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Abstract. We define Lie and Courant algebroids on Fréchet
manifolds. Moreover, we construct a Dirac structure on the gen-
eralized tangent bundle of a Fréchet manifold and show that it
inherits a Fréchet Lie algebroid structure. We show that the Lie
algebroid cohomology of the B-cotangent bundle Lie algebroid
of a weakly symplectic Fréchet manifold M is the Lichnerowicz-
Poisson cohomology of M .
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1 Introduction

In recent years Poisson geometry has been extended to the Banach manifolds
context. In particular, the concept of Lie algebroid was generalized to the
category of Banach vector bundles in [1, 11]. Lie algebroids were also defined
on Projective limits of Banach Manifolds [4]. Dirac structures on Banach
manifolds were studied in [2, 12]. The assertion that the Lie algebroid coho-
mology of the cotangent bundle Lie algebroid of a finite dimensional Poisson
manifold M is the Lichnerowicz-Poisson cohomology of M was generalized
to the Banach manifolds case in [7].

Our goal in this paper is to extend to Fréchet manifolds some of the
aforementioned results. Fréchet manifolds arise in number of problems that
have significance in global analysis and physical field theory. However, due to
permanent problems with Fréchet spaces (i.e., problems of intrinsic nature)
in most cases Fréchet manifolds are handled by indirect methods or only
certain type of Fréchet manifolds are considered (see [6] for a survey on
recent developments in Fréchet geometry). One of the main issues in the
theory of Fréchet spaces is that the dual of a proper Fréchet space (not
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Banachable) is never a Fréchet space. In addition, the space of continuous
linear mappings of one Fréchet space to another is not a Fréchet space in
general. This defect puts in question the way of defining cotangent bundle.
In fact, as pointed out in [9], if M is a manifold modelled on a Fréchet space
F , then in general there is no vector topology on the dual of F that can
lead to a smooth manifold structure on the set-theoretic cotangent bundle
of M . But the cotangent bundle of a Poisson manifold is a special case of
Lie algebroid and vital to the Cartan calculus of differential forms. A way
out of this difficulty was observed in [13], where a notion of the B-cotangent
bundle of a manifold modelled on a locally convex space was introduced
and the Cartan calculus of differential forms was successfully adapted to the
category of manifolds modelled on locally convex spaces.

By means of this notion we define Lie and Courant algebroids on Fréchet
manifolds. Furthermore, we construct a Dirac structure as a subbundle of
the generalized tangent bundle TM 1

B ` TM of a Fréchet manifold M and
show that it inherits a Lie algebroid structure from the Courant bracket. We
show that a weak symplectic form of a Fréchet manifoldM determines the so-
called Lichnerowicz-Poisson cohomology of M and the Chevalley-Eilenberg
cohomology of its B-cotangent bundle Lie algebroid which are exactly the
same.

We should mention that another approach to the geometry of Fréchet
cotangent bundle is the use of the convenient setting which provides two
different notions of cotangent bundles (kinematic and operational). We can
attempt to use convenient calculus to develop Poisson geometry for Fréchet
manifolds, but in this paper we consider only Micheal-Bastiani differentia-
bility which is more familiar and applicable for people working in Fréchet
spaces. It turns out by using the notion of B-cotangent bundle most of the
assertions and constructions are much the same as those of Banach manifolds
case.

2 Preliminaries: Poisson Fréchet Manifolds

In this section, following [13], we define Poisson structures on Fréchet man-
ifolds. We will apply the notion of differentiability in the Micheal-Bastiani
sense. We will be working in the category of smooth manifolds and bundles.

Definition 1 Let E and F be Fréchet spaces, U � E open and f : U Ñ F
a continuous map. The derivative of f at x P U in the direction of h P E is
defined as

d fpxqphq� lim
tÑ0

1

t
pfpx� htq � fpxqq

whenever the limit exits. The map f is called differentiable at x if d fpxqphq
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exists for all h P E. It is called a C1-map if it is differentiable at all points
of U and

d f : U � E Ñ F, px, hq ÞÑ d fpxqphq

is a continuous map. Higher directional derivatives and Ck-maps, k ¥ 2,
are defined in the obvious inductive fashion.

Within this framework Fréchet manifolds, Fréchet vector bundles (especially
tangent bundles) and Ck-maps between Fréchet manifolds are defined in the
obvious way (cf. [9]). However, for a manifold M modelled on a Fréchet
space F we can define the set-theoretic cotangent bundle T 1M (without any
topology on the fiber), but in general there is no vector topology on F 1, the
dual of F , that can lead to the identification T 1M � F �F 1, see [9, Remark
I.3.9]. Thus, we follow [13] and use the notion of the B-cotangent bundle
instead. In this definition to put a manifold structure on T 1M , the dual of
F is equipped by a B-topology, where B is a bornology on F . To be precise,
we recall that a family B of bounded subsets of F that covers F is called a
bornology on F if it is directed upwards by inclusion and if for every B P B
and r P R there is a C P B such that r �B � C.

