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On the Total Dominating Set of
3/2-Generated Groups

V. S. Atabekyan and H. T. Aslanyan

Abstract. A subset S of a group G is called a total dominating
set of GG if for any nontrivial element x € G there is an element
y € S such that G = (z,y). Tarski monsters, constructed by
Olshanskii, are infinite simple groups, any pair of non-commuting
elements of which is a total dominating set. In this paper, we
construct an infinite non-cyclic and non-simple group having a
total dominating set from two elements. This gives a positive
answer to Donoven and Harper’s question about the existence
of infinite groups (other than Tarski monsters) having a finite
total dominating set. In addition, our examples have an infinite
uniform spread.
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Introduction

Let G be a 2-generated group. The spread of a group G is denoted by s(G)
and is the greatest k such that for any non-trivial elements x1,...,x; of G
there exists y € G satisfying the conditions G = (x;,y) for all i = 1,2, ... k.
This notion was first introduced in [I] in 1975. The uniform spread of G is
denoted by u(G) and is the greatest k such that there is a conjugacy class
C of G with the property that for any nontrivial elements x1, ...,z there
exists y € C satisfying the condition G = (z;,y) for all i« = 1,2,.... k. If
such a largest number does not exist in the first or second case, then we will
write s(G) = oo or u(G) = oo, respectively. It is clear that u(G) < s(G). In
general, the concepts of spread and uniform spread are not the same. For
example, the uniform spread of the group SL3(2) is 3, while its spread is 4
(see [3]).
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A group is said to be 3/2-generated (or one and a half generated (see, for
example, [8])), if any of its non-trivial elements is a part of a generating pair
of G. This property is stronger than being 2-generated but is weaker than
being cyclic. Obviously, the condition s(G) > 1 is equivalent to the fact that
G is 3/2-generated. In 2000, it was proven [7] that every finite simple group
is 3/2-generated. Later, in 2008, it was shown [2] that u(G) > 2 for any non-
abelian finite simple group G. In the same work, it was conjectured that a
finite group is a 3/2-generated group if and only if all of its proper quotients
is cyclic. This conjecture was proven in 2021 [4]. For infinite groups, the
situation is different. Recently, Cox [5] constructed an example of an infinite
2-generated group, each of whose proper quotient groups is cyclic and which
is not 3/2-generated. Tarski monsters constructed by A.Yu. Olshanskii [9]
(see also [10]) are examples of infinite and simple 3/2-groups. Moreover, it
can be shown that for these groups u(G) = co.

A subset S C G is called a total dominating set of G if for any nontrivial
element z € G there is an element y € S such that G = (z,y) (see [0]).
For example, any generator of a cyclic group forms its total dominating set.
Tarski monsters constructed by Olshanskii are infinite simple groups, any
pair of non-commuting elements of which is a total dominating set.

In 2020, Donoven and Harper [6] proved that s(G) > 1 for all Higman—
Thompson and Brin—Thompson groups G. These are the first examples of
finitely defined 3/2-generated groups. In [6], the authors posed the following
question: Is there a non-cyclic infinite group (distinct from Tarski monsters)
which has a finite total dominating set (see Question 5, [6]). This problem
was also emphasized in [5] (see p. 222, [5]). Work [6] also poses the following
question: Is there a non-cyclic infinite group (distinct from Tarski monsters)
for which s(G) = oo (see Question 3, [0]).

In this paper, we will answer both of these questions positively. By
modifying Olshanskii’s method, we will construct infinite 2-generated groups
that contain subgroups of index 2 that are isomorphic to a Tarski monster
(and thus are not simple), allowing us to answer the above questions.

Theorem 1 There is an infinite non-cyclic and non-simple torsion free
group that has total dominating set of two elements.

Theorem 2 There is an infinite non-cyclic and non-simple torsion free
group for which u(G) = oco.

From Theorem |2 and the inequality u(G) < s(G), it follows

Corollary 1 There is an infinite non-abelian and non-simple torsion free
group for which s(G) = oc.
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1 Defining relations

Consider the free group F, with two free generators a,b. It is easy to show
that the elements a, bab~! and b? in F, freely generate a free subgroup of
index 2. We will construct a group with two generators in which these
elements generate the subgroup H of index 2 isomorphic to the Tarski’s
monster without torsion and having some additional properties. We will
follow the original scheme for constructing Tarski’s monsters, proposed by
Olshansky in the monograph [10] (see Paragraphs 25, 27), suggesting a slight
modification in this scheme that is necessary for us.

We fix sufficiently large odd numbers n, h, d according to Paragraph 19
[10] (see p. 218) and require that h = 3( mod 4). As in Paragraph 27
[10], we denote by G(0) = F; the free group with basis a,b and set Ry = 0.
Suppose, by induction, that we have defined the set of relators R;_; and the
group G(i — 1) = {(a,b|r = 1,7 € R;_1).

A non-empty word A over {a,b} is called a simple word in rank i — 1
if it is not conjugate in the group G(i — 1) to a power of a shorter word
and is not conjugate in G(i — 1) to a power of a period of rank k£ < i — 1.
Denote by X; a maximal set of simple words of length ¢ which are simple in
rank ¢ — 1 and with the condition that A, B € &; and A # B implies that
A is not conjugate in rank i — 1 to B or B~!. The words from X; are called
periods of rank 7. We note right away that we declare all periods from X; to
be periods of the second type in the sense of §25.1 [10].

For each period A € X; we fix some maximal subset of words )4 such
that:

L. if T € Y4, then 1 < |T| < d|A];

2. each double coset of the form (A)g(A) of subgroups of G(i — 1)
contains at most one word in Y4, and this word is of minimal length among
the words representing this double coset.

