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Abstract. For a densely defined in a Hilbert space closed
Hermitian operator with infinite defect numbers its maximal ex-
tensions are discussed. The Nagy-Foias characteristic function of
an arbitrary maximal dissipative extension is derived. Mutually
complementary classes of such extensions, referred to as inherited
and acquired are introduced, and the peculiarity of characteristic
function, as determining the class of extensions it corresponds to,
is noted. In the setting of Calkin’s abstract boundary conditions
theory abstract analogs of Nagy-Foias and Weyl functions are
presented in similar manner, as operator functions involved in
boundary operators, describing the class of inherited extensions.
Existence and analyticity of these functions are proved.
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Introduction

A closed densely defined Hermitian operator T in a Hilbert space H is con-
sidered. Maximal extensions of T can be described in frames of both the
classical theory of von Neumann and the theory of abstract boundary con-
ditions of Calkin, based on the concept of a reduction operator for T ∗.

Here these theories are separately applied to the study of Nagy-Foias
characteristic functions of maximal dissipative and Weyl functions of self-
adjoint extensions of T . It turned out that the natural classification of
maximal extensions as to whether the extension is inherited from T or not,
and the use of a special reduction operator for a description of maximal
extensions yields closely connected results.

The paper is composed of three sections.
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In Sec. 1 notations and some known notions and statements that will be
needed in the sequel are collected. For the most part they are referred to
the theory of Calkin elaborated in [2], since it is not widespread. The basic
concept of reduction operator for T ∗ as a tool for defining linear extensions of
T via abstract boundary conditions is discussed. More detailed presentation
of principle aspects of this subject, reviewed in a terminology of Krĕın space,
one can find in [10].

In Sec. 2 we complement the study in [17], presenting characteristic func-
tion (ch.f .) of an arbitrary maximal dissipative extension (m.d.ext.) of T
with the help of Nagy-Foias definition ([10], VI. 1) for its Cayley transform.
The formula derived with the results of [17], where ch.f. was presented for
a fixed inherited m.d.ext. allowed to determine the class of considered ex-
tension by means of its ch.f. The Weyl function of an arbitrary self-adjoint
extension of T here is defined with the use of von Neumann formulas only,
in addition to that in [17].

In Sec. 3 the machinery of Calkin’s theory is utilized to reveal abstract
analogues of ch.f. and Weyl function on the base of their properties, studied
in previous section. A close analogy with a discussion there is obtained by
employing the canonical reduction operator for T ∗ built in [18].

The literature on characteristic and Weyl function (also Titchmarsh-
Weyl, M -, Q-function) is extensive. The following will give, to some extend,
a sufficient information. The monograph [15], devoted to the theory of char-
acteristic functions of various classes of linear operators, is presented also its
development, involving the contributions of many workers. On connections
between some diverse approaches to this notion one can find in [12], [17],
[21]. Concerning to the Weyl functions discussed here we refer to [3], [4], [5],
[7], [19] and references therein.

1 Preliminaries

1.1. In a Hilbert space H with an inner product 〈·, ·〉 consider a closed
Hermitian operator T with the domain D(T ) dense in H, so T ∗ exists and
D(T ∗) ⊃ D(T ). Open upper, lower half-planes of a complex plane C will be
denoted C±.

Throughout this paper some complex number γ = α + iβ ∈ C+ will
be fixed and the case dimNγ = dimNγ̄ = ∞, where Nγ = Ker(T ∗ − γI),
Nγ̄ = Ker(T ∗ − γ̄I) will be discussed.

The direct-sum decomposition

D(T ∗) = D(T )
.

+ Nγ

.
+ Nγ̄ (1)

defines oblique projections Qγ, Qγ̄ in D(T ∗) onto Nγ, Nγ̄ respectively, and
for arbitrary f, g ∈ D(T ∗) the following identity holds

〈T ∗f, g〉 − 〈f, T ∗g〉 = 2iβ [〈Qγf,Qγg〉 − 〈Qγ̄f,Qγ̄g〉] . (2)
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Introduce the operator T (γ) = β−1(T − αI), which clearly is Hermitian,
D(T (γ)) = D(T ), D(T ∗(γ)) = D(T ∗), and such that the defect subspaces
Nγ, Nγ̄ of T are defect subspaces of T (γ) at the points i, −i, hence (see [6],
XII. 4) the linear manifold D(T ∗(γ)) with the inner product

〈f, g〉γ = 〈f, g〉+ 〈T ∗(γ)f, T ∗(γ)g〉 (3)

is a Hilbert space, denoted Dγ, and now one has the orthogonal decomposi-
tion

Dγ = D(T (γ))⊕Nγ ⊕Nγ̄. (4)

Corresponding notations for γ = i (Ti = T ) shall be D := Di, N± := N±i,
so

D = D(T )⊕N+ ⊕N−.

If P± are orthogonal projections in D onto N±, then

〈T ∗f, g〉 − 〈f, T ∗g〉 = i [〈P+f,P+g〉i − 〈P−f,P−g〉i] , (5)

since 〈P±f,P±g〉i = 2〈Q±f,Q±g〉, Q± := Q±i.
It is also obvious that

〈T ∗f, g〉 − 〈f, T ∗g〉 = β [〈T ∗(γ)f, g〉 − 〈f, T ∗(γ)g〉] . (6)

For G1, G2 being Hilbert spaces, the Banach space of all bounded linear op-
erators from G1 to G2 is denoted by [G1,G2], and the algebra of all bounded
linear operators in G1 by [G1].

1.2. The basic concept of Calkin’s theory is presented in Definition 1.1 of
[2], where the graph of T ∗

GrT ∗ = {(f, T ∗f) ∈ H⊕ H; f ∈ D(T ∗)}

is employed. From (3) it is obvious that Hilbert spaces GrT ∗ ⊂ H⊕H and D
can be identified by the map GrT ∗ 3 (f, T ∗f)↔ f ∈ D, and in the following
definition the Hilbert space GrT ∗ of [2] is replaced by that D.1

Definition 1 Let T be a closed linear operator in a Hilbert space H, and let
T ∗ exist. Let G be a Hilbert space with an inner product 〈·, ·〉G. A closed
liner operator Γ with the domain D(Γ) dense in D, and the range RanΓ ⊂ G
is said to be a reduction operator for T ∗, if there exists an unitary operator
W ∈ [G] such that for all f, g ∈ D(Γ) it holds the identity

〈T ∗f, g〉 − 〈f, T ∗g〉 = −〈Γf,WΓg〉G. (7)

1In this subsection we refer only to [2].
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The significance of this definition is specified by its following corollaries
(Th. 1.1, Th. 1.2, Th. 3.7).
C1. The operator T is Hermitian, D(T ) ⊂ D(Γ), KerΓ = D(T ), RanΓ = G;
C2. The unitary operator W is such that W2 = −IG , and dimG± = dimN±,
where G± are eigensubspaces of W corresponding to its eigenvalues ±i.

Linear extensions of T are defined by means of Γ as follows (Def. 1.2,
Th. 1.4).

An arbitrary linear manifold L ⊂ G defines the operator

TL = T ∗|DL, where DL = {f ∈ D(Γ); Γf ∈ L} =: D(TL),

which is a linear extension of T , since D(T ) ⊂ D(TL). Conversely, any
extension Tg of T can be presented on this way, since Tg = TLg , where
Lg = {h ∈ G;h = Γf, f ∈ D(Tg)}. The Hilbert space G is called a space of
abstract boundary values, and the condition Γf ∈ L is called the boundary
condition defining TL.

