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Abstract. This article is based on the construction proce-
dure of bivariate hyperbolic box spline functions. Generally, box
splines are considered as the multivariate generalizations of uni-
variate B-splines. Both B-splines and box splines are refinable
functions. Two different kinds of box splines like the polynomial
box splines and the trigonometric box splines along with their
usefulness are well studied in literature. However, another vari-
ant of box splines named as the class of hyperbolic box spline
functions, has not gained much attention. This article focuses
on the construction of bivariate hyperbolic box spline functions
from univariate hyperbolic B-spline functions through directional
convolution method. Also, the importance and usefulness of such
functions are discussed.
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Introduction

Computer-Aided Geometric Design (CAGD) focuses on the construction and
manipulation of geometric shapes. Describing a complex geometric shape
can be a daunting task, often requiring weeks or even months for artists
and designers to describe a single geometric shape. While various mathe-
matical tools are available to represent curves and surfaces, piecewise poly-
nomial functions act as the simplest and one of the most effective methods
in CAGD. Their ease of representation makes them a popular choice for
defining geometric shapes. Among the different types of piecewise polyno-
mial functions, the classes of spline functions hold a particularly significant
role. The term spline originally is referred to a flexible ruler used for draw-
ing curves, especially in the aircraft and shipbuilding industries. According
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to [17], the concept of splines dates back to the nineteenth century with the
work of Lobachevsky, who utilized convolution methods for spline construc-
tion. However, it was not until 1946 that the work of Schoenberg [26] marked
the advent of modern spline approximation theory. Over recent decades, ex-
tensive research into spline theories has flourished, driven by their crucial
applications in contemporary numerical mathematics.

Among the different types of splines [28], the two important classes of
spline functions, such as the polynomial and the trigonometric spline func-
tions have attracted the most attention, primarily due to their extensive
applications in numerical computations. This popularity stems largely from
the fact that polynomial splines utilize a basis of B-splines, which can be
computed both efficiently and accurately through methods such as recur-
rence relations and convolution. In recent past years, several new kinds of
splines and their basis functions have been designed for geometric model-
ing in CAGD. For instance, Schoenberg introduces trigonometric splines in
1964 [27]. In 1996, Zhang [29] introduces C-B splines by extending cu-
bic uniform B-splines. The following year, he further advanced this work
by presenting a new parameterized form of C-B splines and explaining
their variation-diminishing properties [30]. The authors of [23] designed
a new kind of uniform splines named trigonometric polynomial B-splines
over the space span{sin t, cos t, tk−3, tk−4, . . . , t, 1} where k is an arbitrary
integer greater than or equal to 3. Again, the same authors introduced an-
other kind of splines named hyperbolic polynomial B-splines over the space of
span{sinh t, cosh t, tk−3, tk−4, . . . , t, 1} where k is an arbitrary integer greater
than or equal to 3 [22]. The incorporation of hyperbolic functions allows for
exact representations of critical curves like the catenary and hyperbola and
simplifies the computation of derivatives and integrals. Hyperbolic splines
are widely used in data regression. For instance, HP-splines ( [1,2]) are use-
ful when the data has an exponential trend. They are particularly effective
in fitting exponential data with perfect accuracy, regardless of the parame-
ter values. The paper [3] outlines a methodology based on linear algebra for
selecting the frequency parameter of HP-splines within an exponential poly-
nomial space. Additionally, the authors in [4] introduce a natural smoothing
exponential-polynomial spline to model data that decays exponentially to-
wards zero. For further insights on hyperbolic splines, refer to [13], [10],
and [9], among other.

In contrast, box splines are piecewise polynomials that are locally sup-
ported on uniform grids, similar to B-splines but in multivariate contexts.
Out of many constructive ways, one straightforward method for construct-
ing box splines involves using the directional convolution of B-splines, which
grants them properties analogous to those of B-splines. It is a well-known
fact that using the directional convolution approach one can choose various
directions to have a box spline function with desired order of smoothness.



