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Implicit Elliptic Problems with p-Laplacian

E. Cabanillas L. and J. V. Luque

Abstract. In this research, we will study the existence of weak
solutions for a class of implicit elliptic equations involving the
p-Laplace operator. Using a Krasnoselskii–Schaefer type theo-
rem we establish our result, extending and complementing those
obtained by R. Precup, 2020, and Marino and Paratore, 2021.
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Introduction

In this article we focus on the following boundary elliptic problem:

−4pu = f(x, u,∇u,4pu) + g(x, u,∇u) in Ω,

u = 0 on Γ,
(1)

where Ω is a bounded domain in Rn with smooth boundary Γ, (n ≥ 3),
4pu = div(|∇u|p−2∇u) is the p-Laplacian, 2 < p < +∞, f : Ω× R× Rn ×
R→ R and g : Ω× R× Rn → R are Carathéodory functions.

In 1958, Krasnoselskii proved his famous result on the existence of fixed
point for a sum of two operators, one of which is is a contraction and the se-
cond one is compact, defined in a convex and closed set, and concluding that
its sum has a fixed point. Since then, many extensions have emerged with
various types of generalized contractions and generalized compact operators,
which are generally applied to the resolution of specific problems posed in
natural sciences and physics. In particular, his result gives a method for
solving Dirichlet problems in which nonlinear sources can be expressed by
the sum of two terms to which appropriate restrictions are imposed to fulfill
the hypotheses in Krasnoselskii’s theorem. Precup [10] studied the Dirichlet
problem with the Laplacian operator (p = 2) for implicit equations invol-
ving two sources, one source containing the Laplacian and another containing
the gradient, via a Krasnoselskii-type fixed point theorem and suggested the
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application of his technique to general elliptic operators that replace the
Laplacian and to other classes of implicit differential equations. Thus, inspi-
red by the ideas introduced by Precup, this paper aims to study the existence
of solutions for the implicit equation (1) involving the p-Laplacian with
p > 2. This extension is not trivial due to the mathematical difficulties posed
by the degenerate quasilinear elliptic operator, compared to the Laplacian
operator: the lack of Hilbert structure of the domain of the operator, the
absence of linearity and the complicated spectral properties. We point out
that implicit elliptic equations have been intensively studied in the literature
(see [1, 2, 3, 5, 8, 7] and references therein), and have multiple applications to
the calculus of variations, nonlinear elasticity, problems of phase transitions
and optimal design (see, e.g., [4]).

The paper is organized as follows. In Section 1, as preliminaries, we
recall some properties of the inverse operator of p-Laplacian and the main
tool, a hybrid theorem of Krasnoselskii type due to Gao et al.[6]. Section 2 is
devoted to state and prove our main result about existence of weak solutions
for problem (1).

1 Preliminaries

Let W 1,p
0 (Ω), (1 < p), be the usual Sobolev space equipped with the norm

‖u‖ =

(∫
Ω

|u|p
)1/p

, u ∈ W 1,p
0 (Ω),

and ‖u‖p =
(∫

Ω
|u|p
)1/p

denotes the norm in Lp(Ω).
By the Sobolev embedding theorem, for any 1 ≤ θ ≤ p∗ (1 ≤ θ < p∗),

p < N , the embedding W 1,p
0 (Ω) ↪→ Lθ(Ω) is continuous (compact) and there

exists a positive constant Cθ such that ‖u‖θ ≤ Cθ‖u‖ for all u ∈ W 1,p
0 (Ω).

Consider the first eigenvalue λ1 of the problem{
−4pu = λ1|u|p−2u in Ω,

u = 0 on ∂Ω.

Thanks to the work of Peral [9], one has that

λ1 := inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

is isolated and simple, also its corresponding first eigenfunction is positive.
Thus, the best(smallest) embedding constant for the inclusion W 1,p

0 (Ω) ↪→
Lp(Ω) is 1/ p

√
λ1.

LetW−1,p′(Ω) be the dual space ofW 1,p
0 (Ω). Also, an embedding constant

for the inclusion Lp
′
(Ω) ↪→ W−1,p′(Ω) is 1/ p

√
λ1.
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It is well known, that the problem{
−4pu = f in Ω,

u = 0 on ∂Ω,

has a unique weak solution u ∈ W 1,p
0 (Ω) for f ∈ W−1,p′(Ω). Thus, S =

−4p : W 1,p
0 (Ω)→ W−1,p′(Ω) has the following properties:

(i) S is bijective and uniformly continuous on bounded sets.

