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Abstract. All physical phenomena in the four-dimensional
spacetime are invariant under the Poincaré group. The Stan-
dard Model of fundamental interactions, Electroweak theory, and
Quantum Chromodynamics are required to be invariant under
Poincaré group. Any possible extension of the Poincaré group
hints to the existence of a new physics beyond the Standard
Model. In particular, the supersymmetric extension of the
Poincaré group predicts the existence of new particles that are
supersymmetric partners of the elementary particles of the Stan-
dard Model: leptons, quarks, W and Z bosons and gluons. In
a recently suggested high-spin extension of the Poincaré group,
new massless particles of increasing spins are predicted to ex-
ist. In that respect we are interested in investigating a massless
representation of the Poincaré algebra that has high-spin states.
The massless states are described by the helicity operator, which
has only two polarisations equal to the components of spin along
the direction of motion, as it takes place for photons and gravi-
tons. This means that not all of the 2s+1 spin magnetic quan-
tum states exist and the spin operator is not defined anymore.
In order to eliminate the spin operator from a massless represen-
tation and ensure that only helicity operator is included into the
representations, Schwinger suggested that new non-commuting
coordinates should be defined. We investigate the uncertainty
relations that follow from non-commutativity of these new coor-
dinates. It is the average wavelength of a massless particle that
sets the scale of the coordinate uncertainty.
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Introduction

The fundamental consequence of electromagnetic and mechanical experi-
ments, and in accordance with the Maxwell equations, there is a physical
equivalence of two coordinate systems that differ in the following ways: a
translation of the spatial origin, a translation of the time origin, a rotation of
the space axes, a constant relative velocity between the two systems [8, 22].
This fundamental property of the spacetime is formulated as the invariance
of all physical systems with respect to the corresponding infinitesimal coor-
dinate transformations defined in the following way:

δxµ = δεµ + δωµνxµ, δωµν = −δωνµ,

where δεµ is a spacetime translation, δωµν is a four-dimensional rotation,
and the space-time coordinates are:

xµ = (ct, ~r), x0 = −x0 = ct, xi = xi = ri.

The six independent parameters of this four-dimensional rotation are related
to δ~ω and δ~v by

δωij = εijkδωk, δω0i =
1

c
δvi,

where ~ω is the angular velocity and ~v is the velocity. The infinitesimal
unitary transformation, U = 1 + iG, that is induced by an infinitesimal
coordinate transformation is given by the expression [19]

U = 1 + i
1

~
(P µδεµ +

1

2
Mµνδωµν),

where the space components of the Poincaré generators P µ and Mµν are

cP 0 = H +Mc2, Pi,
1

c
M0i = Ni, Mij = εijkJk.

The generators Pi, and Jk, are the linear and angular momentum operators,
while H is the energy, or the Hamiltonian operator, and Ni is the boost
operator, in total ten operators. The quantum unit of action ~ = 1.0545 ×
10−27 erg sec. The full set of commutators for the generators comprise the
Poincaré algebra [8, 19,22]:

[Pµ, Pν ] = 0,

[Pµ, Mκλ, ] = i~(ηµλ Pκ − ηµκ Pλ),
[Mµν , Mκλ] = i~(ηµκ Mνλ − ηνκ Mµλ + ηνλ Mµκ − ηµλ Mνκ),

where
η00 = −1, η0i = 0, ηij = δij.
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The commutators can also be presented in the following form:

[P ν ,
1

2
Mκλδωκλ] = i~δωµνPµ, [P ν , P λδελ] = 0,

[Mµν ,
1

2
Mκλδωκλ] = i~(δωλµM ν

λ + δωλνM µ
λ ),

[Mµν , P λδελ] = i~(δελP ν − iδενP µ),

indicating the response of vectors and tensors to infinitesimal Lorentz ro-
tations, here (1/2)Mκλδωκλ corresponds to the three-dimensional rotations
and boosts. The response of these operators to the translational P λδελ is
given as well. In terms of a three-dimensional vectors the algebra will take
the following form:

[Pn, Pm] = 0, [Jn, Jm] = i~εnmkJk, (1)

[Pn, Jm] = i~εnmkPk, [Nn, Nm] = −i~ 1

c2
Jnm, (2)

[Nn, Jm] = i~εnmkNk, [Pn, Nm] = i~δnm
P0

c
, (3)

[H, Pn] = 0,

[H, Jn] = 0,

[H, Nn] = i~Pn, (4)

When P0/c� 1, the algebra reduces to the Galilean algebra.