To determine properties of L, providing symmetric and self-adjoint exten-
sions of T , notions of W-symmetric and hypermaximal W-symmetric mani-
folds in G are introduced by the relations WL ⊂ G 	 L and WL = G 	 L
respectively (Def. 1.3, Def. 2.2).

For the case dimN+ = dimN− we are dealing with, from corollary C.2 it
follows that there exists an isometry V ∈ [G+,G−] (V∗V = IG+ , VV∗ = IG−),
and it is proved (Th. 2.2) that the formula

LV = {h ∈ G;h = h+ − Vh+, h+ ∈ G+} (8)

establishes an one-to-one correspondence between the set of all hypermax-
imal W-symmetric subspaces in G and the set of all such isometries, thus
describing the set of all self-adjoint extensions of T (Th. 2.7).

The set of all reduction operators for T ∗ is described by Stone (Th. 3.3).
In particular, the following assertion is true.

Let Γ be a reduction operator for T ∗ with the associated unitary operator
W. Let G̃ be an arbitrary Hilbert space (dim G̃ = dimG), and Ũ ∈ [G, G̃]
be any isometry. Then the operator Γ̃ = ŨΓ is a reduction operator for T ∗

with the associated unitary operator W̃ = ŨWŨ∗ ∈ [G̃].
A reduction operator for T ∗ may be either bounded or unbounded, and

in what follows we shall deal only with a bounded operator Γ, that is with
the case (Th. 3.2)

D(Γ) = D, RanΓ = G. (9)

Denoting N = N+⊕N−, P = P+⊕P−, formula (5) can be presented as

〈T ∗f, g〉 − 〈f, T ∗g〉 = 〈WPf,Pg〉;

where W = i(P+ − P−)|N, thus one has an example of a reduction operator
for T ∗.
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1.3. Corollary C.2 infers that the operator J = −iW (J ∗ = J , J 2 = IG)
is a signature operator, turning G into a Krĕın space with an indefinite
inner product [h1, h2] = 〈J h1, h2〉G. Introducing orthogonal projections

P± =
1

2
(IG ± J ) and denoting G± = P±G, G = G+ ⊕ G−, consider the

operators
Γ± = P±Γ ∈ [D,G±], RanΓ± = G±

and present identity (7) in the form

〈T ∗f, g〉 − 〈f, T ∗g〉 = i〈J Γf,Γg〉G = i [〈Γ+f,Γ+g〉G − 〈Γ−f,Γ−g〉G] , (10)

we shall use henceforth. For reduction operator Γ the notation {Γ,G} =
{Γ±,G±} is applied.

A subspace L+ ⊂ G such that L+ = {h ∈ G; 〈J h, h〉G > 0} is called
nonnegative (see [11], Sec. 1). From (10) one has

2Im〈T ∗f, f〉 = 〈J h, h〉G, h = Γf, f ∈ D(T ∗),

where vectors Γf cover G when f runs over D(T ∗). Clearly, the operator
TL+ = T ∗|D(TL+), D(TL+) = {f ∈ D(T ∗); Γf ∈ L+}, is a dissipative exten-
sion of T , that is Im〈TL+f, f〉 > 0 for arbitrary f ∈ D(TL+). In ([13], Sec. 1)
the set of all maximal nonnegative subspaces in G is parameterized by the
formula

LK = {h ∈ G;h = h+ + Kh+, h+ ∈ G+,K ∈ [G+,G−], ‖K‖ 6 1},

where the contractive operator K is called the angular operator of LK.
Thus the above formula describes also the set of all m.d.exts. of T .

In view of (10) the boundary condition defining the m.d.ext. TK can be
presented as

f ∈ Ker(Γ− −KΓ+), or (Γ− −KΓ+)f = 0,

since, evidently, LK = Ker(Γ− −KΓ+). An operator of the form Γ− −KΓ+

shall be referred to as a boundary operator.
Clearly, hypermaximal W-symmetric subspaces in G are hypermaximal

neutral subspaces in terminology of Krĕın spaces, and the boundary operator
defining a self-adjoint extension of T is Γ− − VΓ+, where V ∈ [G+,G−] is
an isometry.

We complete this section with following remarks.

Remark 2 For the case of a bounded reduction operator {Γ,G} the Stone’s
characterization of reduction operators can be modified as follows. Let the
operator Ũ ∈ [G, G̃] be a (J , J̃ ) -isometry, that is ŨJ Ũ∗ = J̃ , where
J̃ ∗ = J̃ , J̃ 2 = IG̃. Then Ũ is bounded invertible, Ũ−1 = J Ũ∗J̃ , hence
{Γ̃, G̃}, where Γ̃ = Ũ−∗Γ, is a bounded reduction operator for T ∗ as well.
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Remark 3 In [18] it is shown that there exists a unitary operator U ∈ [G]
such that with the use of (10) the reduction operator {UΓ,G} turns to the
widely known concept of a boundary triplet, presented in [1], [11], [12], [8;
3.4].

2 Characteristic functions of maximal dissipative ex-
tensions

Denote T+(T ) the set of all m.d.exts. of T . If K(γ) is the set of all contractive
operators K ∈ [Nγ,Nγ̄], ‖K‖ 6 1, then the relation

T+(T ) 3 TK = T ∗|Ker(Qγ̄ −KQγ)↔ K ∈ K(γ)

establishes an one-to-one correspondence between the sets T+(T ) and K(γ).
The initial purpose here is to present ch.f. of arbitrary m.d.ext. TK. The

cases ‖K‖ < 1 and ‖K‖ = 1 are diverse in the sense that defect operators
Iγ −K∗K, Iγ̄ −KK∗ are bounded invertible in the first case, that cannot be
occurred in the other case.

2.1. Throughout this subsection we assume that K is a strict contractions,
‖K‖ < 1. Decomposition (1) can be presented for an arbitrary nonreal ϕ,
defining oblique projections Qϕ, Qϕ̄ in D(T ∗) onto Nϕ, Nϕ̄ respectively. For
arbitrary nonreal ϕ, ψ introduce the operators

Θ(ϕ, ψ) = Qϕ|Nψ ∈ [Nψ,Nϕ], so Θ(ϕ, ϕ) = Iϕ, Θ(ϕ, ϕ̄) = 0.

In [17] their following properties are proved:
a) Θ(ϕ, φ)Θ(φ, ψ) + Θ(ϕ, φ̄)Θ(φ̄, ψ) = Θ(ϕ, ψ),

b) Θ∗(ϕ, ψ) =
Imψ

Imϕ
Θ(ψ, ϕ),

c) if Imϕ · Imψ > 0, then Θ(ϕ, ψ) is boundedly invertible.
From now on γ ∈ C+ be fixed, and λ varies on C+. Then:

d) the operator function

Θγ(λ) = Θ(γ̄, λ)Θ−1(γ, λ) ∈ [Nγ;Nγ̄] (1)

is a strict contractive analytic function on C+, and it holds that

Θ∗γ(λ) = Θ(γ, λ̄)Θ−1(γ̄, λ̄) = Θγ̄(λ̄),

e) the operator Θγ(λ) is such that an arbitrary fλ ∈ Nλ admits the
unique presentation

fλ = f0 + fγ + Θγ(λ)fγ, f0 ∈ D(T ), (2)

and fγ varies over the entire Nγ, when fλ runs on Nλ.
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Consider maximal dissipative and accumulative extensions

Tγ = T ∗|KerQγ̄, Tγ̄ = T ∗|KerQγ (3)

of T . Since they are maximal extensions, and, evidently,

〈Tγf, g〉 = 〈f, Tγ̄g〉, f ∈ KerQγ̄, g ∈ KerQγ̄,

hence Tγ̄ = T ∗γ .
Now consider an arbitrary strict contraction K ∈ [Nγ,Nγ̄] and introduce

dissipative and accumulative extensions of T , defined as

TK = T ∗|Ker(Qγ̄ −KQγ), TK∗ = T ∗|Ker(Qγ −K∗Qγ̄). (4)

Again, maximality of TK, TK∗ yields T ∗K = TK∗ .
Consider the Cayley transforms

Cγ = (Tγ − γI)(Tγ − γ̄I)−1 = I − (γ − γ̄)(Tγ − γ̄I)−1, (5)

CK = (TK − γI)(TK − γ̄I)−1 = I − (γ − γ̄)(TK − γ̄I)−1 (6)

of Tγ, TK, which are contractions in H.