A CONSTRUCTIVE APPROACH TO BIVARIATE HYPERBOLIC BOX SPLINE FUNCTIONS 3

Among the various types of box splines, while the polynomial and the
trigonometric box splines have been extensively studied, the hyperbolic box
splines have not been as thoroughly explored, partly due to a lack of sys-
tematic analysis. This article aims to address this gap by describing a com-
prehensive theory for constructing and systematically analyzing a class of
hyperbolic box splines of various orders. Our work is motivated by previous
studies on hyperbolic polynomial B-splines in [22]. We use them to con-
struct hyperbolic box spline functions through the directional convolution
method [11,12,14].

The remainder of this article is organized as follows: Section 1 provides a
review of essential preliminaries necessary for understanding the main con-
tent. Section 2 describes the construction of hyperbolic box spline functions
of various orders. In Section 3, we explore fundamental properties of these
hyperbolic box spline functions. Section 4 presents a discussion of the re-
sults, and Section 5 concludes with a summary of the findings.

1 Basic Preliminaries

This section recalls some basic preliminaries.
First we give the definition of the convolution product of two func-

tions [15] and then we define the univariate cardinal B-splines [25] through
convolution.

Definition 1 Let f and g be two sufficiently smooth real functions. Then
their convolution product f ∗ g is defined by

(f ∗ g)(u) =

∫ ∞
−∞

f(u− t)g(t)dt, (1)

where ‘∗’ denotes the convolution product operator.

Definition 2 The cardinal B-spline function Bn : R→ R, n ∈ N, is defined
recursively by

Bn(x) = (Bn−1 ∗B1)(x) =

∫ 1

0

Bn−1(x− t) dt (2)

where

B1(x) := χ[0,1)(x) =

{
1, if 0 ≤ x < 1,

0, otherwise.
(3)

The repeated use of the convolution product along with the commuta-
tivity and associativity properties of convolution product of two functions
leads to the following result.
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Lemma 1 For any l ∈ N with l < n, we have

Bn = Bn−1 ∗B1 = . . . = B1 ∗B1 ∗ . . . ∗B1︸ ︷︷ ︸
n times

= Bl ∗Bn−l. (4)

The univariate cardinal B-splines can be used to define bivariate poly-
nomial box spline functions. Before defining them, we first introduce the
concept of a polygonal mesh.

A polygonal mesh or simply a mesh is a set of connected polygons. Gen-
erally, a mesh is a collection of polygonal faces that include vertices and
edges. If all the polygonal faces in a mesh are quadrilaterals, the mesh is
referred to as a two direction mesh or a quadrilateral mesh. On the other
hand, if all the polygonal faces are triangles, the mesh is called a three di-
rection mesh or a type-I triangular mesh. This triangulation is obtained by
drawing the north-east diagonals in the bi-infinity grid, where the grid lines
are positioned at integer values. A three direction mesh is associated with
the three directions: d1 := [1, 0]T , d2 := [0, 1]T and d3 := [1, 1]T whereas a
two direction mesh is only associated with d1 and d2 (see Figure 1).

(a)
(b)

Figure 1: (a) Two direction mesh. (b) Three direction mesh.

Definition 3 Let i, j ∈ N, k ∈ N0 := N ∪ {0} and Bn(x), n ∈ {i, j, k} be
the univariate cardinal B-splines. Then a bivariate box spline function on a
three direction mesh Bi,j,k(x, y) can be constructed as follows:

Bi,j,k(x, y) :=

∫
R

Bi(x− τ)Bj(y − τ)Bk(τ)dτ, (x, y) ∈ R2. (5)

Bivariate box spline functions defined on two direction meshes are re-
ferred to as tensor product box spline functions. While the tensor product
representation is highly efficient for computation, it struggles with complex
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shape modeling [24]. In contrast, three direction meshes offer greater flexi-
bility, making them better suited for adaptation to various topologies. Box
splines on three direction meshes can handle complex domains better than
their tensor product counterparts [24]. The focus of this paper is on bivariate
box splines defined on three-direction meshes.

Next, we recall some basic preliminaries on hyperbolic polynomial B-
splines.