1 High-spin extension of Poincaré algebra

The algebra we were interested in is the extension of the high-spin Poincaré
algebra introduced earlier in [9–11]. This algebra naturally appeared in the
high-spin extension of the Yang Mills theory suggested in [10, 12, 13]. The
non-Abelian tensor gauge fields were defined as rank-(s+ 1) tensors [12,13]

Aaµλ1...λs(x), s = 0, 1, 2, ...

These tensor fields are totally symmetric with respect to the indices λ1, ..., λs
and had no symmetries with respect to the first index µ. The index a
numerates the generators La of the Lie algebra of a compact Lie group G.
These tensor fields appear in the expansion of the gauge field Aµ(x, e) over
the unit polarization vector eλ [14, 15] :

Aµ(x, e) =
∞∑
s=0

1

s!
Aaµλ1...λs(x) Lλ1...λsa , (5)
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where Lλ1...λsa = eλ1 ...eλs ⊗ La are the “gauge generators” of the following
current algebra [9–11]:

[Lλ1...λia , L
λi+1...λs
b ] = ifabc L

λ1...λs
c , s = 0, 1, 2, ... (6)

This current algebra has infinitely many “gauge generators” Lλ1...λsa . They
are gauge generators because they carry the isospin and Lorentz indices.
The generators Lλ1...λsa are symmetric spacetime tensors, and the full algebra
includes the Poincaré generators Pµ, Mµν . Algebra LG(P) has the following
form [9–11] :

[P µ, P ν ] = 0,

[P λ, Mµν ] = i~(ηλν P µ − ηλµ P ν),

[Mλρ, Mµν ] = i~(ηµρ Mνλ − ηµλ Mνρ + ηνλ Mµρ − ηνρ Mµλ),

[P µ, Lλ1...λsa ] = 0,

[Lλ1...λsa , Mµν ]

= i~(ηλ1νLµλ2...λsa − ηλ1µLνλ2...λsa + ...+ ηλsνLλ1...λs−1µ
a − ηλsµLλ1...λs−1ν

a ),

[Lλ1...λia , L
λi+1...λs
b ] = ifabcL

λ1...λs
c (µ, ν, ρ, λ = 0, 1, 2, 3; s = 0, 1, 2, ...) (7)

It is an extension of the Poincaré algebra by “gauge generators” Lλ1...λsa ,
which are the elements of the current algebra (6). Algebra (7) can be ex-
tended to a supersymmetric case as well [1]. The supersymmetric generalisa-
tions of high-spin de Sitter and conformal groups were also suggested in [1].
The algebra LG(P) has a representation in terms of differential operators of
the following general form:

P µ = kµ,

Mµν = i~(kν
∂

∂kµ
− kµ ∂

∂kν
) + i~(eν

∂

∂eµ
− eµ ∂

∂eν
),

Lλ1...λsa = eλ1 ...eλs ⊗ La, (8)

where eλ is a translationally invariant space-like unit vector. The vector
space of a representation is parameterised by the momentum kµ and vector
variables eλ: Ψ(kµ, eλ) . Irreducible representations can be obtained from
(8) by imposing invariant constraints on the vector space of the following
form:

k2 = 0, kµeµ = 0, e2 = 1 . (9)

These equations have a unique solution eµ = χkµ+ eµ1 cosϕ+ eµ2 sinϕ, where
eµ1 = (0, 1, 0, 0), eµ2 = (0, 0, 1, 0) when kµ = ω(1, 0, 0, 1). The χ and ϕ remain
as independent variables on the cylinder ϕ ∈ S1, χ ∈ R1 and the invariant
subspace of functions is:

Ψ(kµ, eν) δ(k2) δ(k · e) δ(e2 − 1) = Φ(kµ, ϕ, χ).
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The generators Lλ1...λsa take the following form:

L⊥ λ1...λs
a =

s∏
n=1

(χkλn + eλn1 cosϕ+ eλn2 sinϕ)⊗ La. (10)

This is a purely transversal representation because of (9):

kλ1L
⊥λ1...λs
a = 0, s = 1, 2, ...

and the generators L⊥ λ1...λs
a are carry the helicities in the following range:

λ = (s, s− 2, ......,−s+ 2,−s), (11)

in total s + 1 states. This can be deduced from the explicit representation
(10) by using helicity polarisation vectors eλ± = (eλ1 ∓ ieλ2)/2:

