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Applications for Selfadjoint Operators

M.W. Alomari
Irbid National University

Abstract. In this paper, some Čebyšev–Lupaş type inequal-
ities are proved. New inequalities of Grüss type for Riemann–
Stieltjes integral are also obtained. Applications for functions of
selfadjoint operators on complex Hilbert spaces are provided as
well.
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1 Introduction

In recent years the approximation problem of the Riemann–Stieltjes integral∫ b
a
f(t)du(t) via the famous Čebyšev functional

T (f, g) =
1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt. (1)

increasingly became essential. In 1882, Čebyšev [12] derived an interesting
result involving two absolutely continuous functions whose first derivatives
are continuous and bounded, and is given by

|T (f, g)| ≤ 1

12
(b− a)2 ‖f ′‖∞ ‖g

′‖∞ , (2)

and the constant 1
12

is the best possible.
In 1935, Grüss [32] proved another result for two integrable mappings

f, g such that φ ≤ f(x) ≤ Φ and γ ≤ f(x) ≤ Γ, the inequality

|T (f, g)| ≤ 1

4
(Φ− φ) (Γ− γ) (3)

holds, and the constant 1
4

is the best possible.
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In [11] Beesack et al. have proved the following Čebyšev inequality for
absolutely continuous functions whose first derivatives belong to Lp spaces
(see also [34]):

|T (f, g)| ≤ b− a
4

(
2p − 1

p (p+ 1)

)1
p
(

2q − 1

q (q + 1)

)1
q

‖f ′‖p ‖g
′‖q , (4)

where ‖h‖p :=
(∫ b

a
|h (t)|p dt

)1/p

, ∀p > 1 and 1
p

+ 1
q

= 1.

For the constant

ω (p, q) :=
1

4

(
2p − 1

p (p+ 1)

)1/p(
2q − 1

q (q + 1)

)1/q

we have

1

8
≤ ω (p, q) ≤ 1

4

for all q = p
p−1

, p > 1. Furthermore, we have the following particular cases

in (4).

1. If p = q = 2, we have

|T (f, g)| ≤ b− a
8
‖f ′‖2 ‖g

′‖2 . (5)

2. If q −→∞, we have

|T (f, g)| ≤ b− a
4
‖f ′‖1 ‖g

′‖∞ . (6)

In 1970, A.M. Ostrowski [35] has proved the following combination of
the Čebyšev and Grüss results

|T (f, g)| ≤ 1

8
(b− a) (M −m) ‖g′‖∞ . (7)

where, g is absolutely continuous with g′ ∈ L∞[a, b] and f is Lebesgue
integrable on [a, b] and satisfying m ≤ f(t) ≤ M , for all t ∈ [a, b]. The
constant 1

8
is the best possible.

In 1973, Laupş has improved Beesack et al. inequality (5), as follows:

|T (f, g)| ≤ (b− a)

π2
‖f ′‖2 ‖g

′‖2 , (8)

provided that f, g are two absolutely continuous functions on [a, b] with
f ′, g′ ∈ L2[a, b]. The constant 1

π2 is the best possible.
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In 2012, Dragomir [16] used the identity ([34], p. 246),

T (f, g) =
1

b− a

∫ b

a

[
f (t)− f (a) + f (b)

2

]
·

·
[
g (t)− 1

b− a

∫ b

a

g (s) ds

]
dt, (9)

and has proved the following inequality:

Theorem 1 Let f : [a, b] → C be of bounded variation on [a, b] and g :
[a, b]→ C a Lebesgue integrable function on [a, b], then

|T (f, g)| ≤ 1

2

b∨
a

(f) · 1

b− a

∫ b

a

∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s) ds

∣∣∣∣ dt (10)

where,
∨b
a (f) denotes the total variation of f on the interval [a, b]. The

constant 1
2

is best possible in (10).