Let the parameter axis-x be uniformly partitioned into a set of knots
xi = iλ (i = 0,±1,±2, . . .) with λ ≥ 0 as the interval length. By Ωn,λ,
we denote the set of all piecewise hyperbolic polynomial splines of order n
defined on [xi, xi+1], i = 0,±1,±2, . . ., in which for all i, each function is a
hyperbolic polynomial of order n on the interval [xi, xi+1] and (n− 2)-times
continuously differentiable at the knot xi. Being closed under the operations
of addition and scalar multiplication of functions, it is not very hard to
observe that Ωn,λ is a linear space. There does not exist any hyperbolic
polynomial B-spline basis over Ω2,λ (see [22], Theorem 1). However, for
n ≥ 3, there exists a set of basis functions defined over Ωn,λ which is called
as the hyperbolic polynomial B-spline basis functions over the space Ωn,λ.
For basis construction, first, we need to define a set of functions over Ω2,λ.
Let

H0,2(x;λ) =



λ sinhx

4 sinh2 (λ/2)
, 0 ≤ x ≤ λ,

λ sinh(2λ− x)

4 sinh2 (λ/2)
, λ ≤ x ≤ 2λ,

0, elsewhere,

(6)

and

Hi,2(x;λ) = H0,2(x− iλ;λ), i = 0,±1,±2, . . . (7)

Then for n ≥ 3,

H0,n(x;λ) =
1

λ

∫ x

x−λ
H0,n−1(t;λ)dt, (8)

and

Hi,n(x;λ) = H0,n(x− iλ;λ), i = 0,±1,±2, . . . (9)

The right hand side of (8) is, in fact, (1/λ)-times the convolution product
of H0,n−1 and H0,1 where

H0,1(x;λ) =

{
1, 0 ≤ x ≤ λ,

0, elsewhere.
(10)
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Figure 2: The graphs of (a) H0,3
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The hyperbolic B-spline functions for order 3− 6 are given in Figure 2.

Let us describe some basic properties of this new class of hyperbolic
polynomial B-splines of order n. Most of them directly follow from the
definition.

Theorem 1 For n ≥ 3, we have

(i) Non-negativity: Hi,n(x;λ) ≥ 0, x ∈ (−∞,∞).

(ii) Local support: Hi,n(x;λ)

{
> 0, x ∈ (iλ, (i+ n)λ),

= 0, elsewhere.

This means, the local support of Hi,n(x;λ) is n intervals. This is why
we say it is of order n.

(iii) Linear independence: Hi,n(x;λ),Hi+1,n(x;λ), . . . ,Hi+l,n(x;λ) (l ≥ n)
are linear independent on interval [(i+ n− 1)λ, (i+ l + 1)λ].

(iv) Partition of unity: λ−1
∑
i

Hi,n(x;λ) ≡ 1.

(v) Continuity: Hi,n(x;λ) is (n − 2)-times differentiable on the whole pa-
rameter space.

(vi) Differentiation: H′i,n(x;λ) = λ−1 (Hi,n−1(x;λ)−Hi+1,n−1(x;λ)) .

(vii) Symmetry: Hi,n((i+ n)λ− x;λ) = Hi,n(x+ iλ;λ), x ∈ [0, nλ].

Proof. All the basic properties hold true for H0,3(x;λ), and it is also evident
in the graph of H0,3(x;λ). Again, for n > 4, the properties (i)-(vi) are



A CONSTRUCTIVE APPROACH TO BIVARIATE HYPERBOLIC BOX SPLINE FUNCTIONS 7

apparent since they are obtained by direct integration of H0,3(x;λ). Further,

H′i,n(x;λ) =
d

dx

(
1

λ

∫ x

x−λ
Hi,n−1(t;λ)dt

)
=

1

λ

(
Hi,n−1(x;λ)−Hi,n−1(x− λ;λ)

)
.

But by following the definition 9 in the right hand side of the above equation,
Hi,n−1(x− λ;λ) is equal with Hi+1,n−1(x;λ), and this proves (vi).