Proposition 1 Cayley transforms CK, Cγ of TK, Tγ are related by the for-
mula

CK = Cγ −KPγ = Cγ − Pγ̄KPγ, (7)

where Pγ, Pγ̄ are orthogonal projections in H onto Nγ, Nγ̄ respectively.

Proof. Let f ∈ H and gK = (TK − γ̄I)−1f ∈ D(TK), so gK = g0 + gγ + Kgγ.
Then

f = (TK − γ̄I)gK = Tg0 + γgγ + γ̄Kgγ − γ̄g0 − γ̄gγ − γ̄Kgγ = (Tγ − γ̄I)g,

where g = g0 +gγ ∈ D(Tγ). In view of (Tγ− γ̄I)−1f = g and gK = g+Kgγ
we have

gK = (TK − γ̄I)−1f = (Tγ − γ̄I)−1f + KQ̂γ(Tγ − γ̄I)−1f,

where Q̂γ is the projection in D(Tγ) onto Nγ. In [17] it is shown, that

Q̂γ =
1

γ − γ̄
Pγ(Tγ − γI),

hence

(TK − γ̄I)−1f = (Tγ − γ̄I)−1f +
1

γ − γ̄
KPγf,
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and (6) now takes the form

CK = I − (γ − γ̄)

[
(Tγ − γ̄I)−1 +

1

γ − γ̄
KPγ

]
= Cγ −KPγ

on account of (5). The proof is finished.

Clearly, C∗γ = Cγ̄, C
∗
K = CK∗ are Cayley transforms of T ∗γ = Tγ̄, T

∗
K = TK∗

respectively, and

C∗K = C∗γ − PγK∗Pγ̄ = C∗γ −K∗Pγ̄. (8)

The Nagy-Foias ch.f. of a contraction C ∈ [H] is an analytic operator func-
tion, defined by (see [20], VI. 1)

ΘC(ω) =
[
−C +D∗ω(I − ωC∗)−1D

]∣∣DH, |ω| < 1, (9)

where D = (I − C∗C)
1
2 , D∗ = (I − CC∗) 1

2 are defect operators of C, and

CD = D∗C, C∗D∗ = DC∗. (10)

In [17] it is proved that

I − C∗γCγ = Pγ, I − CγC∗γ = Pγ̄; CγPγ = Pγ̄Cγ = 0, C∗γPγ̄ = PγC
∗
γ = 0,

(11)
hence from (7) and (8) we get

I − C∗KCK = I −
(
C∗γ − PγK∗Pγ̄

)
(Cγ − Pγ̄KPγ) = Pγ (Iγ −K∗K)Pγ,

and, similarly, I − CKC
∗
K = Pγ̄ (Iγ̄ −KK∗)Pγ̄.

Thus, for defect operators of contraction CK one has

DK = Pγ (Iγ −K∗K)
1
2 Pγ, DK∗ = Pγ̄ (Iγ̄ −KK∗)

1
2 Pγ̄. (12)

Theorem 2 Let CK, Cγ be Cayley transforms of TK, Tγ respectively. Then
the Nagy-Foias ch.f. of contraction CK is determined by

ΘCK
(ω) = (Iγ̄ −KK∗)−

1
2
[
K + ΘCγ (ω)

] [
Iγ + K∗ΘCγ (ω)

]−1
(Iγ −K∗K)

1
2 ,
(13)

where ΘCγ (ω) is the Nagy-Foias ch.f. of contraction Cγ.

Proof. Since ‖K‖ < 1, hence the operators (Iγ −K∗K)−
1
2 , (Iγ̄ −KK∗)−

1
2

exist and are bounded, so DKH = Nγ is closed. On account of (11), from
(9) it follows that we have to compute the operator

DK∗
[
−CK + ω(I − ωC∗K)−1

]
D2

K
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and then restrict it on DKH.
The use of relations (11) and (8) lead to

−DK∗CK = −Pγ̄ (Iγ̄ −KK∗)−
1
2 Pγ̄(Cγ −KPγ) = DK∗KPγ,

thus the operator to deal with is

DK∗
[
Pγ̄KPγ + Pγ̄ω(I − ωC∗K)−1Pγ(Iγ −K∗K)Pγ

]
. (14)

Taking into account (8) we derive

Pγ̄ ω(I − ω C∗K)−1Pγ = Pγ̄ ω
[
(I − ω C∗γ) + ωPγK

∗Pγ̄
]−1

Pγ =

= Pγ̄ ω(I − ω C∗K)−1
[
I + PγK

∗Pγ̄ ω(I − ω C∗γ)−1
]−1

Pγ. (15)

Relative to the orthogonal decomposition H = Nγ ⊕ (Nγ)
⊥, a block-matrix

presentation of the operator in square brackets above is of the following
prototype[

Iγ + A B
0 I|(Nγ)

⊥

]−1

=

[
(Iγ + A)−1 −(Iγ + A)−1B

0 I|(Nγ)
⊥

]
,

and since Pγ =

[
Iγ 0
0 0

]
, hence[

Iγ + A B
0 I|(Nγ)

⊥

]−1 [
Iγ 0
0 0

]
=

[
(Iγ + A)−1 0

0 0

]
,

which means that[
I + PγK

∗Pγ̄ ω
(
I − ω C∗γ

)−1
]−1

Pγ =

= Pγ

[
Iγ + K∗Pγ̄ ω

(
I − ω C∗γ

)−1
Pγ

]−1

Pγ.

Thus formula (15) can be written as

Pγ̄ ω
(
I − ω C∗γ

)−1
Pγ

[
Iγ + K∗Pγ̄ ω

(
Iγ − ω C∗γ

)−1
Pγ

]−1

Pγ =

= ΘCγ (ω)
(
Iγ + K∗ΘCγ (ω)

)−1
Pγ,

where ΘCγ (ω) = Pγ̄ω
(
I − ωC∗γ

)−1
Pγ is the Nagy-Foias ch.f. of contraction

Cγ (see [17]).
Now, omitting the notation of projections Pγ, Pγ̄ where they act as iden-

tity operators, formula (14) can be transformed as follows

DK∗Pγ̄

[
KPγ + ΘCγ (ω)

(
Iγ + K∗ΘCγ (ω)

)−1
(Iγ −K∗K)

]
Pγ =

DK∗

[
K (Iγ −K∗K)−1 + ΘCγ (ω)

(
Iγ + K∗ΘCγ (ω)

)−1
]

(Iγ −K∗K)Pγ =

= (Iγ̄ −KK∗)−
1
2

[
K + (Iγ −K∗K) ΘCγ (ω)

(
Iγ + K∗ΘCγ (ω)

)−1
]

(Iγ −K∗K) ,
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since, evidently, K (Iγ −K∗K)−1 = (Iγ̄ −KK∗)−1 K.
The operator in square brackets is[

K
(
Iγ + K∗ΘCγ (ω)

)
+ (Iγ −K∗K) ΘCγ (ω)

] (
Iγ + K∗ΘCγ (ω)

)−1
=

=
(
K + ΘCγ (ω)

) (
Iγ + K∗ΘCγ (ω)

)−1

and, finally, restricting the operator derived to DKH, we obtain formula (13).
The proof is complete.

