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A Type of Enestrom-Kakeya Theorem for
Quaternionic Polynomials Involving
Monotonicity with a Reversal

R. Gardner and M. Gladin

Abstract. The Enestrém-Kakeya theorem states that if P(z) =
> i—oaez’ is a polynomial of degree n with real coefficients sat-
isfying 0 < ap < a; < --- < ay, then all zeros of P lie in |z| <1
in the complex plane. Motivated by recent results concerning
an Enestrom-Kakeya “type” condition on the real and imagi-
nary parts of complex coefficients, we give similar results with
hypotheses concerning the real and imaginary parts of the co-
efficients of a quaternionic polynomial. We give bounds on the
moduli of quaternionic zeros of such polynomials.
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Introduction

The classical Enestrom-Kakeya theorem concerns the location of the complex
zeros of a real polynomial with nonnegative monotone coefficients. It was
independently proved by Gustav Enestrom in 1893 [4] and Soichi Kakeya in
1912 [9.

Theorem 1 (Enestrom-Kakeya) If P(z) = >, a2" is a polynomial
of degree n (where z is a complex variable) with real coefficients satisfying
0<ay<a; <---<ay,, then all the zeros of P lie in |z| < 1.

A corollary to the main theorem in [6] concerns monotonicity of the real

and imaginary parts of the coefficients of a polynomial. The monotonicity
condition involves a reversal, as follows.
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Theorem 2 Let P(z) =Y, _, a2’ be a polynomial of degree n with complex
coefficients where Re(ay) = oy and Im(ay) = py for £ = 0,1,...,n. Suppose
that g < ap < -~ <ap > 1 > - > ap and By < - < Br > Brgr >
-+« > B,. Then all the zeros of P lie in

min{|a0|/ (2<Oék; + Br) - (040 + 50) - (an + Bn — |an|)) ) 1} < |Z|
< max { (|ag| — (a0 + Bo) — (o + Bn) + 2(ax + 5;))/ |anl, 1}.

By combining more general monotonicity conditions of Aziz and Zargar
[1] and Shah et al. [16], the authors of this work recently proved the following
[5, Theorem 5.
Theorem 3 Let P(z) = Z asz’ be a polynomial of degree n with complex

=0

coefficients. Let oy = Re(ay) and By = Im(ay) for 0 < £ < n. Suppose that
for some positive numbers kg, ki, pr, pr, p, and q with kg > 1, kf > 1,
0<pr<1,0<p; <1, and 0 < q < p <mn, the coefficients satisfy

PROG < Qg1 < Qgra < - < g1 < kRay,

and
p1Bq < Bg+1 < B2 <0 < Bpo1 S ki

Then all the zeros of P lie in the closed annulus

min{l, \aol } < ‘C]| < ﬁj
M — lao| + |an| ||

where

M = |ao| + M, + (1 = pr)|oyg| — pray + (1 — p1)[ 5]
—prBqy + (kr — 1)|ap| + kray, + (kr — 1)|Bp| + k1Bp + Mp,

M, =3 lag — ap-1|, and M, = E?:pﬂ lag — ap_1].

The quaternions, H = {a + i +7j + 6k | a, 3,7,5 € R}, where i* =
j? = k? = ijk = —1, are the standard example of a noncommutative division
ring. The modulus of ¢ € H is |q| = y/a2 + 82+ 2 + 62. The absence of
commutivity leads to some surprising behavior of the zeros of a polynomial
of a quaternionic variable. For example, the second degree polynomial ¢+ 1
has set of zeros {8i+ vj + ok | 82 +7* + 6% = 1}.

The Enestrom-Kakeya theorem has been extended to polynomials of a
quaternionic variable as follows [2].

Theorem 4 If p(q) = > _"_,¢"a, is a polynomial of degree n (where q is a
quaternionic variable) with real coefficients satisfying 0 < ag < -+ < ap,
then all the zeros of p lie in |q] < 1.
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In addition, a number of related results have recently appeared [7, [10]
12, 11, 13, I7]. These involve various modifications of the monotonicity
assumption of the original version of Theorem

By giving results on the location of the quaternionic zeros of a polyno-
mial, we include all (finitely many) complex zeros and potentially infinitely
many more quaternionic zeros, as illustrated for polynomial ¢* + 1. The
purpose of this paper is to extend Theorem [3| to quaternionic polynomials
and, in the process, to introduce a reversal in the monotonicity condition on
the real and imaginary parts of the quaternionic coefficients.