The equation (9) implies Hi,n(iλ+x;λ) = H0,n(x;λ), x ∈ [0, nλ]. Hence,
to prove (vii), we only need to show that

H0,n(nλ− x;λ) = H0,n(x;λ). (11)

Equation (11) is truly satisfied for H0,3(x;λ). For n = 4, we can write

H0,4(4λ− x;λ) =
1

λ

∫ 4λ−x

4λ−x−λ
H0,3(t;λ)dt

=
1

λ

∫ 4λ−x

3λ−x
H0,3(3λ− t;λ)dt

=
1

λ

∫ x

x−λ
H0,3(y;λ)dy

=H0,4(x;λ).

Now, suppose the property holds for n = l − 1. Then for n = l,

H0,l(x;λ) =
1

λ

∫ x

x−λ
H0,l−1(t;λ)dt

=
1

λ

∫ x

x−λ
H0,l−1((l − 1)λ− t;λ)dt

=
1

λ

∫ x+λ

x

H0,l−1(lλ− y;λ)dy

=H0,l(lλ− x;λ).

Therefore, by method of induction, property (vii) is true for all l. This
completes the proof. �

Thus, the new class of hyperbolic algebraic B-spline functions, i.e., Hi,n(x;λ),
i = 0,±1,±2, . . ., constitute a set of bases in Ωn,λ (n ≥ 3).

2 Construction of hyperbolic box spline func-

tions

In this section, we construct a family of hyperbolic box spline functions
using the directional convolution method. Let us recall the definition of the
directional convolution method [11].
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Definition 4 Let F : R2 → R and g : R → R be two refinable functions,
bivariate and univariate, respectively. The convolution product between F
and g along the direction d ∈ Z2 is defined as

T(x) := (F ∗d g)(x) :=

∫
R

F(x− dτ)g(τ)dτ, x ∈ R2. (12)

The bivariate function F can also be taken as the tensor product of two
univariate functions.

In analogy with the Definition 4, we can consider the tensor product of
H0,i and H0,j as the bivariate function F and H0,k as the univariate function
g, respectively, for the construction of the hyperbolic box spline functions
as follows.

Definition 5 Let H0,n(x;λ), n ∈ {i, j, k}, be the univariate hyperbolic B-
splines where i, j, k ≥ 3. Then a hyperbolic box spline function, Hi,j,k(x, y;λ),
(x, y) ∈ R2, can be constructed as follows:

Hi,j,k(x, y;λ) :=
1

λ

∫
R

H0,i(x− τλ;λ)H0,j(y − τλ;λ)H0,k(τλ;λ)dτ. (13)

The hyperbolic box spline Hi,j,k is associated with three directions λd1,
λd2 and λd3 each repeated i-times, j-times and k-times, respectively, with
i, j and k being all greater than or equal to 3. Hence, the direction matrix
Ξµ for Hi,j,k is given by

Ξµ := λ[d1, . . . ,d1︸ ︷︷ ︸
i

,d2, . . . ,d2︸ ︷︷ ︸
j

,d3, . . . ,d3︸ ︷︷ ︸
k

], (14)

with µ := i + j + k being the total number of entries in Ξµ. Generally, it
is known that a box spline does not depend on the ordering of the direc-
tion vector elements contained in its direction matrix. Thus, the rearrange-
ment of the entries in (14) expresses Ξµ as a sequence of direction vector
elements with three or more identical entries, i.e., Ξµ := λ[e1, e2, . . . , eµ],
el ∈ {d1,d2,d3} and l = 1, 2, . . . , µ.

Theorem 2 The hyperbolic box spline functions Hi,j,k, i, j, k ≥ 3, depend
on their corresponding direction matrices.

Proof. Let Ξµ be the direction matrix associated with the hyperbolic box
spline functions Hi,j,k. The hyperbolic box spline Hi+1,j,k can be computed
from Hi,j,k by integrating Hi,j,k in the direction λd1. Similarly, the hy-
perbolic box splines Hi,j+1,k and Hi,j,k+1, respectively, can be derived from
Hi,j,k by integrating Hi,j,k in the directions λd2 and λd3. Then for Hi+1,j,k
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the direction matrix will be Ξµ ∪ {λd1}. Similarly, the direction matrices
Ξµ ∪ {λd2} and Ξµ ∪ {λd3} will be for Hi,j+1,k and Hi,j,k+1, respectively.