(ii) The operator S−1 : W−1,p′(Ω) → W 1,p
0 (Ω) is continuous and for any

v1, v2 ∈ W−1,p′(Ω), the following estimate holds

‖S−1v1 − S−1v2‖ ≤M
1/(p−1)
1 ‖v1 − v2‖1/(p−1)

−1 (2)

for some constant M1 > 0 independent of v1 and v2.

(iii)
‖Su‖−1 = ‖u‖p−1, u ∈ W 1,p

0 (Ω), (3)

where ‖.‖−1 denotes the norm in W−1,p′(Ω), 1/p+ 1/p′ = 1.

We recall that our approach is based on a extension of Krasnoselskii’s
theorem, which combine Banach’s contraction principle with Schaefer’s fixed
point theorem due to Gao, Li and Zhang [6], and on the previous mentioned
work [10] by Precup.

Theorem 1 (Gao-Li-Zhang) Let DR be a closed ball centered at the origin
and of radius R of a Banach space X, and let A,B be operators such that

(i) A : X → X is a contraction;

(ii) B : DR → X is continuous with B (DR) relatively compact;

(iii) x 6= A(x) + λB(x) for all x ∈ ∂DR and λ ∈]0, 1[.

Then the operator A+B has at least one fixed point, i.e., there exits x ∈ DR

such that
x = A(x) +B(x).

Remark 1 In practice, we use the method of a priori estimates, so both
operators A, B are defined on the whole space X, and a ball DR as required
by condition (iii) of Theorem 1 exists if the set

Y = {x ∈ X|x = A(x) + λB(x), for some λ ∈ [0, 1]}

is bounded in X.
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Lemma 1 For any (p∗)′ ≤ τ ≤ p, the embeddings

W 1,p
0 (Ω) ↪→ Lτ (Ω), Lp(Ω) ↪→ Lτ (Ω), Lτ (Ω) ↪→ W−1,p′(Ω)

are continuous, and we may consider positive constants c1, c2, c3 such that

‖u‖τ ≤ c1‖u‖, ‖u‖τ ≤ c2‖u‖p, ‖u‖−1 ≤ c3‖u‖τ , (4)

with
c2 = c1

p
√
λ1, c3 =

cΩ

c1λ
2/p
1

, and cΩ = |Ω|(p−2)/p.

Proof. From (4), we get

‖u‖τ ≤ c2‖u‖p ≤
c2

p
√
λ1

‖u‖, for u ∈ W 1,p
0 (Ω),

which give us c2 = c1
p
√
λ1.

On the other hand, in view of the inclusions Lp
′
(Ω) ↪→ W−1,p′(Ω),

Lp(Ω) ↪→ Lp
′
(Ω), we have for u ∈ W 1,p

0 (Ω),

‖u‖−1 ≤
1
p
√
λ1

‖u‖p′ ≤
cΩ

p
√
λ1

‖u‖p ≤
cΩ

λ
2/p
1

‖u‖.

Now, since
‖u‖−1 ≤ c3‖u‖τ ≤ c3c1‖u‖,

it follows that c1c3 = cΩ/λ
2/p
1 . �

Setting v = Su, equation (1) is equivalent to the fixed point equation

v = f
(
x, S−1v,∇S−1v,−v

)
+ g

(
x, S−1v,∇S−1v

)
, (5)

which will be solved in the Lebesgue space Lτ (Ω) with τ ≥ (p∗)′.
Define operators A,B : Lτ (Ω)→ Lτ (Ω) by

Av = f
(
·, S−1v,∇S−1v,−v

)
, Bv = g

(
·, S−1v,∇S−1v

)
.

Then equation (5) becomes the operator equation

v = A(v) +B(v).

Our idea is to use Theorem 1 to find the fixed point for the sum A + B
in W 1,p

0 (Ω). For this goal, we need to impose additional conditions on f
and g to guarantee that the two operators are well defined from Lτ (Ω) to
itself, and then, we will show that A is a contraction, and B is completely
continuous. We conclude, by establishing a priori bounds for the solutions
to the problem as required by Remark 1.
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2 Existence of Solutions

In this section, we present our main result. More precisely, under suitable
conditions, we prove the existence of a solution to problem (1) by applying
Theorem 1.

First, we give the following hypotheses on f and g.