Characteristic functions of dissipative operators TK, Tγ are defined as

ΘTK(λ) = ΘCK

(
λ− γ
λ− γ̄

)
, ΘTγ (λ) = ΘCγ

(
λ− γ
λ− γ̄

)
,

where the fractional linear function λ =
γ − ω γ̄
1− ω

maps the unit disk |ω| < 1

onto the open half-plane C+ (see [8], Sec. 28.12). In [17] it is proved that
ΘTγ (λ) = −Θγ(λ), where Θγ(λ) is defined by (1). Thus one has the following
corollary of a previous theorem.

Theorem 3 Let maximal dissipative extension TK of T be determined by
TK = T ∗|Ker(Qγ̄ − KQγ), K ∈ [Nγ,Nγ̄], ‖K‖ < 1. Then its Nagy-Foias
characteristic function is an analytic in C+ operator function with strict
contractive values in [Nγ,Nγ̄], determined by the formula

ΘTK(λ) = (Iγ̄ −KK∗)−
1
2 (K−Θγ(λ)) (Iγ −K∗Θγ(λ))−1 (Iγ −K∗K)

1
2 . (16)

Proof . We have only to verify that ‖ΘTK(λ)‖ < 1, λ ∈ C+. Given Hilbert
spaces Nγ, Nγ̄ as closed subspaces of H, introduce their direct sum Nγγ̄ =
Nγ ⊕Nγ̄ of pairs (fγ, fγ̄), fγ ∈ Nγ, fγ̄ ∈ Nγ̄, and the following operators in
[Nγγ̄]

U =

[
(I −K∗K)−

1
2 (I −K∗K)−

1
2 K∗

(I −KK∗)−
1
2 K (I −KK∗)−

1
2

]
, Jγ =

[
Iγ 0
0 −Iγ̄

]
.

Clearly, U∗ = U, and U is Jγ-unitary, that is UJγU = Jγ. Formula
(6) can be written as ΘTK(λ) = ΦU(−Θγ(λ)), where ΦU(·) is the Krĕın-
Shmylyan fractional linear transformation, possessing an interspherical prop-
erty (see [14], Th. 1.1), that is ‖ΘTK(λ)‖ < 1, since ‖Θγ(λ)‖ < 1. The proof
is complete.

2.2. Let υ ∈ C+ be arbitrary but υ 6= γ. Consider m.d.ext. Tυ = T ∗|KerQῡ
and its ch.f.

ΘTυ(λ) = −Θυ(λ) = −Θ(ῡ, λ)Θ−1(υ, λ) ∈ [Nυ,Nῡ].
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Note that factors of Θυ(λ) are not analytic functions. The domain D(Tυ) =
D(T )

.
+ Nυ can be presented by means of defect subspaces Nγ, Nγ̄ also,

with the use of property e) in p. 2.2, namely, since

Nυ = {f ∈ D(T ∗), f = f0 + fγ + Θγ(υ)fγ, f0 ∈ D(T ), fγ ∈ Nγ},

hence the domain of Tυ is D(Tυ) = Ker (Qγ̄ −Θγ(υ)Qγ).
Set K = Θγ(υ) and denote Θ̃Tυ(λ) ∈ [Nγ,Nγ̄] the ch.f. of Tυ, defined by

formula (16). In the following its part

(Θγ(υ)−Θγ(λ))
(
Iγ −Θ∗γ(υ)Θγ(λ)

)−1
, λ ∈ C+, (17)

the factors now are analytic functions. In what follows the above function
shall be referred to as a principle part of ch.f.

Recall that two contractive analytic functions Θ(λ) ∈ [G,G∗], Θ̃(λ) ∈
[G̃, G̃∗] are said to be coinciding in the sense of Nagy-Foias, if there exist
isometries Z ∈ [G, G̃], Z∗ ∈ [G∗, G̃∗] such that Θ̃(λ) = Z∗Θ(λ)Z−1 (see [20],
V. 2.4).

Theorem 4 Characteristic functions

ΘTυ(λ) ∈ [Nυ,Nῡ] and Θ̃Tυ(λ) ∈ [Nγ,Nγ̄]

coincide in the sense of Nagy-Foias.

Proof. With the use of properties a) - c), the first factor of (17) can be
transformed as follows

Θγ(υ)−Θγ(λ) = Θ∗γ̄(ῡ)−Θγ(λ) = Θ−∗(γ̄, ῡ)Θ∗(γ, ῡ)−Θ(γ̄, λ)Θ−1(γ, λ) =

= Θ−∗(γ̄, ῡ) [Θ∗(γ, ῡ)Θ(γ, λ)−Θ∗(γ̄, ῡ)Θ(γ̄, λ)] Θ−1(γ, λ) =

= −Imῡ
Imγ̄

Θ−∗(γ̄, ῡ) [Θ(ῡ, γ)Θ(γ, λ) + Θ(ῡ, γ̄)Θ(γ̄, λ)] Θ−1(γ, λ) =

= −Θ−1(ῡ, γ̄)Θ(ῡ, λ)Θ−1(γ, λ).

Similarly, for the second factor we obtain

Iγ −Θ∗γ(υ)Θγ(λ) =

=
Imυ

Imγ
Θ−∗(γ, υ) [Θ(υ, γ)Θ(γ, λ) + Θ(υ, γ̄)Θ(γ̄, λ)] Θ−1(γ, λ) =

= Θ−1(υ, γ)Θ(υ, λ)Θ−1(γ, λ),

hence the principle part of Θ̃Tυ(λ) is

−Θ−1(ῡ, γ̄)Θυ(λ)Θ(υ, γ) = Θ−1(ῡ, γ̄)ΘTυ(λ)Θ(υ, γ).
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With the boundedly invertible defect operators

Dυ =
[
Iγ −Θ∗γ(υ)Θγ(υ)

] 1
2 , Dυ∗ =

[
Iγ̄ −Θγ(υ)Θ∗γ(υ)

] 1
2

the formula (16) for Θ̃Tυ(λ) takes the form

Θ̃Tυ(λ) = [Θ(ῡ, γ̄)Dυ∗]
−1 ΘTυ(λ)[Θ(υ, γ)Dυ]. (18)

It is not difficult to verify that

D2
υ = [Θ(γ, υ)Θ(υ, γ)]−1 , D2

υ∗ = [Θ(γ̄, ῡ)Θ(ῡ, γ̄)]−1 .

Denote Z = ρ−
1
2 Θ(υ, γ)Dυ, Zx = ρ−

1
2 Θ(ῡ, γ̄)Dυ∗, where ρ =

Imγ

Imυ
. Then

Z∗Z =
1

ρ
[Θ(γ, υ)Θ(υ, γ)]−

1
2 Θ∗(υ, γ)Θ(υ, γ) [Θ(γ, υ)Θ(υ, γ)]−

1
2 =

= [Θ(γ, υ)Θ(υ, γ)]−
1
2 Θ(υ, γ)Θ(υ, γ) [Θ(γ, υ)Θ(υ, γ)]−

1
2 = Iγ,

since Θ∗(υ, γ) = ρΘ(γ, υ), and, analogously, Z∗∗Z∗ = Iγ̄. Clearly, (18) is
Θ̃Tυ(λ) = Z−1

∗ ΘTυ(λ)Z. This finishes the proof.