Thus, the addition of any of the above direction vectors to Ξµ results in
a new direction matrix upon which the newly formed hyperbolic box spline
depends. �

To avoid the notational ambiguity, we denote HΞµ by the box spline
Hi,j,k associated with Ξµ. Later if any arbitrary direction vector λeµ+1 :=
λ[e1µ+1, e

2
µ+1]

T , eµ+1 ∈ {d1,d2,d3}, is added to Ξµ, the resulting new direc-
tion matrix is denoted by Ξµ+1, and the corresponding hyperbolic box spline
is denoted by HΞµ+1 . With this notation, the following definition serves as
an equivalent representation of formula (13).

Definition 6 Let Ξµ = λ[e1, e2, . . . , eµ] be the direction matrix associated
with the hyperbolic box spline HΞµ, with e1 and e2 being linearly independent.
Let the direction matrix Ξµ+1 be obtained by including the direction vector
λeµ+1 = λ[e1µ+1, e

2
µ+1]

T , eµ+1 ∈ {d1,d2,d3} to Ξµ. Then the corresponding
hyperbolic box spline HΞµ+1 is obtained by

HΞµ+1(x, y;λ) :=
1

λ

∫ λ

0

HΞµ(x− τe1µ+1, y − τe2µ+1;λ)dτ. (15)

Remark 1 Note that formula (15) is applicable only when all i, j, k ≥ 3.
That means, if we have H3,3,3 in our hand, we can derive all other higher
order trigonometric box splines by using (15). Thus, the reader should
remember that, first, one has to follow the equation (13) to find out H3,3,3.
This is because H3,3,3 is our starting hyperbolic box spline function.

In view of (13), for all (x, y) ∈ R2,

H3,3,3(x, y;λ) :=
1

λ

∫
R

H0,3(x− τλ;λ)H0,3(y − τλ;λ)H0,3(τλ;λ)dτ. (16)

where the explicit expression for H0,3(x;λ) in (16) is given by

H0,3(x;λ) =



coshx− 1

4 sinh2 (λ/2)
, 0 ≤ x ≤ λ,

− cosh (2λ− x)− cosh (λ− x) + 2 coshλ

4 sinh2 (λ/2)
, λ ≤ x ≤ 2λ,

cosh (3λ− x)− 1

4 sinh2 (λ/2)
, 2λ ≤ x ≤ 3λ,

0, elsewhere.

(17)
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H3,3,3 involves three directions λd1, λd2 and λd3 each with multiplicity 3.
Hence, its direction matrix is given by λ[d1,d1,d1,d2,d2,d2,d3,d3,d3]. The
following properties hold true for H3,3,3.

Theorem 3 Let H3,3,3 be defined as in (16). Then

P1. The support of H3,3,3 is {λ(t1 + t3, t2 + t3) : 0 ≤ tj ≤ 3, 1 ≤ j ≤ 3}.
P2. H3,3,3 is non-negative in its support.

P3. H3,3,3 is symmetric about (3λ, 3λ) which is the center of its support.

Proof. Following the definition of H3,3,3 in (16) and properties of H0,3,
the integrand in (16) is non-zero when (x − τλ, y − τλ) ∈ [0, 3λ]2 with
τλ ∈ (0, 3λ). This implies the conditions:

0 ≤ x− τλ ≤ 3λ and 0 ≤ y − τλ ≤ 3λ with τλ ∈ (0, 3λ).

Let x− τλ = t1λ, y− τλ = t2λ, and τλ = t3λ. Then the support of H3,3,3 is
given by (x, y) = λ(t1 + t3, t2 + t3) where 0 ≤ tj ≤ 3 for 1 ≤ j ≤ 3. This is
illustrated in Figure 3(a) confirming that H3,3,3 has compact support. This
proves the property P1.

Next, the property P2 is obvious, as H3,3,3 is constructed by convolution
of H0,3(x;λ), which is non-negative on its support [0, 3λ].

Finally, the property P3 can be proved by showing that H3,3,3 is sym-
metric with respect to the lines y = x and y = 6λ − x. It is easy to verify
H3,3,3 is symmetric about the line y = x, since interchanging the variables
x and y in (16) results in the same expression. Similarly, the symmetry of
H3,3,3 about the line y = 6λ−x follows directly from the definition of H3,3,3

and the symmetric property of H0,3. �

The graphical representation of H3,3,3 is shown in Figure 3(b).

