise polynomial functions
whose restrictions on each

[
k
2n
, k+1

2n

)
for 0 ≤ k ≤ 2n − 1, are polynomials of

degree not exceeding r, i.e.

S(r)
n =

{
f ; deg(f |[ k

2n
, k+1
2n )) ≤ r for 0 ≤ k ≤ 2n − 1

}
.

Let P(r)
n : L[0, 1]→ S(r)

n be the orthogonal projection, i.e.

(f, g) = (P(r)
n f, g) for all f ∈ L[0, 1], g ∈ S(r)

n .

Let the sequence of functions (Sn)n≥0 satisfy Sn ∈ S(r)
n for n ≥ 0 and

P(r)
n (Sm) = Sn for m ≥ n. (3)

Set
S∗(x) = sup

n
|Sn(x)|.

We denote by D the set of all dyadic intervals, i.e.

D =
∞⋃
n=0

Dn, where Dn =

{[
k

2n
,
k + 1

2n

)
; 0 ≤ k ≤ 2n − 1

}
.

We call an interval I ∈ Dn an interval of rank n and set r(I) := n.
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Let functions hm(x), hm : [0, 1]→ R satisfy the following conditions:

(i) 0 ≤ h1(x) ≤ h2(x) ≤ · · · ≤ hm(x) ≤ . . . , lim
m→∞

hm(x) =∞, (4)

(ii) there exist a constant C > 0 and intervals Im1 , . . . , I
m
nm
∈ D, so that

Imi ∩ Imj = ∅, i 6= j, ∪nm
k=1I

m
k = [0, 1), and

sup
x∈Imk

hm(x) ≤ C inf
x∈Imk

hm(x), (5)

for any m ∈ N, 1 ≤ k ≤ nm, and

(iii) inf
m,k

∫
Imk

hm(x)dx > 0. (6)

In other words, for any function hm the interval [0, 1] can be split into small
dyadic intervals, so that the supremum and infimum of that function on
each interval are comparable and integrals over that intervals are bigger
than some positive constant.

Theorem 2 Let the functions hm(x) satisfy conditions (4),(5),(6). If
the sequence (Sn) satisfying (3) converges in measure to a function S and

lim
m→∞

∫
{x∈[0,1];S∗(x)>hm(x)}

hm(x)dx = 0 (7)

then for any g ∈ S(r)
n ,

(Sn, g) = lim
m→∞

∫ 1

0

[S(x)]hm(x) g(x)dx.

This theorem actually enables to recover the sequence (Sn) from its limit
S under mentioned conditions. Generally speaking the limit may be not
Lebesgue integrable.

2 Proof of the main theorem.

We need the following simple lemma.

Lemma 1 Let P be a polynomial of degree not exceeding r on [α, β] and
l = maxt∈[α,β] |P (t)|, then

µ

{
t ∈ [α, β]; |P (t)| > l

2

}
≥ β − α

4r2
.
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Proof. According to Markov’s inequality |P ′(t)| ≤ 2r2

β−α l for t ∈ [α, β].

Therefore if |P (t0)| = l, for some t0 ∈ [α, β], then |P (t) − P (t0)| ≤ l/2,
for any t ∈ [t0 − β−α

4r2
, t0 + β−α

4r2
] ∩ [α, β]. This yields the desired estimate. �

Proof of Theorem 2. Without loss of generality we can assume that
g is a polynomial of degree no more than r. Indeed, if the theorem is true
for any such polynomial, then for any g ∈ S(r)

n there exist polynomials Pk,
k = 1, . . . , 2n so that g =

∑2n

k=1 Pk · 1[ k−1
2n

, k
2n

), hence applying the theorem

for each Pk · 1[ k−1
2n

, k
2n

) we get

(Sn, g) =
2n∑
k=1

(Sn, Pk · 1[ k−1
2n

, k
2n

)) =

=
2n∑
k=1

lim
m→∞

∫ k
2n

k−1
2n

[S(x)]hm(x) Pk(x)dx = lim
m→∞

∫ 1

0

[S(x)]hm(x) g(x)dx.

