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Abstract. In this article, we propose an extension and gener-
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Introduction

The inequality

sinx

x
<

2 + cos x

3
, x ∈

(
0,
π

2

)
, (1)

was discovered by the German philosopher and theologian Nicolaus de Cusa
(1401–1464) by using a certain geometric construction (see [11, 15]). A rig-
orous proof of the Cusa inequality was given by Huygens [11] in 1664 while
considering the estimation of π. Hence, the inequality (1) is known in the
literature as the Cusa-Huygens inequality. This key inequality has been
considered by many researchers for various purposes. We refer the reader
to [1–9,12–14,16–19,21–28] for the extensions, refinements, generalizations,
and applications of this inequality. In particular, in 2019, Bercu [5] obtained
the following refinement:

sinx

x
<

2 + cos x

3
− 1

45
(1− cosx)2, x ∈

(
0,
π

2

)
. (2)

We call this kind of inequality (2) a Cusa-Huygens type inequality.
In 2021, Bagul et al. [1] proved the following result: for x ∈ (0, π/2),

2 + cos x

3
−
(

2

3
− 2

π

)
φ1(x) <

sinx

x
<

2 + cos x

3
−
(

2

3
− 2

π

)
φ2(x), (3)
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where

φ1(x) =
x− sinx

π/2− 1
, φ2(x) = (sin x− x cosx)2.

The graphical and numerical study shows that the upper bound of (sin x)/x
in (2) is sharper than that in (3) for (0, λ), where λ ≈ 1.332.

The main focus of our study is to show that the inequality (2) is indeed
true in (0, 2π) by giving another proof. We also extend it to another side in
order to refine both the inequalities (2) and (3).

Section 1 presents the main theorems of the article, together with direct
graphical illustrations. To prove these theorems, some series expansions
involving Bernoulli numbers are needed. These are recalled in Section 2.
The detailed proofs are given in Section 3. Finally, an application to an
arctangent inequality is examined in Section 4.

1 Main theorems

Our main results are as stated in the below theorems.

Theorem 1 Let us define

f(x) = − 1

(1− cosx)2

(
2 + cos x

3
− sinx

x

)
, x ∈ (0, 2π).

Then the function −f(x) is absolutely monotonic increasing on (0, 2π). Con-
sequently, for x ∈ (0, θ) ⊆ (0, 2π) and a positive integer n, the double in-
equality

(1− cosx)2
n∑
k=0

akx
2k <

2 + cos x

3
− sinx

x
< (1− cosx)2

n∑
k=0

a∗kx
2k, (4)

where

ak =
8

3

(k + 1)(k + 2)(2k + 3)

(2k + 4)!
|B2k+4|,

a∗k = ak for 0 ≤ k ≤ n− 1, and

a∗n = θ−2n

[
1

(1− cosx)2

(
2 + cos θ

3
− sin θ

θ

)
−

n−1∑
k=0

akθ
2k

]
holds. Two special cases are highlighted below.

1. For x ∈ (0, π/2), we have

2 + cos x

3
+

(
2

π
− 2

3

)
(1− cosx)2 <

sinx

x

<
2 + cos x

3
− 1

45
(1− cosx)2. (5)
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2. For x ∈ (0, π), we have

2 + cos x

3
− 1

12
(1− cosx)2 <

sinx

x
<

2 + cos x

3
− 1

45
(1− cosx)2. (6)

In order to visually capture the sharpness of the particular inequalities in
Theorem 1, Figure 1 shows the curves of the following difference functions:

g(x) =
sinx

x
− 2 + cos x

3
+

1

12
(1− cosx)2, x ∈ (0, π)

and

h(x) =
sinx

x
− 2 + cos x

3
+

1

45
(1− cosx)2, x ∈ (0, π).
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Figure 1: Graphs of g(x) (left) and h(x) (right) for x ∈ (0, π)

It is visually clear that g(x) > 0 and h(x) < 0, with a particular sharpness
for x ∈ (0, x∗), where x∗ ≈ 1.5.

From Figure 2, we illustrate the inequality (x− sinx)/(π/2− 1) > (1−
cosx)2, x ∈ (0, π/2), by considering the following difference function:

i(x) =
x− sinx

π/2− 1
− (1− cosx)2, x ∈ (0, π/2).

It is immediate that i(x) > 0 for x ∈ (0, π/2). This implies that the
lower bound of (sinx)/x in (5) is sharper than that in (3).