3 Properties

We will now examine some fundamental properties of this new class of hy-
perbolic box splines. Many of these properties and their proofs are straight-
forward and closely resemble those of polynomial box splines. Additionally,
we will investigate the basic properties of various hyperbolic box splines by
focusing on the foundational case of H3,3,3. This is because higher-order
hyperbolic box splines are derived from the integration of H3,3,3.

Let us introduce two notions to define the support of the hyperbolic box
splines:

[Ξµ] := {λ(t1e1 + t2e2 + . . .+ tµeµ) : 0 ≤ tj ≤ 1, 1 ≤ j ≤ µ} (18)

and

(Ξµ) := {λ(t1e1 + t2e2 + . . .+ tµeµ) : 0 < tj < 1, 1 ≤ j ≤ µ}. (19)



A CONSTRUCTIVE APPROACH TO BIVARIATE HYPERBOLIC BOX SPLINE FUNCTIONS 11

(0,0)

(a)

(3λ,0)

(3λ,6λ)

(0,3λ) (3λ,3λ)

(6λ,6λ)

(6λ,3λ)

5

4

3

2

1

00
1

2
3

4
5

0.25

0

0.15

0.2

0.1

0.05

(b)

Figure 3: (a) The shaded portion is the support of the H3,3,3(x, y;λ). (b)
The hyperbolic box spline H3,3,3(x, y;λ) where λ = 0.4.

Theorem 4 Let HΞµ and HΞµ+1 be the trigonometric box splines associated
with Ξµ and Ξµ+1, respectively, for all l,m, n ≥ 3. Then

(i) Local support: HΞµ+1(x, y;λ) ≡ 0 for (x, y) /∈ [Ξµ+1].

(ii) Non-negativity: HΞµ+1(x, y;λ) > 0 for (x, y) ∈ (Ξµ+1).

(iii) Ordering: HΞµ does not depend on the ordering of the directions con-
tained in Ξµ, provided that the first two vectors e1 and e2 are linearly
independent.

(iv) Symmetric: HΞµ is symmetric with respect to the center of its support.

Proof. From the definition of HΞµ(x, y;λ) and also from Figure 3, it is easy
to see that (i) and (ii) both hold for µ = 9. Let us assume that they both
hold for µ = m, where m ≥ 9. Then by following the induction hypothesis
we need to show that they both hold for µ = m + 1. Let (x, y) /∈ [Ξµ+1].
Then (x − τe1µ+1, y − τe2µ+1) /∈ [Ξµ] for all τ ∈ [0, 1]. But this leads to the
integrand in (15) to be zero. Hence, (i) is proved.

Next, to prove (ii), take (x, y) ∈ (Ξµ+1). Then (x− τe1µ+1, y − τe2µ+1) ∈
(Ξµ) for some τ ∈ (0, 1). We can find an interval [a, b] with 0 ≤ a < τ <
b ≤ 1 such that (x− ξe1µ+1, y− ξe2µ+1) ∈ (Ξµ) for all ξ ∈ [a, b]. But then the
integrand in (15) is positive for ξ ∈ [a, b].

The properties (iii) and (iv) are trivial. �

Next theorem establishes linear independence of box splines.

Theorem 5 The translates of the hyperbolic box spline HΞµ(x, y;λ) are lo-
cally linear independent.

Proof. For all (x, y) ∈ R2, consider the equation∑
(p,q)∈Z2

αp,qHΞµ(x− pλ, y − qλ;λ)

=
∑

(p,q)∈Z2

αp,qHi,j,k(x− pλ, y − qλ;λ) = 0. (20)
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We need to show that αp,q = 0 for all (p, q) ∈ Z2. By definition of Hi,j,k,
equation (20) implies