Let E be a Fréchet space, B a bornology on E and LBpE,F q the space
of all linear continuous maps from E to F . The B-topology on LBpE,F q
is a Hausdorff locally convex topology defined by all seminorms Pn

BpLq �
suptpnpLpeqq | e P Bu, where B P B and tpnunPN is a family of semi-
norms defining the topology of F . One similarly may define LkBpE,F q and�kLBpE,Rq, the space of k-linear jointly continuous maps from Ek to F
and the space of anti-symmetric k-linear jointly continuous maps from Ek

to R, respectively. If B contains all compact sets, then the B-topology on
the space LBpE,Rq � E 1

B of all continuous linear functionals on E, the dual
of E, is the topology of compact convergence.

If B contains all compact sets of E, then we define the differentiability
of class Ck

B : Let U � E be open, a map f : U Ñ F is called C1
B if its partial

derivatives exist and the induced map d f : U Ñ LBpE,F q is continuous.
Similarly we can define maps of class Ck

B, k P N Y t8u, see [8, Definition
2.5.0]. A map f : U Ñ F is Ck

B , k ¯ 1, if and only if f is Ck in the sense of
Definition (1), see [8, Theorem 2.7.0 and Corollary 1.0.4 (2)]. In particular,
f is C8

B if and only if f is C8. Thus, if f at x P E is Ck and hence Ck
B, then

the derivative of f at x, d fpxq, is an element of E 1
B.

Assume that B is a bornology on F containing all compact sets and
M is a Fréchet manifold modelled on F . Let f be a functional defined
over M . The derivative of f at x P M can be written in terms of the
iterated tangent bundles of M and we can consider d f : TM Ñ F given by
d fpx, hq � d fpxqphq upon locally identifying TM with U � F , where U is
an open set in F . Therefore, if at x PM a map f : M Ñ R is Ck and hence
Ck

B, then d fpxq belongs to LBpTxM,Rq � pTxMq1B.
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Definition 2 Let M be a Fréchet manifold modelled on a Fréchet space
F and B a bornology on F . The B-cotangent bundle of M is defined as
TM 1

B �
�
xPMpTxMq1B and the k-exterior product of the B-cotangent bundle

as
�kTM 1

B �
�
xPM

�kpTxMq1B.

If B is chosen such that T pBq � B for all continuous linear endomorphisms
T on F , then

�kTM 1
B is a vector bundle in the category of locally convex

spaces with the local model F �
�kF 1

B. In particular, TM 1
B is a vector

bundle in the category of locally convex spaces with the local model F �F 1
B,

see [13, Remark (1), p. 339]. Therefore, in the sequel we always assume that
bornologies have the mentioned property and contain all compact sets.

Let M be a manifold modelled on a Fréchet space F and B a bornology
on F . A smooth differentiable k-form of type B is a smooth section of the
bundle

�kTM 1
B. We can also define a smooth differential k-form in the weak

sense (which is usually used in the literature) as a section of the set-theoretic
k-exterior bundle

�kTM 1, cf. [9]. A section ω of
�kTM 1

B ÑM is a smooth
differential k-form of type B if and only if ω is a smooth differential k-form
in the weak sense [13, Proposition IV.6]. Thus, in the sequel we call smooth
differential forms of type B simply smooth differential forms. We always
assume that differential forms are smooth without mentioning it and write
ωx instead of ωpxq for x PM .

We denote by XpMq the space of all vector fields on M . The Lie bracket
rX, Y s of X, Y P XpMq is again vector field and pXpMq, r�, �sq is a Lie al-
gebra [9, Proposition II.3.7]. We further obtain for each X P XpMq and a
k-form ω on M a unique linear smooth map pıXωqx � ıXpxqωx, where x PM
and v, v1, � � � , vk�1 P TxM and pıvωxqpv1, � � � , vk�1q � ωxpv, v1, � � � , vk�1q,
see [13, Lemma IV.7]. Let ω be a k-form on M . Then ddR ω, the de Rham
derivative of ω, on vector fields X0, � � � , Xk P XpMq is a smooth pk � 1q-
form [13, Lemma IV.8] and is given by

pddR ωqpX0, � � � , Xkq �
i�ķ

i�0

p�1qiXipωpX0, � � � , X̂i, � � � , Xkqq�

¸
0®i j®k

p�1qpi�jqωprXi, Xjs, X0, � � � , X̂i, � � � , X̂j, � � � , Xkq, (1)

where a hat over symbols means omission. We now define the Lie derivative
LX of a differential form in the direction of a vector field X by the Cartan
formula:

LX � ddR � ıX � ıX � ddR . (2)

Definition 3 A Fréchet manifold M is called weakly symplectic if for a
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closed smooth 2-form ω on M the linear continuous map

ω# : TxM ÝÑ pTxMq1b
vx ÞÑ ωxpvx, �q � ıvxωx

is injective for all x P M . Here, pTxMq1b is the strong dual of the tangent
space.