2.3. Here we assume that ‖K‖ = 1, hence the point 1 belongs to a spectrum
of both K∗K and KK∗. Then, either it is in their continuous spectrum
σc(K

∗K), σc(KK∗), or else is in their point spectrum σp(K
∗K), σp(KK∗).

Indeed, if 1 ∈ σc(K∗K) and KK∗fγ̄ = fγ̄, fγ̄ 6= 0 then fγ = K∗fγ̄, fγ 6= 0,
and K∗Kfγ = fγ, which contradicts 1 ∈ σc(K∗K).

In the first case unbounded operators (Iγ −K∗K)−1, (Iγ̄ −KK∗)−1 exist
simultaneously, and are defined densely. The second case is resumed here-
inafter as the analog of a canonical decomposition for a contraction in a
Hilbert space (see [20], Th. 3.2).

Proposition 5 Let K ∈ [Nγ,Nγ̄] and 1 ∈ σp(K
∗K), 1 ∈ σp(KK∗). Then

the subspaces Nγ, Nγ̄ admit orthogonal decompositions

Nγ = N0
γ ⊕N1

γ, Nγ̄ = N0
γ̄ ⊕N1

γ̄; dimN0
γ = dimN0

γ̄, (19)

reducing K to K0 = K|N0
γ ∈

[
N0
γ,N

0
γ̄

]
, K1 = K|N1

γ ∈
[
N1
γ,N

1
γ̄

]
such that

K∗0 = K∗|N0
γ̄, K∗1 = K∗|N1

γ. The operator K0 is an isometry, and operators(
I1
γ −K∗1K1

)−1
,
(
I1
γ̄ −K1K∗1

)−1
exist simultaneously either as bounded, or

else as densely defined unbounded operators.

We shall only sketch the proof, since details are verified without difficul-
ties.

Set N0
γ = Ker (Iγ −K∗K), N0

γ̄ = Ker (Iγ̄ −KK∗), N1
γ = Nγ 	N0

γ, and
N1
γ̄ = Nγ̄ 	N0

γ̄. We have seen earlier that if fγ ∈ N0
γ, then Kfγ ∈ N0

γ̄. It is
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also clear that Kfγ 6= Kgγ, if fγ 6= gγ, fγ, gγ ∈ N0
γ. The same is true if N0

γ̄

and K∗ are considered, hence dimN0
γ = dimN0

γ̄. The rest, concerning to the
operators K0, K1 and their adjoints, is checked readily.

It is also clear that either the point 1 is in a resolvent set of each K∗1K1,
K1K∗1, or else is in their continuous spectrum, which completes this rough
draft.

Now we are back to Th. 3. Essentially, we have to specify it only for the
case 1 ∈ σc(K∗K) ∩ σc(KK∗).

Indeed, let dimN0
γ = dimN0

γ̄ > 0 and K0 ∈
[
N0
γ,N

0
γ̄

]
be the isometry of

Prop. 5. Then the operator T̂ = T ∗|D(T̂ ) with the domain

D(T̂ ) =
{
f ∈ D(T ∗); f = f0 + f 0

γ + K0f
0
γ , f0 ∈ D(T ), f 0

γ ∈ N0
γ

}
is a symmetric extension of T , and one has the chain of inclusions

T ⊂ T̂ ⊂ T̂ ∗ ⊂ T ∗.

Since N0
γ ⊥ N1

γ, it is readily verified, that

〈T̂ f, g1
γ〉 = 〈f, γg1

γ〉 for arbitrary f ∈ D(T̂ ), g ∈ N1
γ,

hence g1
γ ∈ D(T̂ ∗), T̂ ∗g1

γ = γg1
γ. Thus N1

γ is a defect subspace of T̂ , and,
similarly, N1

γ̄ is, hence

D(T̂ ∗) = D(T̂ )
.

+ N1
γ

.
+ N1

γ̄,

and the operator T̂K1 = T̂ ∗|D(T̂K1) with the domain

D(T̂K1) =
{
f ∈ D(T̂ ∗); f = f0 + f 1

γ + K1f
1
γ , f0 ∈ D(T̂ ), f 1

γ ∈ N1
γ

}
is a m.d.ext. of T̂ .

Introducing orthogonal projections P 0
γ , P 1

γ in Nγ onto N0
γ, N1

γ, from
Prop. 5 we have K0 = KP 0

γ , K1 = KP 1
γ , and it is not difficult to obtain the

expected result T̂K1 = TK.
Obviously, this case is occurred if and only if extensions TK, T ∗K are not

relatively prime, that is D(T ) is a proper submanifold of D(TK) ∩ D (T ∗K).

If the operators
(
I1
γ̄ −K1K∗1

)−1
,
(
I1
γ −K∗1K1

)−1
are bounded, then to the

Hermitian operator T̂ and its m.d.ext. T̂K1 = TK is directly applied Th. 3 and
results ch.f. of TK as the operator function ΘTK(λ) with values in

[
N1
γ,N

1
γ̄

]
,

and analytic in C+.
In particular, ‖K1‖ < 1 if dimN1

γ = dimN1
γ̄ = n < ∞, or the operator

K1 is absolutely continuous.
On account of stated above, consider the only case left, (Iγ̄ −KK∗)−1,

(Iγ −K∗K)−1 are densely defined unbounded operators.
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To justify the validity of derivations in the proof of Th. 2, concerning to
defect operators and their square roots in this case too, consider the Hilbert
space Nγγ̄ = Nγ ⊕ Nγ̄ in the proof of Th. 3, and acting there self-adjoint
operators

K =

[
0 K∗

K 0

]
,
(
Iγ −K2

)−1
=

[
(Iγ −K∗K)−1 0

0 (Iγ̄ −KK∗)−1

]
,

D
(
Iγ −K2

)−1
= Ran

(
Iγ −K2

)
.

In [22] it is proved that if unbounded self-adjoint operator A in G is positive
(〈Ax, x〉G > 0 for all x ∈ D(A)), then it possesses a unique positive self-
adjoint square root, which commutes with every bounded operator B that

commutes with A (BA ⊃ AB), thus there exists the operator (Iγ −K2)
− 1

2

with the domain Ran (Iγ −K2).
Obviously K (Iγ −K2) = (Iγ −K2)K, and(
Iγ −K2

)−1 (Iγ −K2
)

= Iγ,
(
Iγ −K2

) (
Iγ −K2

)−1
= Iγ|Ran

(
Iγ −K2

)
.

Then K = (Iγ −K2)
−1K (Iγ −K2), and for arbitrary g = (Iγ −K2) f it

holds (Iγ −K2)
−1Kg = K (Iγ −K2)

−1
g, hence(

Iγ −K2
)
Kg = K

(
Iγ −K2

)− 1
2 g.

Thus on D
(

(Iγ −K2)
− 1

2

)
= Ran (Iγ −K2) one has[

0 (Iγ −K∗K)−
1
2 K∗

(Iγ̄ −KK∗)−
1
2 K 0

]
=

=

[
0 K∗ (Iγ̄ −KK∗)−

1
2

K (Iγ −K∗K)−
1
2 0

]
,

that is equalities used in the proof of Th. 2.