1 The results

In this section, we formulate our main results.

Theorem 5 Let P(q) = Y.,_,q"as be a polynomial of degree n with quater-
nionic coefficients, that is, ay = oy + Byt + YeJ + dok, where for positive
T€al PR,y PRys Plys Plas Pvs Py PKy s PE, €ach less than or equal to 1 and for
kr,kr,ky, ki each at least 1, we have

PRy < Oy < oor S gy < kRoy > G 200 > PRy,

IN
v

pnbBr < Bria < Byo1 < kiBy = B > 1By,

P S Y1t S S SRS 2 g 200 2 DY

Pr Or < 0pgy <o <0y S kgdy > 0pg1 > 00 > PR,y
Then all the zeros of P(q) lie in

v

min < 1, 2] } <lq| < %7
M — lao| + |an| |an|
where
M = ao| + M, — pryar + |ou|(1 = pr,) + 2|ay|(kr — 1) + 2kray,

+lapl(1 = pr,) = PRy — 1 Br + [Be|(1 = pry) + 2[ By (k1 — 1)
+2k1By +18pl(1 = p1,) = prBp — P ¥ + 1| (1 = py)

+2| (ks = 1) + 2k + [%l(1 = pr) = P — Pry0r

+10:|(1 = pr,) + 2‘5n|(kK -1+ 2k 0, + 0p|(1 = pr,) — Prcy0p + My,

M, = ZZ=1 lae — ap—1], and M, = Z?=p+l lag — ag_1].

With PR, — P = P = PK1 — 1, ]{ZR = ]{Z[ = ]{ZJ = ]CK = 1, and
PRy = PI, = PJ, = Pk, = 1 in Theorem [5 we get the following corollary.
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Corollary 1 If P(q) = >_,_,d‘as is a polynomial of degree n with quater-
nionic coefficients, that is, ap = oy + Bet + YeJ + Ook, satisfying

O[rga'r—i-lS"'San—lSanzan—i—lZ"'ZQp;
Br < Prp1 < S Byt S By = By =0 = By
Vrg'yr—&-lS"'SVn—lS’YnZWT]—i—lZ"'Z’Yp,
5T‘§57‘+1S"'S(Snfl§6n26n+12"'26p7

then all the zeros of P(q) lie in

. |a0| M
min < 1, < lq| < —,
M — |ag| + |an] ||

where
M = |ao|+ M, —a,+20, — o, — Br+28,— Bp—Vr + 27y — Yp— 0p + 20, — 6+ M,
M, =37 lag — aga|, and My =37 lag — ag.

With r =1 and n = p = n, Corollary [I| reduces to the following.

Corollary 2 If P(q) = >, q‘ay is a polynomial of degree n with quater-
nionic coefficients, that is, ay = oy + Bt + yeJ + ook, satisfying

< < S S, B S fyn <o < Baer < B,

Y §7l+1 S S’Ynfl Sf)/n;(sl §6l+1 S Sénfl Séna
then all the zeros of P(q) lie in

min{l, o] } <|q| < ﬁ,
M — lao| + |an| ||

!
where M = |aop|+M;—a;+a,— B+ Bn—1+Yn—0+0, and M; = Z |ag—ap_1].
=1

Corollary [2| is a slight refinement of a result of Tripathi [I7, Theorem
3.1]. Corollary [2[ implies Theorem 9 of [2] when [ = 0.

In connection with Bernstein inequalities, Chan and Malik [3] (and, inde-
pendently, Qazi [15]) considered the class of polynomials of a complex vari-
able of the form P(z) = ap+Y_,_,, aez*. Inspired by this, the current authors
considered complex polynomials of the form P(z) = ag + Y F a2’ + a,2"
in connection to locations of zeros [5]. An additional result follows from
Corollary [1| by applying it to a quaternionic polynomial of the form P(q) =
ap + >.0_ q‘a; + q"a, (with the coefficients satisfying the hypotheses of
Corollary . This result gives the location of the zeros of P as stated in
Corollary I}, where M, = |ao| + |a,| and M, = |a,| + |ax].
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2 Proof of Theorem [5

We adopt the standard that polynomials have the indeterminate on the left
and the coefficients on the right, so that we have quaternionic polynomials
of the form Py(q) = >, ¢‘ar. With Py(q) = >_,%, ¢“be, we have the regular
product

(P, % Py)(q) = Z ¢ ab;.

i=0,1,...,n; j=0,1,....m

Zeros of regular products of quaternionic polynomials behave as follows
(see [14]).