L⊥ λ1...λs
a =

s∏
n=1

(eiϕeλn+ + e−iϕeλn− + χkλn)⊗ La. (12)

After performing the multiplication in (12) and collecting the terms of a
given power of momentum we will get the following expression:

L⊥ µ1...µs
a =

s∏
n=1

(eiϕeµn+ + e−iϕeµn− )⊗ La + (13)

+
∑

1

χkµ1
s∏

n=2

(eiϕeµn+ + e−iϕeµn− )⊗ La + ...+ χkµ1 ...χkµs ⊗ La,

where the first term
∏s

n=1(eiϕeµn+ +e−iϕeµn− ) represents the helicity generators
(L+···+

a , ..., L−···−a ), while their helicity spectrum is described by formula (11).
The transversal representation L⊥λ1...λsa plays an important role in the

definition of the gauge field Aµ(x, e) in (5). By substituting the transversal
representation (13) of the generators L⊥λ1...λsa into the expansion (5) and
collecting the terms in front of the helicity generators (L+···+

a , ..., L−···−a ), we
will get

Aµ(x, e) =
∞∑
s=0

1

s!
(Ãaµλ1...λs e

λ1
+ ...e

λs
+ ⊗ La + ...+ Ãaµλ1...λse

λ1
− ...e

λs
− ⊗ La)

=
∞∑
s=0

1

s!
(Ãaµ+···+ ⊗ L+···+

a + ...+ Ãaµ−···− ⊗ L−···−a ),

where s is the number of negative indices. This formula represents the pro-
jection Ãaµλ1...λs of the components of the non-Abelian tensor gauge field
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Aaµλ1...λs into the plane transversal to the momentum. The projection con-
tains only positive-definite space-like components of the helicities [1,10,11]:

λ = ± (s+ 1),
±(s− 1)
±(s− 1)

,
±(s− 3)
±(s− 3)

, ...., (14)

where the lower helicity states have double degeneracy. In summary, we
have seen that the spectrum of the high-spin extension of Poincaré algebra
is massless and our intention is to analyze the special physical properties of
these states of high helicities (14).

2 Casimir operators of Poincaré algebra

The fully invariant vacuum state |0〉 is defined as

P µ|0〉 = 0, Mµν |0〉 = 0.

The excited states will have a positive value of P0 > 0. Let us consider the
first invariant quantity

− P µPµ = (P 0)2 − ~P 2 = M2c2, (15)

which can be strictly positiveM2 > 0, and therefore P 0 = +(~P 2+M2c2)1/2 >

0, or equal to zero M2 = 0, and then P 0 = +|~P | > 0. The second invariant
can be constructed by using the Pauli-Lubanski pseudo-vector

W µ =
1

2
εµνλρMνλPρ. (16)

It is a translationally invariant pseudo-vector

[W µ, P νδεν , ] = ~εµνλρδελPρPν = 0,

and it has the following properties:

[P µ, W ν ] = 0 , [W µ, W ν ] = i~εµνλρ WλPρ , PµW
µ = 0.

That is, the Pauli-Lubanski pseudo-vector is translationally invariant, non-
commutative pseudo-vector, and because it is orthogonal to the time-like
vector P µ (15), it is a space-like pseudo-vector:

W µWµ = %2 ≥ 0.

The above two Casimir invariants can be used to characterise the unitary
irreducible representations of the Poincaré algebra.
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3 Representations of Poincaré algebra

We are interested in describing the representations of the Poincaré algebra in
terms of operators acting in an appropriate Hilbert space. It follows from (2)
and (3) that the angular momentum and boost operators transform under
coordinate translations as follows:

δε ~J =
1

i~
[ ~J, ~P · δ~ε] = δ~ε× ~P

δε ~N =
1

i~
[ ~N, ~P · δ~ε] = −δ~ε P

0

c
.

The Poincaré algebra has the operators (P 0, ~P ), the boost ~N and angular

momentum ~J operators, but there are no explicit coordinate operators in
the algebra. The response of the angular momentum to translation is in
accordance with the nature of angular momentum and indicates the existence
of a position vector operator ~R:

δε ~R =
1

i~
[~R, ~P · δ~ε] = δ~ε,

thus having the Heisenberg commutator with momentum operators ~P :

[Ri, Pk] = i~δik.

