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On the Total Dominating Set of

3/2-Generated Groups
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Abstract. A subset S of a group G is called a total dominating
set of G if for any nontrivial element x ∈ G there is an element
y ∈ S such that G = 〈x, y〉. Tarski monsters, constructed by
Olshanskii, are infinite simple groups, any pair of non-commuting
elements of which is a total dominating set. In this paper, we
construct an infinite non-cyclic and non-simple group having a
total dominating set from two elements. This gives a positive
answer to Donoven and Harper’s question about the existence
of infinite groups (other than Tarski monsters) having a finite
total dominating set. In addition, our examples have an infinite
uniform spread.

Key Words: Spred of Group, Total Dominating Set, 3/2-generated Group,
Tarski Monster
Mathematics Subject Classification 2020: 20F05, 20F06, 20E32

Introduction

Let G be a 2-generated group. The spread of a group G is denoted by s(G)
and is the greatest k such that for any non-trivial elements x1, ..., xk of G
there exists y ∈ G satisfying the conditions G = 〈xi, y〉 for all i = 1, 2, ..., k.
This notion was first introduced in [1] in 1975. The uniform spread of G is
denoted by u(G) and is the greatest k such that there is a conjugacy class
C of G with the property that for any nontrivial elements x1, ..., xk there
exists y ∈ C satisfying the condition G = 〈xi, y〉 for all i = 1, 2, ..., k. If
such a largest number does not exist in the first or second case, then we will
write s(G) =∞ or u(G) =∞, respectively. It is clear that u(G) ≤ s(G). In
general, the concepts of spread and uniform spread are not the same. For
example, the uniform spread of the group SL3(2) is 3, while its spread is 4
(see [3]).
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A group is said to be 3/2-generated (or one and a half generated (see, for
example, [8])), if any of its non-trivial elements is a part of a generating pair
of G. This property is stronger than being 2-generated but is weaker than
being cyclic. Obviously, the condition s(G) ≥ 1 is equivalent to the fact that
G is 3/2-generated. In 2000, it was proven [7] that every finite simple group
is 3/2-generated. Later, in 2008, it was shown [2] that u(G) ≥ 2 for any non-
abelian finite simple group G. In the same work, it was conjectured that a
finite group is a 3/2-generated group if and only if all of its proper quotients
is cyclic. This conjecture was proven in 2021 [4]. For infinite groups, the
situation is different. Recently, Cox [5] constructed an example of an infinite
2-generated group, each of whose proper quotient groups is cyclic and which
is not 3/2-generated. Tarski monsters constructed by A.Yu. Olshanskii [9]
(see also [10]) are examples of infinite and simple 3/2-groups. Moreover, it
can be shown that for these groups u(G) =∞.

A subset S ⊂ G is called a total dominating set of G if for any nontrivial
element x ∈ G there is an element y ∈ S such that G = 〈x, y〉 (see [6]).
For example, any generator of a cyclic group forms its total dominating set.
Tarski monsters constructed by Olshanskii are infinite simple groups, any
pair of non-commuting elements of which is a total dominating set.

In 2020, Donoven and Harper [6] proved that s(G) ≥ 1 for all Higman–
Thompson and Brin–Thompson groups G. These are the first examples of
finitely defined 3/2-generated groups. In [6], the authors posed the following
question: Is there a non-cyclic infinite group (distinct from Tarski monsters)
which has a finite total dominating set (see Question 5, [6]). This problem
was also emphasized in [5] (see p. 222, [5]). Work [6] also poses the following
question: Is there a non-cyclic infinite group (distinct from Tarski monsters)
for which s(G) =∞ (see Question 3, [6]).

In this paper, we will answer both of these questions positively. By
modifying Olshanskii’s method, we will construct infinite 2-generated groups
that contain subgroups of index 2 that are isomorphic to a Tarski monster
(and thus are not simple), allowing us to answer the above questions.

Theorem 1 There is an infinite non-cyclic and non-simple torsion free
group that has total dominating set of two elements.