2.4. The content of p. 2.2 and p. 2.3 directs to take the following notice.
Given a symmetric operator T , we are given also its defect subspaces Nλ

and Nλ̄ for all λ ∈ C+, hence, at first hand, we have the sets of maximal
dissipative and accumulative extensions Tλ, Tλ̄ of formula (3). If T+(T )
denotes the set of all m.d.exts. of T , it can be divided, on the course of
nature, onto disjoint classes, T i+(T ), T a+ (T ) = T+(T ) \ T i+(T ), where the
class

T i+(T ) = {Tλ = T ∗|KerQλ̄, λ ∈ C+}
can be referred to as the class of m.d.exts., inherited from T , so T a+ (T ) –
as the class of acquired m.d.exts.

Now summarizing the discussion of this section we can state the following.
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Theorem 6 Let the operator function Θγ(λ) be given by formula (1). Then
the class of inherited m.d.exts. of a Hermitian operator T with infinite defect
numbers admits parameterization

T i+(T ) =
{
Tλ = T ∗|Ker (Qγ̄ −Θγ(λ)Qγ̄) ; λ ∈ C+

}
(20)

via the range RanΘγ(λ) = {Θγ(λ); λ ∈ C+} ⊂ [Nγ,Nγ̄] of Θγ(λ).

In discussion above we have presented ch.f. of an arbitrary m.d.ext. TK,
‖K‖ 6 1. Now the class of a given TK can be determined by its ch.f.

First, if ΘTK(λ) takes values from
[
N′γ,N

′
γ̄

]
where N′γ, N′γ̄ are proper

subspaces of Nγ, Nγ̄, then the extension TK is acquired.
If this is not the case, then the principle part

[K−Θγ(λ)] [Iγ −K∗Θγ(λ)]−1 , ‖K‖ 6 1

of ch.f. ΘTK(λ) shows that either ΘTK(λ) 6= 0 on C+, or there is only one
point λ0 ∈ C+ such that ΘTK(λ0) = 0.

Theorem 7 A m.d.ext. TK is an inherited extension if and only if its ch.f.
takes values in [Nγ,Nγ̄] and vanishes at some point λ0 ∈ C+.

In completion of this subsection notice that if ‖K‖ < 1, then maximal ex-
tensions TK, T ∗K are relatively prime, that is D(TK) ∩ D (T ∗K) = D(T ). In
view of bounded invertibility of operators Iγ −K∗K, Iγ̄ −KK∗ and formulas
in (4), their transversality D(TK) + D (T ∗K) = D(T ∗) now can be presented
as

Nγ

.
+ Nγ̄ =

= Ker
[
(Qγ̄ −KQγ)|(Nγ

.
+ Nγ̄)

]
.

+ Ker
[
(Qγ −K∗Qγ̄)|(Nγ

.
+ Nγ̄)

]
,

and referred to as a direct transversality .

2.5. Here we introduce the Weyl function of a self-adjoint extension of T
similar to ch.f. of Tγ, determined by (1). Clearly, formula (1) is equivalent
to

Ker (Qγ̄ −Θγ(λ)Qγ) = KerQλ̄,

meaning that given directly transversal maximal extensions Tγ, Tγ̄ = T ∗γ
with the help of Θγ(λ) is described the class T i+(T ).

Let V(γ) ∈ [Nγ,Nγ̄] be an isometry. Consider the pair of self-adjoint
extensions TV±, given by the formula of von Neumann

D(TV±) = {f ∈ D(T ∗), f = f0 + fγ ± V(γ)fγ; f0 ∈ D(T ), fγ ∈ Nγ} =

= Ker (Qγ̄ ∓ V(γ)Qγ) , (21)
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and denote Q±(γ) = Qγ̄ ∓V(γ)Qγ. Obviously, Q2
±(γ) = Q±(γ), so they are

oblique projections in D(T ∗) onto Nγ̄. Extensions TV± are relatively prime,
and their property to be directly transversal

Nγ

.
+ Nγ̄ = KerQ+(γ)|(Nγ

.
+ Nγ̄)

.
+ KerQ−(γ)|(Nγ

.
+ Nγ̄)

follows readily, taking into account that V(γ) is an isometry. In the decom-
position

D(T ∗) = D(T )
.

+ Nλ

.
+ Nλ̄, λ ∈ C+

the same extensions are determined by isometries V±(λ) ∈ [Nλ,Nλ̄], and
projections Q±(γ) applied to an arbitrary f = f0 + fλ + fλ̄ ∈ D(T ∗) yield

V±(λ) = −
[
Θ(γ̄, λ̄)∓ V(γ)Θ(γ, λ̄)

]−1
[Θ(γ̄, λ)∓ V(γ)Θ(γ, λ)] . (22)

For the sake of symmetry set V+(γ) = V(γ), V−(γ) = −V(γ), and employ
the analog of V−(γ) = −V+(γ) to V±(λ) for arbitrary λ ∈ C+. With the use
of (1) one can obtain the following connection

V−(λ) =
[
Θ(γ̄, λ̄) + V(γ)Θ(γ, λ̄)

]−1MV(λ)
[
Θ(γ̄, λ̄)− V(γ)Θ(γ, λ̄)

]
V+(λ),

(23)
where

MV(λ) = [Θ(γ̄, λ) + V(γ)Θ(γ, λ)] [Θ(γ̄, λ)− V(γ)Θ(γ, λ)]−1 =

[Θγ(λ) + V(γ)] [Θγ(λ)− V(γ)]−1 , MV(γ) = −Iγ̄ (24)

is an analytic in C+ operator function with values in [Nγ̄]. Presenting (23)
as[

Θ(γ̄, λ̄) + V(γ)Θ(γ, λ)
]
V−(λ) =MV(λ)

[
Θ(γ̄, λ̄)− V(γ)Θ(γ, λ̄)

]
V+(λ)

we have

Q−(γ)V−(λ) =MV(λ)Q+(γ)V+(λ).

Formulas (22) can be written as V±(λ) = [Q±(γ)|Nλ̄]
−1 [Q±(γ)|Nλ], hence,

finally, we obtain

Q−(γ)|Nλ =MV(λ)Q+(γ)|Nλ, (25)

or, equivalently,

Ker [Q−(γ)−MV(λ)Q+(γ)] = KerQλ̄.

The function MV(λ) defined by (25) is well known as the Weyl function of
the self-adjoint operator TV .
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Determining the Weyl function for ξ ∈ C− by the same formula (24) one
has

MV(ζ) = [Θ(γ̄, ζ) + V(γ)Θ(γ, ζ)]
[
Θ(γ, ζ̄)− V(γ)Θ(γ, ζ)

]−1
=

= [Iγ̄ + V(γ)Θγ̄(ζ)] [Iγ̄ − V(γ)Θγ̄(ζ)]−1 =

= [Iγ̄ − V(γ)Θγ̄(ζ)]−1 [Iγ̄ + V(γ)Θγ̄(ζ)] =

= [V∗(γ)−Θγ̄(ζ)]−1 [V∗(γ)Θγ̄(ζ)] = −M∗
V(ζ̄),

since Θ∗γ(ζ̄) = Θγ̄(ζ).