Furthermore, we obtain sharper bounds for (sin x)/x by putting n =
1, 2, 3, · · · in (4). For instance, after putting n = 1, and θ = π/2 and π in
(4), we get respectively the following inequalities:

2 + cos x

3
−
[

1

45
+

4

π2

(
29

45
− 2

π

)
x2
]

(1− cosx)2 <
sinx

x

<
2 + cos x

3
−
(

1

45
+

1

378
x2
)

(1− cosx)2, x ∈ (0, π/2)
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Figure 2: Graphs of i(x) for x ∈ (0, π/2)

and

2 + cos x

3
−
[

1

45
+

1

π2

(
1

12
− 1

45

)
x2
]

(1− cosx)2 <
sinx

x

<
2 + cos x

3
−
(

1

45
+

1

378
x2
)

(1− cosx)2, x ∈ (0, 2π).

The above inequalities are clear refinements of the inequalities (2), (3), (5)
and (6).

In the next theorem, we give two complementary results.

Theorem 2 For x ∈ (0, θ) ⊆ (0, 2π), the double inequality

(1− ξ) + ξ cosx− (1− cosx)2

45
<

sinx

x
<

2 + cos x

3
− (1− cosx)2

45
,

where

ξ =
1

cos θ − 1

[
sin θ

θ
+

(1− cos θ)2

45
− 1

]
holds. Two special cases are highlighted below.

1. For x ∈ (0, π/2), we have(
1

45
+

2

π

)
+

(
44

45
− 2

π

)
cosx− 1

45
(1− cosx)2

<
sinx

x
<

2 + cos x

3
− 1

45
(1− cosx)2.
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2. For x ∈ (0, π), we have

49

90
+

41

90
cosx− 1

45
(1− cosx)2

<
sinx

x
<

2 + cos x

3
− 1

45
(1− cosx)2.

In order to visually capture the sharpness of the inequalities in Theorem
2, and the lower bounds in particular since they are the main novelties,
Figure 3 displays the curves of the following difference functions:

m(x) =
sinx

x
−
(

1

45
+

2

π

)
−
(

44

45
− 2

π

)
cosx+

1

45
(1− cosx)2, x ∈ (0, π/2)

and

n(x) =
sinx

x
− 49

90
− 41

90
cosx+

1

45
(1− cosx)2, x ∈ (0, π).
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Figure 3: Plots of m(x) for x ∈ (0, π/2) (left) and n(x) for x ∈ (0, π) (right)

It is visually clear that m(x) > 0 for x ∈ (0, π/2), and n(x) < 0 for
x ∈ (0, π). A great precision is observed for the curve of m(x), with a
maximum of 0.0033, which illustrates the great sharpness of our theoretical
developments.

2 Preliminaries

We plan to use some series expansions recalled in the lemma below.
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Lemma 1 For t ∈ (−π, π), we have

1

sin2 t
=

1

t2
+
∞∑
n=1

(2n− 1) · 22n

(2n)!
|B2n|t2n−2, (7)

(
1

sin2 t

)′
= − 2

t3
+
∞∑
n=2

(2n− 1)(2n− 2) · 22n

(2n)!
|B2n|t2n−3, (8)

(
1

sin2 t

)′′
=

6

t4
+
∞∑
n=2

(2n− 1)(2n− 2)(2n− 3) · 22n

(2n)!
|B2n|t2n−4 (9)

and(
1

sin2 t

)′′′
= −24

t5
+
∞∑
n=2

(2n− 1)(2n− 2)(2n− 3)(2n− 4) · 22n

(2n)!
|B2n|t2n−5.

(10)

Proof. The following series expansion can be found in [10, 1.411 (7)]:

cot t =
1

t
−
∞∑
n=1

22n

(2n)!
|B2n|t2n−1, (11)

where B2n are even indexed Bernoulli numbers. On differentiating (11)
successively, we get the required series (7), (8), (9) and (10). �

3 Proofs of results

This section is devoted to the proofs of our results.

Proof of Theorem 1 Due to half-angle formulas, setting t = x/2 ∈ (0, π),
we have

−f(x) =
3− 2 sin2(x/2)

12 sin4(x/2)
− 2 sin(x/2) cos(x/2)

4x sin4(x/2)

=
1

4 sin4 t
− 1

6 sin2 t
− 1

4t

cos t

sin3 t

=
1

24

(
1

sin2 t

)′′
+

1

8t

(
1

sin2 t

)′
.
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Using (8) and (9), we get

−f(x) =
1

24

∞∑
n=2

(2n− 1)(2n− 2)(2n− 3) · 22n

(2n)!
|B2n|t2n−4

+
1

8

∞∑
n=2

(2n− 1)(2n− 2) · 22n

(2n)!
|B2n|t2n−4

=
1

6

∞∑
n=2

n(n− 1)(2n− 1) · 22n

(2n)!
|B2n|t2n−4

=
8

3

∞∑
n=2

n(n− 1)(2n− 1)

(2n)!
|B2n|x2n−4.

This shows that −f(x) is absolutely monotonically increasing on (0, 2π), and
the double inequality (4) follows. The inequalities (5) and (6) follow due to
the limits

lim
x→0+

f(x) = − 1

45
, lim

x→π/2−
f(x) =

2

π
− 2

3
, lim

x→π−
f(x) = − 1

12
.