Theorem 2 There is an infinite non-cyclic and non-simple torsion free
group for which u(G) =∞.

From Theorem 2 and the inequality u(G) ≤ s(G), it follows

Corollary 1 There is an infinite non-abelian and non-simple torsion free
group for which s(G) =∞.
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1 Defining relations

Consider the free group F2 with two free generators a, b. It is easy to show
that the elements a, bab−1 and b2 in F2 freely generate a free subgroup of
index 2. We will construct a group with two generators in which these
elements generate the subgroup H of index 2 isomorphic to the Tarski’s
monster without torsion and having some additional properties. We will
follow the original scheme for constructing Tarski’s monsters, proposed by
Olshansky in the monograph [10] (see Paragraphs 25, 27), suggesting a slight
modification in this scheme that is necessary for us.

We fix sufficiently large odd numbers n, h, d according to Paragraph 19
[10] (see p. 218) and require that h ≡ 3( mod 4). As in Paragraph 27
[10], we denote by G(0) = F2 the free group with basis a, b and set R0 = ∅.
Suppose, by induction, that we have defined the set of relators Ri−1 and the
group G(i− 1) = 〈a, b ‖r = 1, r ∈ Ri−1〉.

A non-empty word A over {a, b} is called a simple word in rank i − 1
if it is not conjugate in the group G(i − 1) to a power of a shorter word
and is not conjugate in G(i − 1) to a power of a period of rank k ≤ i − 1.
Denote by Xi a maximal set of simple words of length i which are simple in
rank i − 1 and with the condition that A,B ∈ Xi and A 6≡ B implies that
A is not conjugate in rank i− 1 to B or B−1. The words from Xi are called
periods of rank i. We note right away that we declare all periods from Xi to
be periods of the second type in the sense of §25.1 [10].

For each period A ∈ Xi we fix some maximal subset of words YA such
that:

1. if T ∈ YA, then 1 ≤ |T | < d|A|;
2. each double coset of the form 〈A〉 g 〈A〉 of subgroups of G(i − 1)

contains at most one word in YA, and this word is of minimal length among
the words representing this double coset.

For an arbitrary A ∈ Xi, if a is not contained in the subgroup 〈A〉 of
G(i − 1), then for each word T ∈ YA which is not contained in the double
cosets 〈A〉 bab−1 〈A〉 and 〈A〉 b 〈A〉 of the group G(i − 1), we introduce a
defining relation

aAnTAn+5T · · ·TAn+5h−5, (1)

and for each word T ∈ YA which is not contained in 〈A〉 a 〈A〉 and 〈A〉 b 〈A〉
in G(i− 1), we introduce a relation

bab−1An+2TAn+7T · · ·TAn+5h−3, (2)

and if b is not contained in the subgroup 〈A〉 of the group G(i− 1), then for
every word T ∈ YA which is not contained in 〈A〉 bab−1 〈A〉 and 〈A〉 a 〈A〉 in
G(i− 1), we introduce a relation

b2An+4TAn+9T · · ·TAn+5h−1. (3)
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The set of relations of the form (1), (2), (3) is denoted by Pi. Finally, we
set Ri = Ri−1

⋃
Pi,

G(i) = 〈a, b |R = 1, R ∈ Ri〉 (4)

and

G(∞) =

〈
a, b |R = 1, R ∈

∞⋃
i=1

Ri

〉
. (5)

2 Auxiliary lemmas

Lemma 1 The element b is not contained in the subgroup generated by the
elements a, bab−1 and b2 in G(∞).

Proof. From the definition of words (1), (2) and (3), it follows that in each
of these relations, the word T appears h − 1 times, i.e., an even number
of times. In turn, the word A appears in the defining relation (1) exactly

nh + 5h(h−1)
2

times, which is an even number by the choice of odd numbers
n and h (h ≡ 3( mod 4)). Similarly, the word A is included in the defining

relations (2) and (3), respectively nh + 5h(h−1)
2

+ 2h and nh + 5h(h−1)
2

+ 4h
times, i.e., again an even number of times. From this it follows that in each
of the relations (1), (2), (3) of the group G(∞), the letter b appears an even
number of times and, in particular, in G(∞), the element b is not contained
in the subgroup generated by the elements a, bab−1 and b2. �

Let us denote by N the subgroup of the group G(∞) generated by the
images of the elements a, bab−1, b2:

N =
〈
a, bab−1, b2

〉
.