3 Characteristic and Weyl functions in the setting of
Calkin’s theory

3.1. Here, along with a Calkin reduction operator, is utilized its special case,
introduced in [18]. There the existence of a reduction operator {Γ(γ),G} =
{Γ±(γ),G±} for T ∗(γ) is proved, which has the properties

I. Γ+(γ)Nγ = G+, Γ+(γ)Nγ̄ = {0}; Γ−(γ)Nγ = {0}, Γ−(γ)Nγ̄ = G−,

II. Γ∗(γ)Γ(γ) = Pγγ̄, Γ∗+(γ)Γ+(γ) = Pγ, Γ∗−(γ)Γ−(γ) = Pγ̄,

where Pγγ̄, Pγ, Pγ̄ are orthogonal projections in Dγ onto Nγγ̄ = Nγ ⊕Nγ̄,
Nγ, Nγ̄ in decomposition (4). In view of property II it referred to as the
canonical reduction operator.

Let {Γ±(γ),G±} be the canonical reduction operator. Combining for-
mulas (6) and (10) one has

〈T ∗f, g〉 − 〈f, T ∗g〉 = β [〈T ∗(γ)f, g〉 − 〈f, T ∗(γ)g〉] =

= iβ [〈Γ+(γ)f,Γ+(γ)g〉G − 〈Γ−(γ)f,Γ−(γ)g〉G] , (1)

hence, evidently, reduction operator {Γ±(γ),G±} serves as that for T ∗, defin-
ing extensions of T (γ) and T of the same nature.

Properties I, II mean that the operator Γγγ̄ := Γ(γ)|Nγγ̄ ∈ [Nγγ̄,G] is an
isometry, and its matrix representation relative to decompositions

Nγγ̄ = Nγ ⊕Nγ̄, G = G+ ⊕G−

is the block diagonal matrix

Γγγ̄ =

[
Θγ 0
0 Θγ̄

]
, (2)

where Θγ ∈ [Nγ,G+], Θγ̄ ∈ [Nγ̄,G−] are isometries too (see [18]). From I it
is clear that boundary conditions Γ−(γ)f = 0, Γ+(γ)f = 0 define maximal
extensions Tγ, Tγ̄ of (3).



18 Perch Melik-Adamyan

Introduce the operators

Θ+[γ, ϕ] = Γ+(γ)|Nϕ, Θ−[γ, ϕ] = Γ−(γ)|Nϕ, ϕ ∈ C+ ∪ C−.

Proposition 1 Let λ = µ+ iν, ν > 0. Then:
a) the operator Θ+[γ, λ] ∈ [Nλ,G+] has bounded inverse, and the operator

Θγ[λ] = Θ−[γ, λ]Θ−1
+ [γ, λ] ∈ [G+,G−] is a strict contraction;

b) the operator function Θγ[λ] is analytic in C+.

Proof. a) For arbitrary fλ, gλ ∈ Nλ the identity (1) yields

(λ− λ̄)〈fλ, gλ〉 = iβ
[
〈Θ+[γ, λ]fλ,Θ+[γ, λ]gλ〉G − 〈Θ−[γ, λ]fλ,Θ−[γ, λ]gλ〉G

]
.

(3)
Thus

‖Θ+[γ, λ]fλ‖2
G =

2ν

β
‖fλ‖2 + ‖Θ−[γ, λ]fλ‖2

G ,

hence Θ+[γ, λ] is bounded invertible.
Since fλ, gλ are arbitrary, from (3) it follows that

Θ∗+[γ, λ]Θ+[γ, λ]−Θ∗−[γ, λ]Θ−[γ, λ] =

= Θ∗+[γ, λ]
[
IG+ −Θ∗γ[λ]Θγ[λ]

]
Θ+[γ, λ] > 0,

hence IG+ −Θ∗γ[λ]Θγ[λ] > 0, that is ‖Θ[λ]‖ < 1.
To prove the part b) recall (1), that is fλ = f0 +fγ+Θγ(λ)fγ, f0 ∈ D(T ).

On account of I and (2) one has

Θ+[γ, λ]fλ = Γ+(γ)fλ = Γ+(γ)fγ = Θ+[γ, γ]fγ = Θγfγ, (3.4+)

Θ−[γ, λ]fλ = Γ−(γ)fλ = Γ−(γ)Θγ(λ)fγ = Θ−[γ, γ̄]Θγ(λ)fγ = Θγ̄Θγ(λ)fγ,
(3.4−)

since it is understood that Θ+[γ, γ] = Θγ, Θ−[γ, γ̄] = Θγ̄ in (2).
From (3.4+) we have fλ = Θ−1

+ [γ, λ]Θγfγ, and (3.4−) now turns to
Θ−[γ, λ]Θ−1

+ [γ, λ]Θγfγ = Θγ̄Θγ(λ)fγ, thus we obtain

Θγ[λ] = Θγ̄Θγ(λ)Θ∗γ, (5)

so Θγ[λ] is an analytic function, since Θγ(λ) is. The proof is complete.

Likewise, if ζ ∈ C−, then Θ−[γ, ζ] has bounded inverse, and

Θγ[ζ] := Θ+[γ, ζ]Θ−1
− [γ, ζ] = ΘγΘγ̄(ζ)Θ∗γ̄ (6)

is a contractive analytic function in C− with values in [G−,G+]. Clearly,
Θ∗γ[λ̄] = Θγ[λ].

Formulas (5), (6) mean that Θγ[λ], Θγ[ζ] coincide with the Nagy-Foias
ch.f. of maximal extensions Tγ, T

∗
γ .

The following statement is an immediate corollary of Prop. 1.
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Proposition 2 Let X [λ] be a contractive function in C+ with values in
[G+,G−]. Then the boundary condition

[Γ−(γ)−X [λ]Γ+(γ)] f = 0 (7)

defines m.d.ext. Tλ if and only if X [λ] = Θγ[λ].

Indeed, if Ker [Γ−(γ)−X [λ]Γ+(γ)] = D(Tλ) so [Γ−(γ)−X [λ]Γ+(γ)]Nλ =
{0}, hence X [λ] = Θγ[λ]. If [Γ−(γ)−Θγ[λ]Γ+(γ)] f = 0, f = f0 + fγ +
fγ̄, f 6= f0, then from (5) it follows that fγ̄ = Θγ(λ)fγ, so f ∈ Nλ and
Ker [Γ−(γ)−Θγ[λ]Γ+(γ)] = D(Tλ).

3.2. Let K ∈ [G+,G−], ‖K‖ < 1, and

DK = (I+ −K∗K)
1
2 , DK∗ = (I− −KK∗)

1
2

be its defect operators.
As in the proof of Th. 3, introduce the J -unitary operator

UK =

[
D−1

K −D−1
K K∗

−D−1
K∗ K D−1

K∗

]
, (8)

and, referring back to Remark 2 in Sec. 1, consider the reduction operator
{ΓK,G} = {ΓK±,G±} for T ∗(γ) (also for T ∗), where ΓK = UKΓ(γ), and
ΓK± = P±ΓK are

ΓK+ = D−1
K [Γ+(γ)−K∗Γ−(γ)] , ΓK− = D−1

K∗ [Γ−(γ)−KΓ+(γ)] . (9)

Thus boundary conditions ΓK−f = 0, ΓK+f = 0 define m.d.exts. TK and its
adjoint TK∗ = T ∗K respectively.

Definition 3 Let {Γ±(γ),G±} be the canonical reduction operator for T ∗,
and reduction operator {ΓK±,G±} be defined by (9).

An operator function XK[λ], λ ∈ C+ with contractive values in [G+,G−]
is said to be the abstract Nagy-Foias ch.f. of m.d.ext. TK = T ∗|KerΓK−, if
the boundary condition

[ΓK− −XK[λ]ΓK+] f = 0, f ∈ D (10)

defines the inherited extension Tλ for every λ ∈ C+.