The next step is to construct the representation of the ~J and ~N operators
in terms of coordinate and momentum operators. The angular momentum
and boost operators can be defined as

~J = ~R× ~P , ~N = ~Px0 − 1

c
{P 0, ~R}, (17)

where the product P 0 ~R is symmetrised because these operators are not
commuting:

1

i~
[~R, P 0] =

∂P 0

∂ ~P
=

~P

P 0
.

Importantly, only when the coordinate operators are commuting operators:

[Ri, Rj] = 0, (18)

then all constructed operators are correctly transforming with respect to the
rotations. The most characteristic commutator to be checked is (2). One
can derive that

i

~
[{P 0, Rn}, {P 0, Rm}] = RnPm −RmPn
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and then get convinced that

i ~N × ~N = i(~Px0− 1

c
{P 0, ~R})× (~Px0− 1

c
{P 0, ~R}) =

~
c2
~R× ~P =

~
c2
~J. (19)

Representation (17) fulfils all commutation relations of the Poincaré algebra
(1-4) and completes the construction of the representation of the Poincaré

algebra for particles without spin, the internal angular momentum ~S.

4 Massive representation with spin

Let us now describe the representation that contains the internal angular
momentum, the spin of particles, by adding a new term to the angular
momentum ~J (17):

~J = ~R× ~P → ~J = ~R× ~P + ~S.

To separate these two terms in the total angular momentum ~J one should
request that the spin operator commutes with the coordinate and momentum
operators:

[Sn, Rm] = [Sn, Pm] = 0,

and to keep intact the commutator of angular momentum operators (1) one
should have

[Si, Sl] = i~εilkSk
with all of the 2s + 1 spin magnetic quantum number states. As soon as
the angular momentum operator changes, the boost operator ~N should be
redefined so that the commutator (2), (19) remains intact:

i
c2

~
~N × ~N = ~J = ~R× ~P + ~S.

One can add the term f(P 0) ~S × ~P with an unknown function f(P 0) and
then find out that f(P 0) = 1/(P 0 +Mc), thus the modified boost operator
~N should have the following form:

~N = ~Px0 − 1

c
{P 0 ~R}+

1

c2

1

P 0 +Mc
~S × ~P .

In summary, the massive representation that contains the spin operator ~S
has the following form:

~J = ~R× ~P + ~S,

~N = ~Px0 − 1

c
{P 0 ~R}+

1

c

1

P 0 +Mc
~S × ~P . (20)
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Representation (20) fulfils all commutation relations of the Poincaré algebra
(1-4) and completes the construction of the representation of the Poincaré
algebra for particles with spin in terms of the coordinate, momentum and
spin operators.

It is possible to invert these formulas and express the coordinate and
spin operators in terms of the momentum, angular momentum, and boost
operators. By calculating the products ~J · ~P , ( ~J × ~P ), ~N · ~P and ( ~N × ~P )
one can represent the coordinate and spin operators in the following form
(x0 = 0):

M ~R = − ~N +
1

P 0(P 0 +Mc)
~P (~P · ~N) +

1

P 0 +Mc
~J × ~P ,

M ~S =
1

c
P 0 ~J − 1

c

1

P 0 +Mc
~P (~P · ~J) + ~N × ~P . (21)

The components of the Pauli-Lubanski vector (16) in this representation are:

W 0 = ~P · ~J = ~P · ~S,

~W = P 0 ~J − c ~P × ~N = cM ~S +
(~P · ~S)

P 0 +Mc
~P . (22)

It follows that the second invariant of the Poincaré algebra is proportional
to the square of the particles spin:

W 2 = c2M2~S2, (23)

and that ~S2 is a Lorentz invariant. In summary, the representation is char-
acterised by two invariants, the mass of the particles −P 2 = M2c2 (15) and
their spin (23). This discussion refers to a strictly massive case M2 > 0.

5 Massless representations and helicity states

Our main interest is to consider the massless particles, such as photons,
gravitons, and high helicity states (14). We will consider the limit M2 → 0

of the massive representation described above when ~S2 is kept fixed. In this
limit when M2 = −P µPµ = 0, from (22) we will have

W 0 = ~P · ~S, ~W =
(~P · ~S)

P
~P , W 2 = 0.

The above relations can be written in the following form:

W µ = λP µ,
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where λ is the Lorentz invariant helicity operator

λ =
~P · ~S
P

.

It is equal to the components of the spin along the direction of the motion,
and as far as it is Lorentz invariant, the system exhibits only two values of
helicity ±s. This means that not all of the 2s + 1 spin magnetic quantum
number states exist in the massless limit.