Since a, b2 ∈ N and b 6∈ N , then (G(∞) : N) = 2.
The following lemma is an analogue of Lemma 27.1 in [10] and is proved

in a similar way.

Lemma 2 Let V V1 and V V ′1 be cyclic shifts of a word R±1, where R ∈ Pi,
and V contains a subword of the form AcT1A

mT2A
c, where c = d+3, m ≥ n,

and the words T1 and T2 are a, bab−1, or b2, or belong to the set YA. Then
V V1 ≡ V V ′1 . The word R is not a proper power in F2.

In the Paragraph 25 [10], the conditions R1–R7 are defined.

Lemma 3 Presentation (4) of the group G(i) satisfies conditions R1−R7.

Proof. Condition R5 follows from Lemma 2, and conditions R1−R4, R6,
R7 are verified exactly as in Lemma 27.2 [10]. �
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Lemma 4 (Lemma 27.3 [10]) Suppose that a presentation of a group G
satisfies the conditions R1−R7, and let H be a non-abelian subgroup of G.
Then there is a period F of some rank i ≥ 1 and a word T not commuting
with F in G such that |T | < 3|F |, and the subgroup 〈F, T 〉 is contained in a
subgroup conjugate to H in G.

Lemma 5 Any non-abelian subgroup of G(∞) contains N .

Proof. Let H be a non-abelian subgroup. Some subgroup H1 conjugate to
H contains elements F and T satisfying the conclusion of Lemma 4. Since
|T | < 3|F | < d|F |, it follows from the definition of relations (1), (2), (3)
that a, bab−1, b2 ∈ H1, that is, N ⊂ H1. Since N is a normal subgroup, then
N ⊂ H. �

From Theorem 26.5 [10], follows

Lemma 6 The centralizer of a non-trivial element X ∈ G(∞) is cyclic.
Any abelian subgroup of G(∞) is cyclic.

From Theorem 26.4(1) [10], follows

Lemma 7 The group G(∞) is torsion-free.

By analogy with Theorem 28.3 [10], it is proved

Lemma 8 The subgroup N of G(∞) is simple and any of its proper sub-
groups is infinite cyclic.

3 Proofs of main theorems

Proof of Theorem 1 From Lemma 6 and Lemma 8, it follows that G(∞)
is an infinite non-abelian group. It is not a simple group because of (G(∞) :
N) = 2. Let us prove that the set {b, aba−1} is a total dominating set for
G(∞).

Choose a non-trivial element X ∈ G(∞). Since ab 6= ba, then baba−1 6=
aba−1b by Lemma 25.14 [10]. Therefore, by Lemma 6 one of the subgroups
〈b,X〉 and 〈aba−1, X〉 is non-abelian. Indeed, otherwise the elements b and
aba−1 would belong to the centralizer of X, which is a cyclic group. Hence,
N ⊂ 〈b,X〉 or N ⊂ 〈aba−1, X〉 by Lemma 5. Since a ∈ N , this means that
either G(∞) = 〈b,X〉 or G(∞) = 〈aba−1, X〉. �

Proof of Theorem 2 As it was mentioned above, from Lemma 6 and Lemma
8, it follows that ab 6= ba. Choose an arbitrary finite sequence of non-trivial
elements X1, X2, · · · , Xk from G(∞). First, let us prove that atba−tasba−s 6=
asba−satba−t for t 6= s. Indeed, otherwise at−sbas−tb = bat−sbas−t, which by



6 V. S. ATABEKYAN AND H. T. ASLANYAN

Lemma 25.14 [10] means that bat−s = at−sb. Thus, by Lemma 6, a and
b belong to the centralizer of at−s, which is only possible if t = s. Conse-
quently, as in the proof of Theorem 1, for some s and for any i, the subgroups
〈asba−s, Xi〉 are non-abelian. Then N ⊂ 〈asba−s, Xi〉 by Lemma 5, that is,
G(∞) = 〈asba−s, Xi〉 for any i = 1, ..., k due to a ∈ N . We obtain that the
conjugacy class b provides the equality u(G(∞)) =∞. �

Acknowledgments. This work is partially supported by the SC of Republic
of Armenia research project 21T-1A213.