Definition 4 A vector field Xf on a weakly symplectic Fréchet manifold
pM,ωq is called the symplectic gradient vector field of a smooth real valued
function f P C8pMq if d f � �ωpXf , �q � ω#p�Xf q. Let f, g P C8pMq
be such that Xf and Xg exist. For f and g, the Poisson structure tf, gu is
defined by

tf, gu� ωpXf , Xgq. (3)

It is R-linear, anti-symmetric and satisfies Jacobi identity, if all involved
symplectic gradient vector fields exist. We say that a pair tM, t�, �uu is a
Fréchet Poisson manifold.

Remark 1 A Weak Poisson structure on a manifold modelled on a locally
convex space can be defined without any need for a notion of cotangent bun-
dle, see [10]. However, it is crucial to our purposes to have a subtle notion of
cotangent bundle in order to define generalized tangent bundles, Lie algebroid
structures and the LP-cohomology of a cotangent bundle.

3 Fréchet Lie Algebroids

Let M be a manifold modelled on a Fréchet space F and let π : LÑM be
a Fréchet vector bundle over M with fibers of type F. We denote by ΓpLq
the space of all smooth sections of the vector bundle L. The spaces ΓpLq
and XpMq are both C8pMq-modules.

Definition 5 A Lie algebroid L over M is a vector bundle π : L Ñ M
together with a bracket r�, �sL on the space ΓpLq and a bundle map λL : LÑ
TL, called anchor, such that

1. The induced map λL : pΓpLq, r�, �sLq Ñ pXpMq, r�, �sq given by pλLpsqqpxq
� λLpspxqq, x PM , s P ΓpLq is a Lie algebra homomorphism,

2. rs1, fs2sL � f rs1, s2sL � λLps1qpfqs2 for every f P C8pMq and s1, s2 P
ΓpLq.

The tangent bundle TM is trivially a Fréchet Lie algebroid for the usual
Lie bracket of vector fields on M and the identity map of TM as an anchor
map.
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Definition 6 A Courant algebroid is a vector bundle π : C Ñ M together
with an anchor λC, a nondegenerate symmetric bilinear form Θ and a bracket
r�, �sC on ΓpCq such that for all s1, s2, s3 P ΓpCq and f P C8pMq

1. rs1, rs2, s3sCsC � rrs1, s2sC, s3sC � rs2, rs1, s3sCsC,

2. λCps1qΘps2, s3q � Θprs1, s2sC, s3q �Θrs2, rs1, s3sCsC,

3. rs1, s2sC�rs2, s1sC � ∆pΘps1, s2qq, where ∆ : C8pMq Ñ ΓpCq is defined
by Θp∆pfq, sq � λCpsqf .

The B-cotangent bundle TM 1
B of M is a vector bundle in the category of lo-

cally convex spaces with the local model F�F 1
B, therefore, the Whitney sum

TM ` TM 1
B makes sense. We denote by TM � TM ` TM 1

B the generalized
tangent bundle of M . Let X, Y P XpMq and α, β P

�1TM 1
B. Now define the

bracket rX, Y sTM � prX, Y s,LXβ � pıY � ddR αqq and the anchor λTM given
by λTMpX,αq � X. If we define ∆TMppX,αq, pY, βqq � αpY q � βpXq, then
we can easily verify that for pTM, rX, Y sTM , λTMq the conditions (1)-(2) of
the Definition 5 are fulfilled, therefore, TM is a Courant algebroid. The
orthogonal complement LK of the subbundle L � TM is defined as follows

LK � tpX,αq P TM : ∆TMppX,αq, pY, βqq � 0, @pY, βq P TMu .

Definition 7 A vector subbundle D of the Courant algebroid TM that co-
incides with its orthogonal complement DK with respect to ∆TM is said to be
an almost Dirac structure. It is called a Dirac structure if, in addition, is
closed under the bracket r�, �sTM.

Define the Courant bracket on ΓpTMq by

JpX,αq, pY, βqK �
�
rX, Y s,LXβ � LY α �

1

2
ddRpαpY q � βpXqq



.

We can easily show that the restriction of J�, �K to ΓpDq yields a Lie bracket
and if we let Pr : DÑ TM be the restriction of the projection to TM , then
pD, J�, �KD,Prq is a Fréchet Lie algebroid.