1

λ

∑
(p,q)∈Z2

αp,q

∫
R

H0,i(x− τλ− pλ;λ)H0,j(y − τλ− qλ;λ)H0,k(τλ;λ)dτ = 0,

which becomes

1

λ

∫ l

0

∑
p

∑
q

αp,qH0,i(x− τλ− pλ;λ)H0,j(y − τλ− qλ;λ)H0,k(τλ;λ)dτ = 0,

where l = max{i, j, k}. Let us take x− τλ− pλ = s. Then τλ = x− s− pλ,
and dτ = −λ−1 ds. The change in variable in the above equation leads to

1

λ2

∫ x−pλ

x−(p+l)λ

(∑
p

∑
q

αp,qH0,i(s;λ)H0,j(y + pλ+ s− x− qλ;λ)

H0,k(x− s− pλ;λ)

)
ds = 0. (21)

This is a known fact that for any function f(t), if
∑x−b

x−a f(t)dt = 0 for any
x ∈ R then f(x− b)− f(x− a) = 0 which leads to f(x) = 0 for all x. Using
this argument in (21), we get∑
p

∑
q

αp,qH0,i(s;λ)H0,j(y + pλ+ s− x− qλ;λ)H0,k(x− s− pλ;λ)ds = 0.

Since the set {H0,k(x− s− pλ;λ), p ∈ Z} is linear independent, we get∑
q

αp,qH0,j(y + pλ+ s− x− qλ;λ) = 0 for all p ∈ Z.

Again, by the same reason, αp,q = 0 for all (p, q) ∈ Z2. Hence, the theorem
is proved. �

Theorem 6 If e1 and e2 are linearly independent and eµ+1 = [e1µ+1, e
2
µ+1]

T ,
then

Deµ+1HΞµ+1(x, y;λ) =
1

λ

(
HΞµ(x, y;λ)−HΞµ(x− λe1µ+1, y − λe2µ+1;λ)

)
.
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Proof. By (15), we have

HΞµ+1(x, y;λ) :=
1

λ

∫ λ

0

HΞµ(x− τe1µ+1, y − τe2µ+1;λ)dτ

=
1

λ

∫ ∞
0

HΞµ(x− τe1µ+1, y − τe2µ+1;λ)dτ

− 1

λ

∫ ∞
λ

HΞµ(x− τe1µ+1, y − τe2µ+1;λ)dτ

=
1

λ

∫ ∞
0

(
HΞµ(x− τe1µ+1, y − τe2µ+1;λ)

−HΞµ(x− (τ + λ)e1µ+1, y − (τ + λ)e2µ+1;λ)
)
dτ

=
1

λ

∫ ∞
0

F(x− τeµ+1)dτ,

where F(x) = F(x, y) = HΞµ(x, y;λ)−HΞµ(x−λe1µ+1, y−λe2µ+1;λ). Let us
take ε > 0. Then

1

ε

(
HΞµ+1(x− εe1µ+1, y − εe2µ+1;λ)−HΞµ+1(x, y;λ)

)
=

1

λ

∫ ∞
0

F(x− (τ − ε)e1µ+1, y − (τ − ε)e2µ+1)− F(x− τe1µ+1, y − τe2µ+1)

ε
dτ.

We then make the change of variables τ ↔ τ − ε in the first term in the
numerator to obtain

=
1

λ

(∫ ∞
−ε

F(x− τe1µ+1, y − τe2µ+1)

ε
dτ −

∫ ∞
0

F(x− τe1µ+1, y − τe2µ+1)

ε
dτ

)
=

1

λ

∫ 0

−ε

F(x− τe1µ+1, y − τe2µ+1)

ε
dτ.

Now, taking limit as ε→ 0+, we get

Deµ+1HΞµ+1(x, y;λ) =
1

λ
F(x, y)

=
1

λ

(
HΞµ(x, y;λ)−HΞµ(x− λe1µ+1, y − λe2µ+1;λ)

)
at all points of continuity. �

4 Result Discussion

In the previous sections, we constructed hyperbolic box spline functions and
also studied their properties. It is worthwhile to note an important fact that
the classes of spline functions are related to subdivision schemes [5,16,20,21,
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31]. Subdivision schemes are generally iterative algorithms which consist of
simple refinement rules to produce finer and finer meshes starting from an
initial unrefined mesh. The connection between the splines and subdivision
is established on the basis of a remarkable property of B-splines and box
splines, i.e., they obey a refinement equation (also called a dilation equation
or two scale equation). In the context of subdivision schemes, the dilation
matrix is a matrix used to refine a set of points or control polygons in order
to create smoother curve or surfaces. It indicates how to expand the original
data points to create new data points in the next iteration of the subdivision
method. The formal definition of a refinable function [7] is provided below.