The authors thank the anonymous reviewers for carefully reading the
manuscript and for helpful comments and remarks that helped improve the
paper.

References

[1] J.L. Brenner and J. Wiegold, Two-generator groups.
I. Michigan Math. J., 22 (1975), no. 1, pp. 53–64.
https://doi.org/10.1307/mmj/1029001421

[2] T. Breuer, R.M. Guralnick and W.M. Kantor, Probabilistic generation
of finite simple groups, II. J. Algebra, 320 (2008), no. 2, pp. 443–494.
https://doi.org/10.1016/j.jalgebra.2007.10.028

[3] T.C. Burness and S. Guest, On the uniform spread of almost
simple linear groups. Nagoya Math. J., 209 (2013), pp. 35–109.
https://doi.org/10.1017/s0027763000010680

[4] T. Burness, R. Guralnick and S. Harper, The spread of a fi-
nite group. Ann. of Math., 193 (2021), no. 2, pp. 619–687.
https://doi.org/10.4007/annals.2021.193.2.5

[5] Ch.G. Cox, On the spread of infinite groups. Proceedings of
the Edinburgh Mathematical Society, 65 (2022), pp. 214–228.
https://doi.org/10.1017/S0013091522000037

[6] C. Donoven and S. Harper, Infinite 3/2-generated groups.
Bull. London Math. Soc., 52 (2020), no. 4, pp. 657–673.
https://doi.org/10.1112/blms.12356

[7] R.M. Guralnick and W.M. Kantor, Probabilistic generation of fi-
nite simple groups. J. Algebra, 234 (2000), no. 2, pp. 743–792.
https://doi.org/10.1006/jabr.2000.8357

https://doi.org/10.1307/mmj/1029001421
https://doi.org/10.1016/j.jalgebra.2007.10.028
https://doi.org/10.1017/s0027763000010680
https://doi.org/10.4007/annals.2021.193.2.5
https://doi.org/10.1017/S0013091522000037
https://doi.org/10.1112/blms.12356
https://doi.org/10.1006/jabr.2000.8357


ON THE TOTAL DOMINATING SET OF 3/2-GENERATED GROUPS 7

[8] R.M. Guralnick, E. Plotkin and A. Shalev, Burnside-type problems
related to solvability. Internat. J. Algebra Comput., 17 (2007), no. 5-6,
pp. 1033–1048. https://doi.org/10.1142/s0218196707003962

[9] A.Yu. Olshanskii, Groups of bounded period with subgroups of prime
order. Algebra Logika, 21 (1982), no. 5, pp. 553–618.

[10] A.Yu. Olshanskii, The Geometry of Defining Relations in Groups,
Kluwer Academic Publishers, 1991. https://doi.org/10.1007/978-94-
011-3618-1

Varujan S. Atabekyan
Yerevan State University,
Alex Manoogian str. 1, 0025 Yerevan, Armenia.
avarujan@ysu.am

Haik T. Aslanyan
American University of Armenia,
Marshal Bagramian ave. 40, 0019 Yerevan, Armenia.
haikaslanyan@gmail.com

Please, cite to this paper as published in
Armen. J. Math., V. 16, N. 10(2024), pp. 1–7
https://doi.org/10.52737/18291163-2024.16.10-1-7

https://doi.org/10.1142/s0218196707003962
https://doi.org/10.1007/978-94-011-3618-1
https://doi.org/10.1007/978-94-011-3618-1
mailto: avarujan@ysu.am
mailto: haikaslanyan@gmail.com 
https://doi.org/10.52737/18291163-2024.16.10-1-7