(A1) There exist a, b, c ≥ 0 such that

|f(x, y, z, w)− f(x, y, z, w)| ≤ a|y − y|p−1 + b|z − z|p−1 + c|w − w|,
f(· , 0, 0, 0) ∈ Lp(Ω).

(A2) There exist constants a0, b0 ≥ 0, α ∈ [1, p∗/(p∗)′], β ∈ [1, p/(p∗)′], and
h ∈ Lp(Ω) such that

|g(x, y, z)| ≤ a0|y|α+b0|z|β+h(x) for any y ∈ R, z ∈ Rn and a.e. x ∈ Ω.

(A3) yg(x, y, z) ≤ σ|y|p for all y ∈ R, z ∈ Rn, a.e. x ∈ Ω, and some σ <
σ0λ1, 0 < σ0 < 1, where λ1 is the first eigenvalue of (−∆p,W

1,p
0 (Ω)).

(A4) `0 :=

(
a

λ
2/p
1

+
b

λ
(3−p)/p
1

)(
c1|Ω|

1
p
− 1
τ

)p−2

M1 + c, `1 :=
a

λ1

+
bcΩ

λ
(1)/p
1

+ c,

` = max{`0, `1} < 1, σ0 = 1− `.

We are now ready to state our main result.

Theorem 2 Let (p∗)′ ≤ τ ≤ p. Assume that assumptions (A1)–(A4) hold
true. Then (1) has at least one solution u ∈ W 1,p

0 (Ω) with ∆pu ∈ Lτ (Ω).

For the proof of this theorem, we need to establish the following three
lemmas.

Lemma 2 Suppose that (A1) and (A4) hold. Then A is a contraction on
Lτ (Ω), τ ∈ [1, p/(p− 1)], provided a and b are sufficiently small.

Proof. The Carathéodory conditions ensure that for every measurable func-
tion v ∈ Lτ (Ω), the function f (·, S−1v,∇S−1v,−v) is also measurable. Fur-
thermore,∥∥f (·, S−1v,∇S−1v,−v

)∥∥
τ

=
∥∥f (·, S−1v,∇S−1v,−v

)
− f(·, 0, 0, 0)

∥∥
τ

≤ a
∥∥|S−1v|p−1

∥∥
τ

+ b
∥∥|∇S−1v|p−1

∥∥
τ

+ c‖v‖τ (6)

But, using the inequalities

‖z‖τ(p−1) ≤ cτ‖z‖ for all z ∈ W 1,p
0 (Ω), (7)
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and
‖z‖τ(p−1) ≤ cp‖z‖p for all z ∈ Lp(Ω), (8)

where cτ and cp are the best constants for the embeddings W 1,p
0 (Ω) ↪→

Lτ(p−1)(Ω) and Lp(Ω) ↪→ Lτ(p−1)(Ω), respectively, we have for v ∈ Lτ (Ω),∥∥|S−1v|p−1
∥∥
τ
≤
∥∥|S−1v|

∥∥p−1

τ(p−1)
≤ cp−1

τ ‖S−1v‖p−1 = cp−1
τ ‖v‖−1

≤ cp−1
τ c3‖v‖τ <∞,

and, similarly, ∥∥|∇S−1v|p−1
∥∥
τ
≤ cp−1

p c3‖v‖τ <∞.
So, from (6) and the above inequalities, A is well defined from Lτ (Ω) to
itself.

Furthermore, we can use this last process to obtain

‖Av − Aw‖τ ≤ a
∥∥S−1v − S−1w

∥∥p−1

τ(p−1)
+ b
∥∥∇S−1v −∇S−1w

∥∥p−1

τ(p−1)

+ c‖v − w‖τ
≤ acp−1

τ M1c3‖v − w‖τ + bcp−1
p M1c3‖v − w‖τ + c‖v − w‖τ

≤
[
(acp−1

τ + bcp−1
p )M1c3 + c

]
‖v − w‖τ

=

[(
a

λ
2/p
1

+
b

λ
(3−p)/p
1

)(
c1|Ω|1/p−1/τ

)p−2
M1 + c

]
‖v − w‖τ .