For an arbitrary A € A}, if a is not contained in the subgroup (A) of
G(i — 1), then for each word T" € Y4 which is not contained in the double
cosets (A)bab~! (A) and (A)b(A) of the group G(i — 1), we introduce a
defining relation

aA"T AT ... T A5, (1)

and for each word T' € )4 which is not contained in (A) a (A) and (A) b (A)

in G(i — 1), we introduce a relation
bab P A" PET AT T AT, (2)

and if b is not contained in the subgroup (A) of the group G(i — 1), then for
every word 7' € V4 which is not contained in (A) bab™! (A) and (A) a (A) in
G(i — 1), we introduce a relation

bQAn+4TAn+9T . -TAn+5h_1. (3)
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The set of relations of the form , , is denoted by P;. Finally, we
set Rz = Rz’—l U Pi,

G(i) = (a, b|R=1,R€R)) (4)

and

G(oo):<a,b]R:1,REORi>. (5)

i=1

2 Auxiliary lemmas

Lemma 1 The element b is not contained in the subgroup generated by the
elements a, bab™' and b* in G(o0).

Proof. From the definition of words , and , it follows that in each
of these relations, the word T appears h — 1 times, i.e., an even number
of times. In turn, the word A appears in the defining relation (|1)) exactly
nh + w times, which is an even number by the choice of odd numbers
n and h (h = 3( mod 4)). Similarly, the word A is included in the defining
relations and , respectively nh + w + 2h and nh + w + 4h
times, i.e., again an even number of times. From this it follows that in each

of the relations , , of the group G(o0), the letter b appears an even
number of times and, in particular, in G(00), the element b is not contained
in the subgroup generated by the elements a, bab~! and b?. O

Let us denote by N the subgroup of the group G(co) generated by the
images of the elements a, bab™!, b%:

N = <a,bab‘1,b2>.

Since a,b* € N and b ¢ N, then (G(o0) : N) = 2.
The following lemma is an analogue of Lemma 27.1 in [10] and is proved
in a similar way.

Lemma 2 Let VV| and VV{ be cyclic shifts of a word R**, where R € P;,
and V' contains a subword of the form ATy A™T,A¢, where c = d+3, m > n,
and the words Ty and Ty are a, bab™!, or b2, or belong to the set Y. Then
VVi = VV/. The word R is not a proper power in F.

In the Paragraph 25 [10], the conditions R1-R7 are defined.
Lemma 3 Presentation of the group G(i) satisfies conditions R1 — RT.

Proof. Condition R5 follows from Lemma [2| and conditions R1 — R4, R6,
RT are verified exactly as in Lemma 27.2 [10]. O
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Lemma 4 (Lemma 27.3 [10]) Suppose that a presentation of a group G
satisfies the conditions R1 — R7, and let H be a non-abelian subgroup of G.
Then there is a period F' of some rank i > 1 and a word T not commuting
with F' in G such that |T| < 3|F|, and the subgroup (F,T) is contained in a
subgroup conjugate to H in G.

Lemma 5 Any non-abelian subgroup of G(o0) contains N.

Proof. Let H be a non-abelian subgroup. Some subgroup H; conjugate to
H contains elements F' and T satisfying the conclusion of Lemma [d] Since
IT| < 3|F| < d|F], it follows from the definition of relations (I]), (2)),
that a,bab™!,b*> € Hy, that is, N C H;. Since N is a normal subgroup, then
NCH. O

From Theorem 26.5 [10], follows

Lemma 6 The centralizer of a non-trivial element X € G(oc0) is cyclic.
Any abelian subgroup of G(00) is cyclic.

From Theorem 26.4(1) [10], follows
Lemma 7 The group G(co) is torsion-free.
By analogy with Theorem 28.3 [10], it is proved

Lemma 8 The subgroup N of G(o0) is simple and any of its proper sub-
groups s infinite cyclic.

3 Proofs of main theorems

Proof of Theorem 1 From Lemma [f| and Lemmalg] it follows that G(co)
is an infinite non-abelian group. It is not a simple group because of (G(c0) :
N) = 2. Let us prove that the set {b,aba™'} is a total dominating set for
G(00).

Choose a non-trivial element X € G(00). Since ab # ba, then baba™! #
aba~'b by Lemma 25.14 [10]. Therefore, by Lemma [6] one of the subgroups
(b, X) and (aba™!, X) is non-abelian. Indeed, otherwise the elements b and
aba~! would belong to the centralizer of X, which is a cyclic group. Hence,
N C (b, X) or N C {(aba™', X) by Lemmal5| Since a € N, this means that
either G(c0) = (b, X) or G(o0) = (aba™!, X). O

Proof of Theorem 2 As it was mentioned above, from Lemmalfland Lemma
[, it follows that ab # ba. Choose an arbitrary finite sequence of non-trivial
elements X1, Xs, -+, X} from G(00). First, let us prove that a’ba™a*ba™5 #
a*ba*a'ba™! for t # s. Indeed, otherwise a'~*ba* ‘b = ba'~*ba**, which by
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Lemma 25.14 [I10] means that ba'~* = a'~*b. Thus, by Lemma [6| a and
b belong to the centralizer of a'~*, which is only possible if ¢ = s. Conse-
quently, as in the proof of Theorem 1], for some s and for any 4, the subgroups
(a*ba™*, X;) are non-abelian. Then N C (a*ba™*, X;) by Lemma [5] that is,
G(00) = (a®ba™*, X;) for any i = 1,...,k due to @ € N. We obtain that the
conjugacy class b provides the equality u(G(o0)) = co. O
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