Denote
λmk = inf

x∈Imk
hm(x) and ε0 = inf

m,k
λmk µ(Imk ).

It follows from (5), (6) that ε0 > 0. Take ε < ε0/(4r
2). It follows from (7)

that for sufficiently large m we have∫
Em

hm(x)dx < ε, where Em = {x ∈ [0, 1];S∗(x) > hm(x)}. (8)

Hence we get from (5)

nm∑
k=1

λmk µ{x ∈ Imk , S∗(x) > Cλmk } < ε. (9)

Fix m and denote by k0 the maximal rank of the intervals Imk , i.e.

k0 = max
1≤k≤nm

r(Imk ).

Denote S̃k0(x) = Sr(Imk )(x), for x ∈ Imk . It is not hard to check that |S̃k0(x)| ≤
2Cλmk , when x ∈ Imk . Indeed, assume, to the contrary, that there exist a
k′, 1 ≤ k′ ≤ nm, and a point x0 ∈ Imk′ such that |S̃k0(x0)| > 2Cλmk′ . Then
applying Lemma 1 we get

µ {t ∈ Imk′ ; |S∗(t)| > Cλmk′} ≥ µ
{
t ∈ Imk′ ; |S̃k0(t)| > Cλmk′

}
≥ µ(Imk′ )

4r2
.

Therefore it follows from (9) and the definition of ε0 that

4r2ε > 4r2λmk′µ {t ∈ Imk′ ; |S∗(t)| > Cλmk′} > λmk′µ(Imk′ ) ≥ ε0,
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which contradicts to the choice of ε.

Let Im1 be the union of the intervals I1, I2 of the rank r(Im1 ) + 1. If
|Sr(Im1 )+1(x)| ≤ 2Cλm1 for any x ∈ Im1 , then we will set S̃k0+1(x) = Sr(Im1 )+1(x)

on Im1 and call each of the intervals I1, I2 the 1st class intervals for S̃k0+1(x).
Otherwise we will set S̃k0+1(x) = Sr(Im1 )(x) on Im1 , and call Im1 the 2nd

class interval for S̃k0+1(x). Similarly we can define the class of intervals
Im2 , . . . , I

m
nm
, and determine S̃k0+1(x) on each of Im2 , . . . , I

m
nm

intervals.

Assuming that S̃k0+l(x) is defined, determine S̃k0+l+1(x) as follows. The
intervals of 2nd class for S̃k0+l(x) will be intervals of 2nd class for S̃k0+l+1(x)
as well and let us set S̃k0+l+1(x) = S̃k0+l(x) on these intervals. If I is an
interval of 1st class for S̃k0+l(x), then we act as follows. Let I be the union
of intervals I1, I2 of the rank r(I) + 1. Without loss of generality we can
assume that I ⊂ Im1 . If Sr(I)+1(x) ≤ 2Cλm1 , for x ∈ I then we will set

S̃k0+l+1(x) = Sr(I)+1(x) on I, and each of the intervals I1, I2 will be called

interval of 1st class for S̃k0+l+1(x). Otherwise we will call the interval I the
2nd class interval for S̃k0+l+1(x), and set S̃k0+l+1(x) = Sr(I)(x) for x ∈ I.

So the function S̃k0+l(x) is a polynomial of degree not exceeding r on
intervals I1, . . . , It (generally speaking, the ranks of the intervals Is, s =
1, . . . , t may vary depending on s ) and

S̃k0+l(x) = Sr(Ij)(x) for x ∈ Ij. (10)

It follows from the definition of S̃k0+l(x) that

|S̃k0+l(x)| ≤ 2Cλmk , for x ∈ Imk . (11)

Denote by Ak0,l the union of all intervals of 2nd class for S̃k0+l(x), and let
Akk0,l = Ak0,l ∩ Imk . Let us prove

µ(Akk0,l) ≤ 8r2µ{x ∈ Imk ;S∗(x) > Cλmk }. (12)

Note that the set Akk0,l is the union of all intervals of 2nd class for S̃k0+l(x),
which are subsets of Imk . Therefore each of these intervals I contains at least
one interval JI , such that r(JI) = r(I)+1 and |Sr(JI)(x0)| > 2Cλmk , for some
x0 ∈ JI . Therefore applying Lemma 1 we get

µ {t ∈ JI ; |S∗(t)| > Cλmk } ≥ µ
{
t ∈ JI ; |Sr(JI)(t)| > Cλmk

}
≥ µ(JI)

4r2
.