It follows from hypothesis (A4), that A is a contraction. �

Lemma 3 Suppose that (A2) is satisfied. Then the operator B : Lτ (Ω) −→
Lτ (Ω) is well-defined and completely continuous for

τ = min {p∗/α, p/β} . (9)

Proof. It is easily checked that (9) implies (p∗)′ < τ ≤ p.
We define three operators

I2 : Lτ (Ω) −→ W−1,p′(Ω), I2(v) = v,

I1 : W−1,p′(Ω) −→ Lp
∗
(Ω)× Lp (Ω,Rn) , I1(v) =

(
S−1v,∇S−1v

)
,

Φ : Lp
∗
(Ω)× Lp (Ω;Rn) −→ Lτ (Ω), Φ(u, v) = g(·, u, v).

We observe that I2 is completely continuous, since Lτ (Ω) ↪→ W−1,p′(Ω)
is compact, and I1 is continuous and bounded, because ‖u‖−1 ≤ c3‖u‖τ .
Further, Φ is continuous and bounded for τ = min {p∗/α, p/β}. Indeed,

‖Φ(u, v)‖ττ ≤
∫

Ω

(
3 max

{
a0|u|α, b0|v|β, |h|

})τ
dx

≤ 3τ
(
aτ0‖u‖αατ + bτ0‖v‖

β
βτ + ‖h‖ττ

)
≤ c

(
‖u‖αp∗ + ‖v‖βp + ‖h‖ττ

)
.
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Since g is a Carathéodory function, by using Lebesgue’s dominated conver-
gence theorem, we obtain the continuity of Φ.

Thus, B = Φ ◦ I1 ◦ I2 : Lτ (Ω) −→ Lτ (Ω) is a completely continuous
operator. �

Lemma 4 Suppose that the hypotheses of Lemmas 2 and 3 are satisfied and,
in addition, g satisfies (A3). Then the set

F = {v ∈ Lτ (Ω) : v = Av + λBv, for some λ ∈]0, 1[}

is bounded in Lτ (Ω).

Proof. First, we will verify that the set of the solutions is bounded in
W−1,p′(Ω). Let v ∈ F . By Lemma 1, v ∈ W−1,p′(Ω), and we have

〈v, S−1v〉 = 〈Av, S−1v〉+ λ〈Bv, S−1v〉. (10)

Now, by the properties of the operator S−1, we have 〈v, S−1v〉 = ‖v‖p/(p−1)
−1 ,

and hence, using (A1) and (A3), we can write

‖v‖p/(p−1)
−1 =

∫
Ω

f
(
x, S−1v,∇S−1v,−v

)
S−1v dx

+

∫
Ω

g
(
x, S−1v,∇S−1v

)
S−1v dx

≤
∫

Ω

(
a|S−1v|p−1 + b|∇S−1v|p−1 + c|v|+ |f(x, 0, 0, 0)|

)
|S−1v| dx

+σ

∫
Ω

|S−1v|p dx

≤a‖S−1v‖pp + b‖∇S−1v‖p−1
p ‖S−1v‖p′ + ‖γ0‖p′‖S−1(v)‖p

+c

∫
Ω

|v||S−1v| dx+ σ‖S−1v‖pp

≤

(
a

λ1

+
bcΩ

λ
1/p
1

+
σ

λ1

)
‖S−1v‖p + c‖v‖−1‖S−1v‖+

‖γ0‖pcΩ

λ
1/p
1

‖S−1v‖

≤

(
a

λ1

+
bcΩ

λ
1/p
1

+ c+
σ

λ1

)
‖v‖p/(p−1)

−1 +
‖γ0‖pcΩ

λ
1/p
1

‖v‖1/(p−1)
−1 ,

where γ0(x) = |f(x, 0, 0, 0)|. Then, from hypothesis (A4),

‖v‖p/(p−1)
−1 ≤ ‖γ0‖pcΩ

λ
1/p
1

‖v‖1/(p−1)
−1 .

Therefore,
‖v‖−1 ≤ K1,
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where K1 = ‖γ0‖pcΩ/λ
1/p
1 .

Finally, we will prove that ‖v‖τ ≤ K for all v ∈ F and K > 0. As
ατ ≤ p∗ and βτ ≤ p, we get

‖B(v)‖ττ = ‖Φ(S−1v,∇S−1v)‖ττ ≤C0

(
‖S−1v‖αατ + ‖∇S−1v‖ββτ + ‖h‖ττ

)
≤C̃0

(
‖S−1v‖α + ‖ S−1v‖β + ‖h‖τ

)
=C̃0

(
‖v‖α/(p−1)

−1 + ‖ v‖β/(p−1)
−1 + ‖h‖τ/(p−1)

−1

)
.