Thus in the limitM2 → 0 the spin operator ceased to be defined, with two
exceptions, and one should introduce new variables for this circumstance. In
order to eliminate the operator ~S from a massless representation, Schwinger
suggested that the new coordinates can be defined [19] in the following form:

~̂R = ~R−
~S × ~P

P 2
.

In that case the commutation relation of the coordinate ~̂R and the momen-
tum operator ~P remains intact:

[Pn, Pm] = 0, [R̂n, Pm] = i~δnm,

but the commutation relation (18) between the coordinates will change and
take the following form:

[R̂n, R̂m] = −i~λεnmk
Pk
P 3
, (24)

which implies that the Jacobi identity is obstructed by zero-momentum par-
ticles and will takes the following form:

[[R̂1, R̂2], R̂3] + cycl.perm. = λ~24P (
1

P
) = −4πλ~2δ(3)(~P ). (25)

The Jacobi identity (25) imposes the restriction ~P 6= 0 validating the Lorentz

invariant energy property P 0 = |~P | > 0. The absence of certain values of
spin magnetic quantum number states is now manifested by the noncommu-

tativity of ~̂R components (24).
As one can see, the new coordinates are not commuting between them-

selves, and this is opposite to the massive case where the coordinate oper-
ators are commuting (18). The vector product of the new coordinates with
the momentum operator is such that

~̂R× ~P = ~R× ~P + ~S −
~P · ~S
(P 0)2

~P = ~J − λ
~P

P
,
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and we can express the angular momentum operator in terms of new coor-
dinates and helicity operators:

~J = ~̂R× ~P + λ
~P

P
, (26)

The other commutation relations are given in the Appendix. It follows from
this equation that in terms of the new coordinate operators the massless
representation of the angular operator ~J can be written only in terms of the
helicity operator without any reference to spin operators. From the equation
(20) it follows that the boost operator ~N will take the following form:

~N = ~Px0 − 1

c
{P 0 ~̂R}. (27)

Expressions (24), (26) and (27) completely define the massless representa-

tion of the Poincaré algebra in terms of new non-commuting coordinates ~̂R,
momentum ~P , and helicity operator λ. If the explicit expresions of ~J and
~N are inserted in the formulas for M ~R and M~S, the expressions (21) do

vanish, as does M ~̂R.
The intrinsic non-locality of massless particles (24) is described by the

alternative Heisenberg uncertainty relation:

4R̂n 4R̂m ≥ ~
|λ|
2

∣∣∣〈Pk
P 3
〉
∣∣∣, n 6= m 6= k, (28)

where 4R̂n

2
= 〈 (R̂n − 〈R̂n〉)2 〉 is the mean square of the deviation of R̂n

from its mean value 〈R̂n〉 and 〈Pk/P 3〉 is the mean value of the operator in
the state under consideration. For a momentum state that has a direction
along a given axis, from the new uncertainty relation (28) we will get

(4R̂)2 ≥ ~|λ|〈 1

P 2
〉 =

1

4π2

|λ|
~

Λ2, (29)

where 2π~/P = Λ is the wavelength of the massless particle indicating that
the wavelength sets the scale of coordinate uncertainty. The relation (29)
together with the unbounded nature of the λ spectrum (14), ranging over
all integers, indicates that physically accessible states would exist, for which

the location uncertainty (4R̂)2 = 4R̂1
2
+4R̂2

2
+4R̂3

2
is arbitrarily large.

6 Note added

The extension of the Poincaré algebra considered in this article (7) uniquely
unifies internal Lie algebra G, in particular, the SU(N) algebra and Poincaré
space-time algebra P into what was defined as LG(P) algebra [9].
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The mathematical consistency of the algebra (7) can be checked by inves-
tigating the corresponding Jacobi identities. This check of the consistency
was performed in the articles [9–11, 13], where the author (G.S.) also dis-
cussed the reasons why the Coleman-Mandula theorem [4] is not applicable
to this extension. Indeed, there is no conflict with the Coleman-Mandula
theorem, because the theorem applies to the symmetries that act on S-matrix
elements and not on all the other symmetries that occur in quantum field
theory. The LG(P) algebra (7) is the symmetry which acts on the gauge
field Aµ(x, e), and it is not a symmetry of the S-matrix. The theorem as-
sumes among other things that the vacuum is non-degenerate, that there are
no massless particles in the spectrum and that the number of generators is
finite. In contrary to that, the spectrum of the extended Yang Mills theory
is massless 9 and the number of generators is infinite (6), (7).