Another result when both functions are of bounded variation, was considered
in the same paper [16], as follows:

Theorem 2 If f, g : [a, b]→ C are of bounded variation on [a, b], then

|T (f, g)| ≤ 1

4

b∨
a

(f) ·
b∨
a

(g) (11)

The constant 1
4

is best possible in (11).

After that many authors have studied the functional (1) and therefore,
several bounds under various assumptions had been obtained, for more new
results and generalizations the reader may refer to [1],[2], [7]–[10], [13]–[17].

In order to approximate the Riemann-Stieltjes integral
∫ b
a
f (x) du (x) by

the Riemann integral
∫ b
a
f (t) dt, Dragomir and Fedotov [21], have introduced

the following functional:

D (f ;u) :=

∫ b

a

f (x) du (x)− u (b)− u (a)

b− a

∫ b

a

f (t) dt, (12)

provided that the Riemann-Stieltjes integral
∫ b
a
f (x) du (x) and the Riemann

integral
∫ b
a
f (t) dt exist.

In the same paper [21], the authors have proved the following result:

|D (f ;u)| ≤ 1

2
K (b− a)

b∨
a

(u) , (13)
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provided that u is of bounded variation and f is Lipschitzian with the con-
stant K > 0. Then we have the constant 1

2
is sharp in the sense that it

cannot be replaced by a smaller quantity.
In [22], Dragomir and Fedotov have obtained the following inequality:

|D (f ;u)| ≤ 1

2
L (M −m) (b− a) , (14)

provided that u is L-Lipschitzian on [a, b] and f is Riemann integrable on
[a, b] such that m ≤ f(x) ≤ M for any x ∈ [a, b] where, m,M > 0. The
constant 1

2
is sharp in the sense that it cannot be replaced by a smaller

quantity. For more result of this type see [3]–[6], [14], [15] and [19]–[23].

This paper is organized as follows: in section 2, we obtain new bounds for
the Čebyšev functional T (f, g) where f is assumed to be of p–Hölder type
or of bounded variation on [a, b] while the function g ∈ L2[a, b]. In section
3, two inequalities of Grüss type for Riemann–Stieltjes integral are proved.
Finally, in section 4, applications for functions of selfadjoint operators on
complex Hilbert spaces are provided.

2 The results

We may start with the following result:

Theorem 3 Let f : [a, b]→ C be a p-Hf -Hölder continuous on [a, b], where
p ∈ (0, 1] and Hf > 0 are given. Let g : [a, b]→ C be such that g′ ∈ L2[a, b],
then

|T (f, g)| ≤ Hf

2π
(b− a)p+

1
2 ‖g′‖2 . (15)

Proof. Taking the modulus in (9), utilizing the triangle inequality and using
the Cauchy-Schwarz inequality, we get

|T (f, g)| ==

∣∣∣∣ 1

b− a

∫ b

a

[
f (t)− f (a) + f (b)

2

]
·

·
[
g (t)− 1

b− a

∫ b

a

g (s) ds

]
dt

∣∣∣∣ ≤ 1

b− a

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ·
·
∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s) ds

∣∣∣∣ dt ≤ sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ·
·

(
1

b− a

∫ b

a

∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s)

∣∣∣∣2 dt
)1/2

. (16)
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Now, by (8), we have

T (g, g) :=
1

b− a

∫ b

a

(
g (t)− 1

b− a

∫ b

a

g (s) ds

)2

dt ≤ b− a
π2
‖g′‖2

2 . (17)

As f is p-Hf–Holder continuous on [a, b], then∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ≤ 1

2
[|f (t)− f (a)|+ |f (t)− f (b)|]

≤ Hf

2
[(t− a)p + (b− t)p] ,

which implies that

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ≤ Hf

2
(b− a)p . (18)

Substituting (17) and (18) in (16), we get the required result (15). �

Corollary 1 Let g be as in Theorem 3. If f : [a, b]→ R is Lf–Lipschitzian
on [a, b], then

|T (f, g)| ≤ Lf
2π

(b− a)3/2 ‖g′‖2 . (19)