Theorem 4 The abstract Nagy-Foias ch.f. exists and it holds that

XK[λ] = −ΦUK
(Θγ[λ]), (11)

where ΦUK
(·) is the Krĕın-Shmulyan fractional linear transformation, asso-

ciated with the matrix UK of (8). The function XK[λ] is analytic in C+, and
‖XK[λ]‖ < 1.
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Proof. On account of (9), the operator in (10) is[
D−1

K∗ + XK[λ]D−1
K K∗

]
Γ−(γ)−

[
D−1

K∗K + XK[λ]D−1
K

]
Γ+(γ) =

=
[
D−1

K∗ + XK[λ]K∗D−1
K

]
Γ−(γ)−

[
KD−1

K∗ + XK[λ]D−1
K

]
Γ+(γ).

Since ‖XK[λ]K∗‖ < 1, then D−1
K∗ + XK[λ]K∗D−1

K∗ = [I− + XK[λ]K∗] D−1
K∗ has a

bounded inverse, hence condition (10) is equivalent to{
Γ−(γ)−

[
D−1

K∗ + XK[λ]K∗D−1
K∗

]−1 [
KD−1

K + XK[λ]D−1
K

]
Γ+(γ)

}
f = 0.

From Prop. 2 it follows that[
D−1

K∗ + XK[λ]K∗D−1
K∗

]−1 [
KD−1

K + XK[λ]D−1
K

]
= Θγ[λ],

and not complicated derivations lead to

XK[λ] =
[
D−1

K∗Θγ[λ]DK −K
] [
I− −K∗D−1

K∗Θγ[λ]DK

]−1
=

=
[
D−1

K∗Θγ[λ]−D−1
K∗K

] [
D−1

K −D−1
K K∗Θγ[λ]

]−1
= −ΦUK

(Θγ[λ]) . (12)

The formula above shows that XK[λ] is analytic in C+, and interspherical
property of ΦUK

(·) yields ‖XK(λ)‖ < 1, λ ∈ C+. The proof is complete.
The formula similar to (12) was obtained in [12] by means of a boundary

triplet, adjusted for ch.f of m.d.ext. in sense of A.V. Strauss [21]. For the
case under consideration boundary operators introduced in [21] coincide with
that Γ± in (10) of a certain reduction operator. In this connection we refer
also to [3], [4], [17].

3.3. In similar fashion can be presented also the Weyl function of a self-
adjoint extension of T .

Let V ∈ [G+,G−] be an isometry. Consider boundary operators

ΓV± = Γ−(γ)∓ VΓ+(γ). (13)

In [18] it is shown that self-adjoint extensions TV± = T ∗|KerΓV± coincide
with those defined by (21) with the isometry V(γ) = Θ∗γ̄VΘγ ∈ [Nγ,Nγ̄].

Introduce the unitary operator

UV =
1√
2

[
I+ −V∗

V I−

]
∈ [G] (14)

such that PV± = UVP±U∗V are orthogonal projections on hypermaximal
neutral subspaces LV± = PV±G, and LV+ ⊕ LV− = G.2

It is clear that KerΓV± = KerPV±Γ(γ).

2It should be noted that UV is the unitary operator indicated in Remark 3.
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If M ∈ [LV+,LV−], consider the projection PV− −MPV+. From (14) it
follows that

M =

[
−V∗MV −V∗M

MV M

]
, M ∈ [G−],

hence the boundary operator (PV− −MPV+)Γ(γ) is such that

Ker(PV− −MPV+)Γ(γ) = Ker(ΓV− −MΓV+).

Definition 5 Let {Γ±(γ),G} be the canonical reduction operator for T ∗,
and self-adjoint extensions TV± of T be given by the boundary conditions
ΓV±f = 0.

The operator function MV(λ), λ ∈ C+ with values in [G−] is said to be
an abstract Weyl function of TV+, if the boundary condition

[ΓV+ −MV(λ)ΓV−] f = 0, f ∈ D (15)

defines the inherited m.d.ext. Tλ for every λ ∈ C+.

Theorem 6 An abstract Weyl function MV+(λ) of a self-adjoint extension
TV+ exists, and

MV+(λ) = − [I− −Θγ[λ]V∗]−1 [I− + Θγ[λ]V∗] =

= − [I− + Θγ[λ]V∗] [I− −Θγ[λ]V∗]−1 .
(16)

The operator function MV(λ) is analytic in C+, and such that

ReMV+(λ) =
1

2

[
MV+(λ) + M∗V+(λ)

]
< 0. (17)

Proof. Rewrite formulas (13) as

Γ−(γ) =
1

2
[ΓV+ + ΓV−] , Γ+(γ) = −1

2
V∗ [ΓV+ − ΓV−] .

From Prop. 2 it follows that for any λ ∈ C+ the boundary condition

[(ΓV+ + ΓV−) + Θγ[λ]V∗ (ΓV+ − ΓV−)] f = 0

is necessary and sufficient to define m.d.ext. Tλ. The operator above is

[I− + Θγ[λ]V∗] ΓV+ + [I− −Θγ[λ]V∗] ΓV− =

= [I− + Θγ[λ]V∗]
{

ΓV+ + [I− + Θγ[λ]V∗]−1 [I− −Θγ[λ]V∗] ΓV−
}
,

which proves (16).
Evidently, MV+(λ) is analytic in C+.
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Formula (16) can be presented also as

MV+(λ) = − [V + Θγ[λ]] [V −Θγ[λ]]−1 ,

and it can be easily verified that

1

2

(
M∗V+ + MV+

)
= −(V + Θγ[λ])−∗

[
I+ −Θ∗γ[λ]Θγ[λ]

]
(V + Θγ[λ])−1 < 0.

The proof is complete.

It is clear that the operator function MV−(λ) = M−1
V+(λ) is the Weyl

function of a self-adjoint extension TV−.
A Weyl function of TV+ in lower half-plane C− is determined similarly,

considering boundary operators ΓV+ − MV+(ζ)ΓV−, Γ+(γ) − Θγ[ζ]Γ−(γ)
as defining maximal accumulative extension Tζ for every ζ ∈ C−. The
corresponding formula is

MV+(ζ) = [I− + VΘγ[ζ]]−1 [I− − VΘγ[ζ]] = [I− − VΘγ[ζ]] [I− + VΘγ[ζ]]−1 ,

hence one has
MV+(ζ) = −M∗V+(ζ̄). (18)

An operator function with properties (17), (18) is obtained in [16], where the
original method of Weyl for determining defect subspaces of a differential
operator was applied to a symmetric canonical differential operator.

From (16) it follows that

[I− −MV(λ)]−1 =
1

2
[I− −Θγ[λ]V∗] ,

hence

Θγ[λ] =
[
I− − 2 [I− −MV(λ)]−1]V = − [I− + MV(λ)] [I− −MV(λ)]−1 V.

Thus one has

[I− + MV(λ)] [I− −MV(λ)]−1 V = [I− + MV1(λ)] [I− −MV1(λ)]−1 V1,

where MV1(λ) is the Weyl function of an arbitrary other self-adjoint exten-
sion TV1 , determined by the isometry V1 ∈ [Nγ,Nγ̄]. The formula above can
be presented also as the fractional linear transformation

MV1(λ) = ΦW(MV(λ)),

where W is a unitary and J1-unitary operator in G− ⊕G−, given by

W =
1

2

[
I− + V1V

∗ I− − V1V
∗

I− − V1V
∗ I− + V1V

∗

]
, and J1 =

[
0 I−
I− 0

]
.
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