The other important No-Go theorem of Weinberg and Witten [21] for-
bids the existence of massless particles with helicity |h| > 1/2 if there is a
Lorentz-covariant conserved current ∂µJ

µ = 0 and massless particles with
helicity |h| > 1 if there is a conserved Lorentz covariant energy-momentum
tensor ∂µθ

µν = 0. Both theorems are not applicable to Yang Mills the-
ory and to general relativity. In the Yang Mills case the current is not
conserved because it satisfies the equation ∇µJ

µ = 0. Similarly, the energy-
momentum pseudotensor in the general relativity is not a Lorentz invariant
tensor. For that reason in nature we observe the helicity |h| = 1 massless
photons and gluons and the massive W-Z bosons in the spectrum of the
Standard Model. The helicity |h| = 2 graviton in the general relativity was
predicted to exists and was observed indirectly in the form of gravitational
waves. In short, the theorem is not applicable to gauge/diffeomorphism in-
variant field theories. For the same reason the theorem is not applicable
to the gauge invariant theory of tensorgluons [9–11, 13]. In summary, the
conditions of the Coleman-Mandula and Weinberg-Witten theorems are not
fulfilled here, and therefore the theorems are not applicable to the case of
this Poincaré algebra.

In short, the results obtained in this theory in the last decade can be
summarised in the following form:
a) The calculation of the Callan-Symanzik beta function arising from the
quantisation of the tensor theory at the one-loop level and is due to the
vacuum polarisation by high-spin massless particles. It has the following
form [16]:

β(g) = −12s2 − 1

48π2
g3C2(G), s = 1, 2, 3, ...

where C2(G) = N for the SU(N) group. For the vector bosons s = 1 it
reduces to the Gross-Wilczek-Politzer result for which they obtained the
Nobel prise.
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b) The calculation of the tensorgluon-gluon splitting amplitudes [6, 16]

M tree
n (..., aλa , bλb , ...)

a ‖ b
→

∑
λ=±1

Splittree−λ (aλa , bλb) × M tree
n−1(..., P λ, ...),

where Splittree−λ (aλa , bλb) denotes the splitting amplitude, P denotes the in-
termediate state of the momentum kP = ka+kb and helicity λ. The splitting
probabilities

P (z) = C2(G)
∑

hP ,ha,hb

|Split−hP (aha , bhb)|2 sab, sab = 2ka · kb,

have been obtained by using the spinor representation of the scattering am-
plitudes [3] The splitting probabilities in the maximally symmetric repre-
sentation have the following form [6,16]:

P λC
λBλA

(z) =
1

z2ηλB−1(1− z)2ηλC−1
, λC + λB + λA = η = ±1.

The formula describes all known splitting probabilities found earlier in QFT
as well as the splitting probabilities for high-spin particles.
c) The extension of the Altarelli-Parisi equations that describe the creation
of additional tensorgluons in the high-energy scattering experiments [16].
d) The calculation of the contribution of tensorgluons to a proton spin in an
attempt to resolve the ”proton-spin crisis” [17].
e) The contribution and influence of the tensorgluons vacuum polarisation
on the physics of Grand Unified Theory and on its unification scale that
merges the electromagnetic, weak, and strong forces into a single force at
high energies [13].

The presentation of these results partially can be found in the review
article devoted to the celebration of the 60th anniversary of the discovery of
Yang Mills gauge theory [13]. The supersymmetric extension of the LG(P)
algebra was realised in [1,18] and the discovery of new high-rank topological
invariants in [2, 5, 7, 20].

7 Appendix

The commutators of the new non-commutative coordinates have the follow-
ing form:

[R̂n, P
0] = i~Pn

P 0

[P 0R̂n, P
0R̂m] = −i~εnmk Pk

P 0 + i~(R̂mPn − R̂nPm)

[R̂nP
0, R̂mP

0] = −i~εnmk Pk

P 0 + i~(R̂mPn − R̂nPm)

[P 0R̂n, R̂mP
0] = −i~εnmk Pk

P 0 + i~(R̂mPn − PmR̂n) + ~2 PnPm

(P 0)2

[R̂nP
0, P 0R̂m] = −i~εnmk Pk

P 0 + i~(PnR̂m − R̂nPm)− ~2 PnPm

(P 0)2

[{P 0, R̂n}, {P 0, R̂m}] = −i~εnmk Pk

P 0 + i~(PnR̂m − PmR̂n)
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