Theorem 4 Let g be as in Theorem 3. Let f : [a, b] → C be a mapping of
bounded variation on [a, b], then we have

|T (f, g)| ≤ 1

2π
(b− a)1/2 ‖g′‖2

b∨
a

(f) (20)

Proof. As in Theorem 3, we have observed that

|T (f, g)|

≤ 1

b− a
sup
x∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ∫ b

a

∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s) ds

∣∣∣∣ dt (21)

As f is of bounded variation on [a, b], we have

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ≤ 1

2
sup
t∈[a,b]

[|f (t)− f (a)|+ |f (t)− f (b)|]

≤ 1

2

b∨
a

(f) .

Since g is absolutely continuous and g′ ∈ L2[a, b], then (17) holds. Combin-
ing the above inequality with (17) and then substituting in (21) we get the
required result. �
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Theorem 5 Let f : [a, b] → C be such that f is absolutely continuous and
f ′ ∈ L2[a, b] and g : [a, b] → R satisfies the condition that there exists
m,M > 0 such that m ≤ g(t) ≤M , for all t ∈ [a, b], then

|T (f, g)| ≤ (b− a)

2π
(M −m) ‖f ′‖2 . (22)

Proof. Taking the modulus in (9) and utilizing the triangle inequality, we
get

|T (f, g)| =
∣∣∣∣ 1

b− a

∫ b

a

[
f (t)− f

(
a+ b

2

)][
g (t)− 1

b− a

∫ b

a

g (s) ds

]
dt

∣∣∣∣
≤ 1

b− a

∫ b

a

∣∣∣∣f (t)− f
(
a+ b

2

)∣∣∣∣ ∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s) ds

∣∣∣∣ dt
≤ 1

b− a

(∫ b

a

∣∣∣∣f (t)− f
(
a+ b

2

)∣∣∣∣2 dt
)1

2

(∫ b

a

∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s)

∣∣∣∣2 dt
)1

2

,

which follows by the Cauchy-Schwarz inequality. Since f is absolutely con-
tinuous on [a, b], then∫ b

a

∣∣∣∣f (t)− f
(
a+ b

2

)∣∣∣∣2 dt ≤ (b− a)2

π2

∫ b

a

|f ′ (t)|2 dt. (23)

Now, we define

I (g) :=
1

b− a

∫ b

a

(
g (t)− 1

b− a

∫ b

a

g (s) ds

)2

dt.

Then, we have

I (g) :=
1

b− a

∫ b

a

[
g2 (t)− 2g (t)

1

b− a

∫ b

a

g (s) ds+

+

(
1

b− a

∫ b

a

g (s) ds

)2
]
dt =

1

b− a

∫ b

a

g2 (t) dt−
(

1

b− a

∫ b

a

g (s) ds

)2

and

I (g) :=

(
M − 1

b− a

∫ b

a

g (s) ds

)(
1

b− a

∫ b

a

g (s) ds−m
)

− 1

b− a

∫ b

a

(M − g (t)) (g (t)−m) dt.
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As m ≤ g(t) ≤M , for all t ∈ [a, b], then∫ b

a

(M − g (t)) (g (t)−m) dt ≥ 0,

which implies

I (g) ≤
(
M − 1

b− a

∫ b

a

g (s) ds

)(
1

b− a

∫ b

a

g (s) ds−m
)

≤ 1

4

[(
M − 1

b− a

∫ b

a

g (s) ds

)
+

(
1

b− a

∫ b

a

g (s) ds−m
)]2

=
1

4
(M −m)2 . (24)

Using the CBS inequality we have

I (g) ≥
[

1

b− a

∣∣∣∣∫ b

a

g (t)− 1

b− a

∫ b

a

g (s) ds

∣∣∣∣ dt]2

we get from (24), that(∫ b

a

∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s)

∣∣∣∣2 dt
)1/2

≤ 1

2
(M −m) (b− a) . (25)