Hence, for v ∈ F , we have

‖v‖τ ≤ ‖A(v)‖τ + λ‖B(v)‖τ ≤ l‖v‖τ + γ +K2,

where γ = ‖f(., 0, 0, 0)‖τ . This implies ‖v‖τ ≤ K2 +γ/(1− l), and the proof
of this lemma is complete. �

Proof of Theorem 2 It follows at once from Lemmas 2–4 and Theorem 1.
�

Finally, we would like to point out that the existence result for the im-
plicit elliptic problem

u ∈ W 1,p
0 (Ω), f(x, u,∇u,4pu) = 0,

obtained by Marino-Paratore [8] is a very special case of the result of this
work.

Remark 2 It seems to be interesting to study a similar result for the implicit
p-Kirchoff type problem

−M
(∫

Ω

|∇u|p dx
)
4pu = f(x, u,∇u,4pu) + g(x, u,∇u) in Ω,

u = 0 on Γ,

with M : [0,+∞)→ [m0,+∞), m0 > 0, being a continuous function.

We plan to address these questions in a future research.
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N0. B24141981 R.R. N0. 004305-R-24 and is part of the doctoral thesis
of the second author.



IMPLICIT ELLIPTIC PROBLEM WITH P-LAPLACIAN 9

References

[1] G. Bonanno and S. Marano, Elliptic problems in Rn with discontinuous
nonlinearities. Proc. Edinbungh Math. Soc., 43 (2000), no. 3, pp. 545–
558. https://doi.org/10.1017/S0013091500021180

[2] S. Carl and S. Heikkila, Discontinuous implicit elliptic boundary value
problems. Differential Integral Equations, 11 (1998), no. 6, pp. 823–834.
https://doi.org/10.57262/die/1367329478

[3] P. Cubiotti, Existence results for highly discontinuous implicit equa-
tions elliptic. Atti Accad. Peloritana Per. Cl. Sci. Fis. Mat. Natur., 100
(2022), no. 1, A5. https://doi.org/10.1478/AAPP.1001A5

[4] B. Dacorogna and P. Marcellini, Implicit partial differential equa-
tions. Progress in Nonlinear Differential Equations and their
Applications, 37, Birkhauser Boston Inc., Boston, MA, 1999.
https://doi.org/10.1007/978-1-4612-1562-2

[5] B. Dacorogna and Ch. Chiara Tanteri, Implicit partial differential
equations and the constraints of nonlinear elasticity. J. Math. Pures
Appl., 81 (2002), no. 4, pp. 311–341. https://doi.org/10.1016/s0021-
7824(01)01235-1

[6] H. Gao, Y. Li and B. Zhang, A fixed point theorem of Krasnoselskii–
Schaefer type and its applications in control and periodicity of integral
equations. Fixed Point Theory, 12 (2011), pp. 91–112.

[7] S. A. Marano, Implicit elliptic differential equations. Set-Valued Anal.,
2 (1994), pp. 545–558. https://doi.org/10.1007/BF01033071

[8] G. Marino and A. Paratore, Implicit equations involving the
p-Laplace operator. Mediterr. J. Math., 18 (2021), no. 74.
https://doi.org/10.1007/s00009-021-01713-9

[9] I. Peral, Multiplicity of solutions for the p-Laplacian. Second School of
Nonlinear Functional Analysis and Applications to Differential Equa-
tions, ICTP, Trieste, Italy, 1997.

[10] R. Precup, Implicit elliptic equations via Krasnoselskii–Schaefer type
theorems. Electron. J. Qual. Theory Differ. Equ., 87 (2020), pp. 1–9.
https://doi.org/10.14232/ejqtde.2020.1.87

Eugenio Cabanillas L.
Institute of Mathematics Research,
Faculty of Mathematical Sciences,

https://doi.org/10.1017/S0013091500021180
https://doi.org/10.57262/die/1367329478
https://doi.org/10.1478/AAPP.1001A5
https://doi.org/10.1007/978-1-4612-1562-2
https://doi.org/10.1016/s0021-7824(01)01235-1
https://doi.org/10.1016/s0021-7824(01)01235-1
https://doi.org/10.1007/BF01033071
https://doi.org/10.1007/s00009-021-01713-9
https://doi.org/10.14232/ejqtde.2020.1.87


10 E. CABANILLAS L. AND J. V. LUQUE

National University of San Marcos,
Av Venezuela s/n, Lima, Perú.
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