Theorem 6 Let f and g be given quaternionic polynomials. Then (f *
9)(q0) = 0 if and only if f(qo) = 0 or f(qo) # 0 implies

9(f(90) " q0f(q0)) = 0.

Gentili and Struppa [8] introduced a Maximum Modulus theorem for
regular functions.

Theorem 7 Let B = B(0,r) be an open ball in H with center 0 and radius
r >0, and let f : B — H be a reqular function. If |f| has a relative
mazimum at a point a € B, then f is constant on B.

Now we give the proof of our main result.

Proof of Theorem [5] Define f(g) with the equation

Plg)«(1—q) = (ifw)*(l—(ﬁ

= flg) —q"an.

By Theorem[6, P(q) * (1 —¢) = 0 if and only if either P(q) = 0 or P(q) # 0
implies 1 — P(q)"'qP(q) = 0. Note that 1 — P(q)'qP(q) = 0 implies ¢ = 1.
Hence, the only zeros of P(q)*(1—gq) are ¢ = 1 and the zeros of P(q). Thus,
for |q| =1,

F(@)] = |ao+ > ¢ (a—ar1)| < laol + > lgllac — ar|
/=1 /=1

n p
:|a0|+2|a4—ag,1|:]ag|+Mr+ Z |ag—ag,1|+Mp
/=1 l=r+1
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p
<lao| + M, + Z (Jee = apa| + |Be = Be—1| + e — el
l=r+1

+ [0 = 0p-1]) + M,

< lao| + M, + |1 — prioe| + |pricr — Q| — Qg1 + @y

+ |y — kray| + [kray, — a1 | + |1 — kroy| + [kroy, — )|

+ app1 — 1+ |y — PR, |+ PRy — api| + Byt — pr Byl

+ o0 Br = Brl = Brar + By1 + By — kiByl + k18 — Byl

+ [Bpe1 = K18yl + [krBy — Byl + Bpar — Bo—1 + |8y — pr.5pl

+1p5Bp = Bo-tl + i1 = ol + o v = el = Y1 + 1

+ [ = kol + ko = =1l + s = Kol + ks — vl + v

= Yo-1+ % = Pl + P — Vo-1| + 10041 — iy 0| + PR, 6 — 0r|

— 01 + Oyt + [0 — ki dy| + |krSy — Op—1] + |0n1 — ki Oy

+ ‘kK(sn - 571’ + 577+1 - 5p71 + ’510 - Pszp’ + ’PKzfsp - 5p71| + Mp

= |ao| + M, — pr,ar + | |(1 = pr,) + 2|y |(kr — 1) + 2kRray,

+lap|(1 = pry) = PRy — 1, B + 18/ (1 = pr,) + 218yl (B — 1)

+2k1By + lap|(1 = pr.) = prBy — pa¥e + el (1= puy) + 2y l(ks — 1)

+ 2k + lapl (1 = p1) — PRy — PO +16:|(1 — picy)

+ 2|0, (kx — 1) + 2k 6y + |ay|(1 — pry) — prydp + M,

=M.

Note that ¢"f(1/q) has the same bound on |¢| = 1 as f(q). Thus, by

Theorem [7} for |¢| < 1, we have |¢"f(1/q)| < M, and hence, |f(1/q)| <

M/|q|". Replacing ¢ with 1/q we have |f(q)] < M]|qg|" for |q] > 1. Hence,
for |q| > 1,

|P(q)* (1—q)| = |f(q) — " an| > |¢" H|an| — | F(q)]
> |¢" M an] — Mlq|" = |q|"(ql|an| — M).

Thus, if |q| > M/|a,|, then P(q) * (1 — q) # 0. Therefore, all the zeros of
P(q) lie in |q| < M/|a,|, as claimed.