This ends the proof of Theorem 1. �

Proof of Theorem 2 For x ∈ (0, 2π), let us set

g(x) =
1

cosx− 1

[
sinx

x
+

(1− cosx)2

45
− 1

]
.

Setting t = x/2 ∈ (0, π), the half-angle formulas yield

g(x) = − 1

2 sin2 t

[
sin t cos t

t
+

4 sin4 t

45
− 1

]
=

1

2
· φ(t),

where

φ(t) =
1

sin2 t
− 4

45
sin2 t− cot t

t
.

After a differentiation work, we obtain

φ′(t) =
1

2

[
−2 cos t

sin3 t
− 8

45
sin t · cos t+

1

t sin2 t
+

cot t

t2

]
=

1

2
sin2 t · ψ(t),

where

ψ(t) = −2 cos t

sin5 t
− 8

45
cot t+

1

t sin4 t
+

cos t

t2 sin3 t

=
1

12

(
1

sin2 t

)′′′
+

1

3

(
1

sin2 t

)′
− 8

45
cot t+

1

6t

(
1

sin2 t

)′′
+

2

3t

1

sin2 t

− 2

t2

(
1

sin2 t

)′
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Based on series expansions (7), (8), (9) and (10), we can express ψ(t) in the
following manner:

ψ(t) = − 2

t5
+
∞∑
n=2

(2n− 1)(2n− 2)(2n− 3)(2n− 4) · 22n

12 · (2n)!
|B2n|t2n−5

− 8

45

[
1

t
−
∞∑
n=1

22n

(2n)!
|B2n|t2n−1

]

+
1

6t

[
6

t4
+
∞∑
n=2

(2n− 1)(2n− 2)(2n− 3) · 22n

(2n)!
|B2n|t2n−4

]

+
2

3t

[
1

t2
+
∞∑
n=1

(2n− 1) · 22n

(2n)!
|B2n|t2n−2

]
+

1

t5

−
∞∑
n=2

(2n− 1)(2n− 2) · 22n

2 · (2n)!
|B2n|t2n−5

=
∞∑
n=2

n(2n− 1)(2n− 2)(2n− 5) · 22n

6 · (2n)!
|B2n|t2n−5

− 8

45t
+
∞∑
n=3

8

45

22n−4

(2n− 4)!
|B2n−4|t2n−5

+
2

3t3
+
∞∑
n=2

(2n− 3) · 22n−1

3 · (2n− 2)!
|B2n−2|t2n−5

=
2

t3
+
∞∑
n=3

n(2n− 1)(2n− 2)(2n− 5) · 22n−1

3 · (2n)!
|B2n|t2n−5

+
∞∑
n=3

22n−1

45 · (2n− 4)!
|B2n−4|t2n−5 +

∞∑
n=3

(2n− 3) · 22n−1

3 · (2n− 2)!
|B2n−2|t2n−5 > 0.

As a result, we have φ′(t) > 0 for t ∈ (0, π). Therefore, φ(t), and hence g(x),
is absolutely monotonically increasing. The desired inequalities follow due
to the limits

lim
x→0+

g(x) =
1

3
, lim

x→π/2−
g(x) =

44

45
− 2

π
, lim

x→π−
g(x) =

41

90
.

This ends the proof of Theorem 2. �

4 An application

The famous Shafer inequality, established in [20], can be formulated as fol-
lows:

3

1 + 2
√
t2 + 1

<
arctan t

t
, t > 0.
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It was recently improved by Bercu [5] as

45
√
t2 + 1

17
√
t2 + 1 + 29t2 + 28

<
arctan t

t
, t > 0, (12)

using the inequality (2). Here, by taking x = tan t, ∈ (0, π/2), in the left
inequality of (5), we obtain the following extension of (12):

arctan t

t
<

3π
√
t2 + 1

6t2 + (5π − 12)
√
t2 + 1− (2π − 12)

, t > 0.

The sharpness of this inequality is illustrated in Figure 4, with the consid-
eration of the following difference function:

p(t) =
arctan t

t
− 3π

√
t2 + 1

6t2 + (5π − 12)
√
t2 + 1− (2π − 12)

.

We take x ∈ (0, 15), the value of 15 being arbitrary, any other “large” value
can be selected.

0 5 10 15
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8e

−
04
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−
04

0e
+

00

t
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Figure 4: Plots of p(t) for t ∈ (0, 15)

As expected, we see that p(t) < 0 for t > 0. To the best of our knowl-
edge, this sharp inequality is new in the literature and opens some direction
for research on the bounds of arctangent-type functions.

Acknowledgements. The authors are grateful to the anonymous referee
for his/her careful reading of the manuscript and thorough comments that
helped to improve the article.
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