Thus, by (23) and (25) we get the desired result. �

Theorem 6 Let f, g : [a, b] → C be two continuous functions such that
f ′ ∈ L∞[a, b] and g′ ∈ L2[a, b], then

|T (f, g)| ≤ (b− a)3/2

π
√

12
‖f ′‖∞ ‖g

′‖2 . (26)

Proof. We use the inequality

|T (f, g)| ≤ T 1/2 (f, f) · T 1/2 (g, g) . (27)

Since f ′ ∈ L∞[a, b] and g′ ∈ L2[a, b], by (2) and (8), we respectively have

T (f, f) ≤ (b− a)2

12
‖f ′‖2

∞ ,

and

T (g, g) ≤ b− a
π2
‖g′‖2

2 .

Combining the above two inequalities with (27) we get the desired inequality
(26). �
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3 Bounding the Dragomir–Fedotov functional

We may state our first result regarding Dragomir–Fedotov functional as
follows:

Theorem 7 Let u, f : [a, b]→ R be such that u is L–Lipschitzian on [a, b],
and f is Lebesgue integrable on [a, b], then

|D (f ;u)| ≤ L (b− a) · T 1/2 (f, f) (28)

Proof. It is well-known that for a Riemann integrable function p : [a, b]→ R
and L–Lipschitzian function ν : [a, b]→ R, one has the inequality∣∣∣∣∫ b

a

p (t) dν (t)

∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt. (29)

Therefore, as u is L-Lipschitzian on [a, b], we have

|D (f ;u)| =
∣∣∣∣∫ b

a

[
f (x)− 1

b− a

∫ b

a

f (t) dt

]
du (x)

∣∣∣∣
≤ L

∫ b

a

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ dx, (30)

as (17), we have shown that[
1

b− a

∫ b

a

∣∣∣∣f (t)− 1

b− a

∫ b

a

f (s) ds

∣∣∣∣ dt]2

≤ T (f, f) , (31)

simple calculations with (30) yield the required result. �

Theorem 8 Let u, f : [a, b]→ R be such that u is L–Lipschitzian on [a, b],
and f is absolutely continuous on [a, b] with f ′ ∈ L2[a, b], then

|D (f ;u)| ≤ L

π
(b− a)3/2 ‖f ′‖2 . (32)

Proof. As we shown in Theorem 7, we have

|D (f ;u)| =
∣∣∣∣∫ b

a

[
f (x)− 1

b− a

∫ b

a

f (t) dt

]
du (x)

∣∣∣∣
≤ L

∫ b

a

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ dx (33)

and ∫ b

a

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ dx ≤ (b− a) T 1/2 (f, f) . (34)
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On the other hand, by Lupaş inequality (8), we have

T (f, f) ≤ (b− a)

π2
‖f ′‖2

2 ,

which implies that

|D (f ;u)| ≤ L

π
(b− a)3/2 ‖f ′‖2 ,

and the theorem is proved. �

Corollary 2 Let u, f : [a, b]→ R be such that u is L–Lipschitzian on [a, b],
and f is absolutely continuous such that f ′ ∈ L∞[a, b], then

|D (f ;u)| ≤ L√
12

(b− a)2 ‖f ′‖∞ . (35)

Proof. By (33), (34) and Čebyšev inequality (2), we have

T (f, f) ≤ 1

12
(b− a)2 ‖f ′‖2

∞ ,

which implies that

|D (f ;u)| ≤ L√
12

(b− a)2 ‖f ′‖∞ ,

and the inequality is proved. �

4 Applications for Selfadjoint Operators

Let U be a bounded selfadjoint operator on the complex Hilbert space
(H, 〈·, ·〉) with the spectrum Sp(U) included in the interval [m,M ] for some
real numbers m < M and let {Eλ}λ be its spectral family. Then for any
continuous function f : [m,M ] → R, it is well known that we have the
following spectral representation in terms of the Riemann-Stieltjes integral:

〈f (U)x, y〉 =

∫ M

m+0

f (λ) d 〈Eλx, y〉 (36)

for any x, y ∈ H. The function gx,y(λ) := 〈Eλx, y〉 is of bounded variation
on the interval [m,M ] and gx,y(m + 0) = 0 and gx,y(M) = 〈x, y〉, for any
x, y ∈ H.