Next, consider S(q) = ¢" * P(1/q) = Z q" ‘ay, and let
=0
H(q) = S(q)* (1= q) = —aog™™" + Y ¢""(ams — ar) + an.
/=1
Then
H(@)] > | o] — { S lal™ars — afl + |an|}

(=1
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Thus,

|H (q

> g ool = { D16 aucs = e + ol lonl(1 = pn)
/=1

+lal" (s = priar) + g™ 1B (1 = pr) + g™ (Bra = p1a 5r)

+ la" el = o) + g™ (s — pnye) + la* 100 (1 = prey)
n—1

+ g (0r41 — pri6r) + Z (lg™ ™ lee—s — ae| + g™ | Ber — Bl
l=r+2

+ g™ et — el + g™ e — 5e|) + |g|" " (kpa, — an—1)

+ gl ey | (kg — 1) + g™ (ki By — By) + gl "B (K — 1)
g™ Ry = 1) F g™ T | (kg = 1) 4 " (kb — 6y1)
+ g0y (ki — 1) + [a" v |(kr — 1) + [a" " (kray — cy41)

+ lal" "Bl (kr = 1) + |q" ™" (krBy — By1) + g™ "yl (ks — 1)

+ la[" " (kv — 1) + a0l (ke — 1) + [q]* ™" (kx 6y — Gy1)

p—1

+ > (g™ fems — ael + lgl™ | Bemr = Bel + lal" ™ Pe—1 — el
l=n+2

+ g0 = 8l) + ™ P (s = procy) + gl P | (1 = pr,)
+ 1" P By = puBy) + 1" PIB (1 = o) 4 1al" T TP (1 = 20 )
g™ P (1 = i) + a1 PGy = pradp) g™ TPIG,| (1 = pr, )+

+ Z lg|" a1 — ad + ’an’}-

{=p+1

1= ol lllal = { 3l lae-1 = e + ol levl(1 = pa)
/=1

+ gl (a1 = pryow) + gl 7181 = pr) + lal ™" (Brsa — p1. Br)

+ |q|_T|’yT|(1 - le) + |Q|_T(7r+1 - le/yr) + |Q|_r|6r|(1 - pK1)
n—1

+ 117" (01 — P 60) + > (lal ™ leur — ol + gl Be-1 — Bl
l=r+2

+ gl ve—1 — el + g 01 — 5e|) + lg|" " (krov, — 1)
+la"ay| (kr = 1) + gl " (k1 By = By—1) + gl "Byl (k1 = 1)
gl (kv — 1) + lal "l (ks = 1) + gl " (ki 6y — 8y-1)
+ gl "0y (ke = 1) + lgl ™"yl (kg — 1) + lg| 7" (krovy — ayga)
+ a8yl (kr — 1) + || ™" (k1 By — Bysr) + lal ™"l (ks — 1)

+ a7 (kaym — Y1) + lal 700 (ke — 1) + |g| " (kx 0y — 0p41)
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p—1

- Z (lal" =1 — | + lal* | Be=1 = Bel + lal"“|ve=1 — el
l=n+2

+ g 1001 = 6el) + gl P (o1 — pro0) + g || (1 = pr,)
+1a" P (Bp-1 — p1.Bp) + lal" P18l (1 = pr) + lal" P (Vo1 — P )
+ g Pl (1 = pa) + gl P (0p-1 — probp) + lal' P10, (1 = prsy)
Y |q|1-€|ae_1—ae|+|an|/|q|”}}

l=p+1

For |q| > 1, and hence, 1/(|q|*™%) <1 for 0 < ¢ < n, we have

|H(q)| > |q|" [I(JH%I — {Mr + | |(1 = pry) — proce + 18- |(1 — pr,) — prlr

+ ‘%“‘(1 - pJ1) = Pnr + ‘51”’(1 - pK1) - pK157‘ + QkRan
+ 2|an|(kR - 1)+ 2k 8, + 2|577|(k51 -1)+ 2k vy + 2|7n|<kJ —1)

+ 2k oy + 2|0y (ke — 1) — proayp + |ap|(1 = pry) — prBp + [Bpl(1 — pr,)

= o+ l(L = ) = prcady 4+ 8,11 = prcy) + My + ‘“"‘H

= lal"(lqllao] — (M — lao| + [ax]))-

Note that [H(q)] > Jal" (gl aol — (M — [ao| + |an])) > 0'if |g] > (M — |ag| +
|an|)/]ao|. Thus, all the zeros of H(q) whose modulus is greater than 1 lie in
lg| < (M —ao| + |an])/|ao|. Hence, all the zeros of H(q) and thus, of S(q)
lie in |q| < max{1, (M — |ag| + |an|)/|ao|}. Therefore, all the zeros of P(q)
lie in |g| > min{1, |ag|/(M — |ao| + |ax]|), as claimed. O
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