Definition 7 Let M be an s × s dilation matrix with integer entries, and
l0(Z) denotes the subspace of real valued sequences defined on Z. Let also F
be a finitely supported real valued s-variate function on Rs. If F satisfies

F(x) =
∑
j∈Zs

cj F(Mx− j), x ∈ Rs, (22)

then it is said to be a refinable function with respect to the dilation matrix M.
The set of real coefficients {cj} associated with F is called the refinement
mask and, equation (22) is called a refinement equation.

Following the above definition, for the refinability of bivariate polynomial
box splines, s is set to be 2, and the dilation matrix M is chosen to be 2I2
(identity matrix of order 2), which is described below.

Proposition 1 Let Bi,j,k be a bivariate box spline. Then Bi,j,k obeys a re-
finement equation

Bi,j,k(x, y) =
∑

(m,n)∈Z2

cm,n Bi,j,k(2x−m, 2y − n), (x, y) ∈ R2, (23)

where the set of real coefficients {cm,n|(m,n) ∈ Z2} is the refinement mask.

The proof of this property can be found in [7].
It is important to mention here that the refinement mask {cm,n|(m,n) ∈

Z2} can be considered as the subdivision mask to develop a subdivision
scheme. This subdivision scheme generates the corresponding box spline
surfaces when implemented on an initial mesh. In the same way, we can
study the two scale equations of the proposed hyperbolic box spline func-
tions in this paper and further derive the associated subdivision schemes.
Subdivision schemes are of two types, for e.g., stationary subdivision scheme
(refinement masks are level independent) [5,16] and non-stationary subdivi-
sion scheme (refinement masks are level independent) [20,31]. The inability
of stationary subdivision schemes to reconstruct spirals, conic sections, etc.,
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is a well-known deficiency which motivates the search for non-stationary
subdivision schemes with the specific properties. In general, polynomial box
spline surfaces are generated from stationary subdivision schemes. For ex-
ample, the surfaces generated by Loop scheme [21] and the C 2g0 scheme [6]
produce C2-quartic and C4 box spline surfaces, respectively, in regular re-
gions. However, trigonometric box spline surfaces are generated from non-
stationary subdivision schemes [18,19]. Similarly, an effective bivariate non-
stationary subdivision scheme can be derived from the two-scale relationship
of the Fourier transform of a particular hyperbolic box spline function pro-
posed here. The idea of anticipating a non-stationary subdivision scheme
from the proposed hyperbolic box splines is quite similar to the trigonomet-
ric box spline case and is also due to the presence of the real parameter λ
in the definition. The non-stationary subdivision scheme will be capable of
producing hyperbolic box spline surfaces in regular regions of a triangular
mesh.

Since box splines are a well-known class of refinable functions, they pro-
vide a foundation for constructing various types of wavelets and frames, as
demonstrated in [8]. With the proper definition of hyperbolic box spline
functions now established, we can extend these constructions to include
wavelets and frames based on hyperbolic box splines.

5 Conclusion

In this article, we have mainly constructed a class of hyperbolic box spline
functions and analyzed their properties. For this we took help of hyperbolic
algebraic B-splines defined in [22] and followed the directional convolution
method. We also discussed some important properties of the proposed hy-
perbolic box spline functions and most of the properties are quite similar
with the properties of polynomial or trigonometric box splines. The study
of refinability equation of the proposed box splines and derivation of suitable
non-stationary subdivision schemes are two immediate future aspects of this
work. In conclusion, hyperbolic box spline functions represent a significant
advancement in the study of spline theory and its applications providing a
versatile tool for various mathematical and computational tasks.

Acknowledgements. The author thanks the anonymous reviewers for
their constructive remarks and useful suggestions for the improvement of
this article.
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