It is also well known that gx,y(λ) := 〈Eλx, y〉, is monotonic nondecreasing
and right continuous on [m,M ].
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Theorem 9 Let A be a bounded selfadjoint operator on the Hilbert space H
with the spectrum Sp(A) ⊆ [m,M ] for some real numbers m < M and let
{Eλ}λ be its spectral family.

(i) If u : [m,M ]→ C is a L–Lipschitzian function on [m,M ], where L > 0
and f : [m,M ]→ C is Lebesgue integrable on [m,M ], then∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 · 1

M −m

∫ M

m

f (s) ds

∣∣∣∣
≤ L (M −m) |C (f, f ;A;x)|1/2 , (37)

where C (f, g;A;x) denotes the following Čebyšev functional

C (f, g;A;x) := 〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 · 〈g (A)x, x〉
and x ∈ H with ‖x‖ = 1.

(ii) If f : [m,M ]→ C is absolutely continuous and f ′ ∈ L2[m,M ] while u
is as in (i), then∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 · 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ ≤ L

π
(M −m)3/2 ‖f ′‖2

(38)

for any x ∈ H with ‖x‖ = 1.

Proof. (i) Fix x ∈ H with ‖x‖ = 1. Let s > 0 and extend by continuity
the function f to the interval [m+ s,M ] by preserving its properties from
[m,M ] . Consider also the monotonic function u (λ) := 〈Eλx, x〉 which is
monotonic nondecreasing and right continuous on [m+ s,M ] .

Utilizing the spectral representation (36) we have the following equality
of interest

〈f (A)x, y〉 − 〈x, y〉 · 1

M −m

∫ M

m

f (s) ds

=

∫ M

m+s

[
f (t)− 1

M −m

∫ M

m

f (s) ds

]
d 〈Etx, y〉 (39)

for any x, y ∈ H.
Applying Theorem 7, we get∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 · 1

M −m

∫ M

m

f (s) ds

∣∣∣∣
=

∣∣∣∣∫ M

m+s

[
f (t)− 1

M −m

∫ M

m

f (s) ds

]
d 〈Etx, y〉

∣∣∣∣
≤ L

∫ M

m+s

∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ dt
≤ L (M −m) |C (f, f ;A;x)|1/2
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Finally, letting s → 0+ and utilizing the representation (36) and the fact
that u (M) = 1, u (m+ 0) = 0, we get the required result.

The proof of (ii) may be done by applying Theorem 8 and similar to that
one in Theorem 7, we omit the details. �

Remark 1 The interested reader in operator inequalities may be able to
find other recent results providing various bounds for the Čebyšev functional
C (f, g;A;x) in the papers [24]-[30] and the monograph [31].
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Appl. Math. Lett. 18 (2005) 603–611.

[14] P. Cerone and S.S. Dragomir, A refinement of the Grüss inequality and
applications, Tamkang J. Math. 38 (1) (2007) 37–49.

[15] S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral and
applications, Kragujevac J. Math. 26 (2004) 89–112.

[16] S.S. Dragomir, New Grüss’ type inequalities for functions of
bounded variation and applications, Appl. Math. Lett. In press,
http://dx.doi.org/10.1016/j.aml.2011.12.027, (2012).

[17] S.S. Dragomir, New estimates of the Čebyšev functional for Stieltjes
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[32] G. Grüss, Über das maximum des absoluten Betrages von
1
b−a

∫ b
a
f (x) g (x) dx − 1

(b−a)2

∫ b
a
f (x) dx ·

∫ b
a
g (x) dx, Math. Z. 39 (1935)

215–226.
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