4 Fréchet Lie Algebroids Cohomology

Let pM,ωq be a weakly symplectic Fréchet manifold. We denote by XkpMq
and ΩkpMq the spaces of all k-vector fields and k-differential forms on M ,
respectively. Define a morphism

#ω : Ω1pMq Ñ X1pMq; βp#ωpαqq � ωpα, βq, @α, β P Ω1pMq. (4)
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The weak symplectic form ω induces a unique Lie bracket of 1-forms given
by

tα, βu � L#ωpαqβ � L#ωpβqα � ddR ωpα, βq. (5)

In general the existence of the Lie bracket is equivalent to the existence of the
weak symplectic form ω, the proof is the same as the finite dimensional case,
see [3]. Define the contravariant exterior differential σ : XkpMq Ñ Xk�1pMq
for X P XkpMq by

pσXqpα0, � � � , αkq �
i�ķ

i�0

p�1qi#ωpαiqpXpα0, � � � , α̂i, � � � , αkqq�

�
¸

0®i j®k

p�1qpi�jqXptαi, αju, α0, � � � , α̂i, � � � , α̂j, � � � , αkq,

(6)

where α0 � � � , αk P ΩpMq and a hat over symbols means omission. Formally,
the expression (6) is exactly the same as the de Rham derivative of forms
and hence its algebraic consequences will be the same, in particular

(i) σ2 � 0,

(ii) σpX1 ^X2q � σpX1q ^X2 � p�1qdegX1X1 ^ σpX2q,

(iii) σprX1, X2sq � �rσpX1q, X2s � p�1qdegX1rX1, σpX2qs,

where Xipi � 1, 2q are k-vector fields on M and degXi is the degree of Xi.
Therefore, ΩpMq � `kPNYt0upΩ

kMq with the coboundary operator σ is a
cochain complex and we can define the Lichnerowicz-Poisson cohomology of
M .

Definition 8 ΩpMq with the coboundary operator σ is called the Lichnero-
wicz-Poisson cochain of M , and

Hk
LP pM,ωq�

ker
�
XkpMq

σ
ÝÝÑ Xk�1pMq

	

im
�
Xk�1pMq

σ
ÝÝÑ XkpMq

	 (7)

are Lichnerowicz-Poisson cohomology or LP-cohomology spaces of M .

The following LP-cohomology spaces can be computed directly by Defini-
tion 8.

Let ZtC8pMq,t,uu � tf P C8pMq : @g P C8pMq, Xgf � 0u and let X1
SpMq

be the space of symplectic gradient vector fields Xf , f P C8pMq. Let
X1
ωpMq� tX P XpMq : LXω � 0u. We then have

(i) H0
LP pM,ωq � ZtC8pMq,t,uu, since σf � �Xf .



84 K. EFTEKHARINASAB

(ii) H1
LP pM,ωq �

X1
ωpMq

X1
SpMq

.

Now we define the Chevally-Eilenberg cohomology [5] associated to Fréchet
Lie algebroids. Let pL, λL, r�, �sEq be a Fréchet Lie algebroid over a Fréchet
manifold M . Let C8pMq act on ΓpLq by ps, fq ÞÑ λLpsqf . A k-linear
anti-symmetric mapping `k : ΓpLqk Ñ C8pMq is called a C8pMq-valued
k-cochain. Let Ck pΓpLq;C8pMqq be the vector space of these cochains.
Define the operator dL by

pdL `kqps0, � � � , skq �
i�ķ

i�0

p�1qiλLpsiqp`kps0, � � � , ŝi, � � � , skqq�

�
¸

0®i j®k

p�1qpi�jq`kprsi, sjsL, s0, � � � , ŝi, � � � , ŝj, � � � , skq,

for a k-cochain `k and s0, � � � , sk P ΓpLq. Like the case of the De Rham
derivative of forms we obtain dL � dL � 0. Therefore, Ck pΓpLq;C8pMqq
with dL forms a Chevalley-Eilenberg cochain and the corresponding coho-
mology spaces

HkpCk pΓpLq;C8pMqqq�
ker
�

ΓpLqk
dLÝÝÑ ΓpLqk�1

	

im
�

ΓpLqk�1 dLÝÝÑ ΓpLqk
	 ,

are called the Lie algebroid cohomology of ΓpLq with coefficient in C8pMq.
For the tangent bundle Lie algebroid TM of M , the Lie algebroid cohomol-
ogy is just the De Rham cohomology of M .

Theorem 1 The Lie algebroid cohomology of the B-cotangent bundle Lie
algebroid is the Lichnerowicz-Poisson cohomology of M .

Proof. On any weakly symplectic Fréchet manifold pM,ωq the bracket
t�, �u of 1-forms (5) defines a Lie algebroid structure on the B-cotangent
bundle TM 1

B with the anchor #ω : TM 1
B Ñ TM given by βp#ωpαqq �

ωpβ, αq; α, β P TM 1
B. In this case, eventually the operator dpTM 1

Bq
coincides

with the contravariant exterior differential (6) and so the cohomologies co-
incide �
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