Clearly µ(I) = 2µ(JI), hence we obtain

µ(Akk0,l) =
∑

µ(I) ≤ 2
∑

µ(JI) ≤ 8r2µ{x ∈ Imk ;S∗(x) > Cλmk }.
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Let P be a polynomial of degree not exceeding r and M = maxt∈[0,1] |P (t)|.
Notice that it follows from (3) that (S0, P ) =

∑nm

k=1

∫
Imk
S̃k0+l(x)P (x)dx.

Now let us estimate the following expression:

|(S0, P )− ([S]hm , P )| ≤
nm∑
k=1

∣∣∣∣∣
∫
Imk

S̃k0+l(x)P (x)dx−
∫
Imk \Em

S(x)P (x)dx

∣∣∣∣∣+
+

∫
Em

hm(x)|P (x)|dx ≤
nm∑
k=1

∣∣∣∣∣
∫
(Imk \Em)∩Ac

k0,l

(
S̃k0+l(x)− S(x)

)
P (x)dx

∣∣∣∣∣+
+

∫
Em

∣∣∣S̃k0+l(x)P (x)
∣∣∣ dx+M

nm∑
k=1

∫
(Imk \Em)∩Ak0,l

(∣∣∣S̃k0+l(x)
∣∣∣+ |S(x)|

)
dx+

+M

∫
Em

hm(x)dx = I1 + I2 + I3 + I4.

It follows from (11) and the definition of λmk that

I2 ≤ 2CM

∫
Em

hm(x)dx = 2CI4,

therefore we get from (8)

I2 + I4 < (2C + 1)Mε. (13)

Since Sn converges in measure to S, we obtain for a.a. x ∈ Imk \Em

|S(x)| ≤ S∗(x) ≤ hm(x) ≤ Cλmk . (14)

Hence we get from (11) and (12)

I3 ≤ 4CM
nm∑
k=1

λmk µ(Akk0,l) ≤ 32CMr2
nm∑
k=1

λmk µ{x ∈ Imk ;S∗(x) > Cλmk },

and applying (9) we obtain the following estimate for I3

I3 ≤ 32CMr2ε. (15)

It remains to estimate I1. Since Sn converges in measure to S, there exists
l0, such that for any l′ > l0 we have

µ{x ∈ Imk , |Sk0+l′(x)− S(x)| ≥ ε} < ε

λmk nm
. (16)

Let us choose l so that r(Imk ) + l > k0 + l0, for any k = 1, 2, . . . nm. Denote
by

Bk
k0,l

= {x ∈ Imk ;
∣∣Sr(Imk )+l(x)− S(x)

∣∣ ≥ ε}, Bk0,l = ∪nm
k=1B

k
k0,l
.
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Note that it follows from (16) that µ(Bk
k0,l

) < ε/(λmk nm), hence, taking into

account S̃k0+l(x) = Sr(Imk )+l(x), for x ∈ Imk ∩Ack0,l, and the inequalities (11),
(14), we obtain

I1 ≤M
nm∑
k=1

∫
((Imk \Em)∩Ac

k0,l
)\Bk0,l

∣∣∣S̃k0+l(x)− S(x)
∣∣∣ dx+

M
nm∑
k=1

∫
((Imk \Em)∩Ac

k0,l
)∩Bk0,l

(∣∣∣S̃k0+l(x)
∣∣∣+ |S(x)|

)
dx ≤

≤Mε+
nm∑
k=1

4CMλmk
ε

λmk nm
.

So we get I1 ≤ (4C + 1)Mε. Combining this estimate with the estimates
(13), (15), we get for sufficiently large m

|(S0, P )− ([S]hm , P )| < (6C + 2 + 32Cr2)Mε.

Theorem 2 is proved.
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