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Abstract. We present some results involving several ordered
structures related to the construction of MK(T )-spaces. These
are special closure spaces defined on the basis of a previously
given one K and were developed by Fernández and Brunetta,
2023. Specifically, we show that for every T ∈ K, the poset
REK(T ) of weak-relative closure spaces is a sublattice of CSP(X)
(the family of all the spaces with support X). On the other hand,
it will be showed that the poset M(K) of all the MK(T )-spaces
does not verify this property, but it is a complete lattice itself.
Also, we show in which way some order-theoretic properties are
related to the recovery of closure spaces. Finally, we show some
applications of MK(T )-spaces to the class of distributive logics.
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Introduction

Closure spaces (CSP) have been extensively studied in the literature, from
different points of view (see [17] for a historical survey). For instance, when
they are defined by means of closure systems, they can be understood as a
natural generalization of the families of closed sets of the topological spaces.
In addition, they can be used in several branches of Mathematics, since the
definition of several generated substructures (generated subgroups, rings,
vector spaces, filters, and so on) determines closure operators. In addition,
they can be applied to Abstract Logic considering that an abstract logic is,
simply, a closure space whose support is an abstract algebra. Moreover, CSP
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are often studied by their own right (see [15] or [16] as examples of recent
works in the area).

In [9], we defined CSP that are determined by intersections, as a gener-
alization of the notion of a relative closure space. Informally, given a fixed
CSP (X,K) (being K the family of the closed sets of such space) and given
T ∈ K, it is defined MK(T ) := {A ∈ X : A ∩ T ∈ K}. It is easy to see that
the pair (X,MK(T )) is a CSP, too. This definition generalizes the notion
of the closure space relative to T (which will be remembered later) in the
following sense: the support of MK(T ) is the whole set X, instead of T , the
standard support set of the relative closure spaces.

The definition of CSP of the form (X,MK(T )) (informally called MK(T )-
spaces here) is related to several interesting order-theoretical questions. For
instance, it suggests the definition of a more general family of closure spaces,
which was called REK(T ). It was proven in [9] that REK(T ):=(REK(T ),⊆)
is a poset with greatest element MK(T ). However, some order-theoretical
questions remained open. Among them, the question if REK(T ) is a sub-
lattice of CSP(X) (the family of all the CSP with support X, ordered by
inclusion), was unanswered. The first goal of this paper is, precisely, the
demonstration that REK(T ) is a sublattice of CSP(X).

This result suggested some questions of a similar nature (which, by the
way, were very natural in the context of the MK(T )-spaces, as it will be
shown along this paper). For instance, it can be defined the set M(K) :=
{MK(T ) : T ∈ K}. It was already shown that T2 ⊆ T1 implies MK(T1) ⊆
MK(T2). Thus, MK(X) = K is the first element of the bounded poset
M(K) := (M(K),⊆). However, there were some additional open questions
about the order-theoretical behavior of this poset. In this work, we will show
that M(K) is a lattice itself, but it is not a sublattice of CSP(X). By the
way, the technique applied to prove this result is based on the definition of
a certain equivalence relation on K, as we will show here.

Also, this paper studies the recovery of MK(T )-spaces. Informally, the
recovery of a pair (T,K), with T ∈ K ∈ CSP (X) is the family of all the
CSP H such that MH(T ) = K. Bearing this in mind, some results referred
to this notion will be obtained here. Among them, we relate the families
F(K,T ) with the sets REK(T ) already mentioned. In addition, we will show
some specific results for the cases where F(K,T ) is a singleton.

Finally, we show some results of MK(T )-spaces in the context of Abstract
Logic. For that, note first that the “process” of obtention of an MK(T )-
space can be understood as a “transformation” K −→ MK(T ) determined
by T ∈ K. Thus, it is usual to ask whether certain properties of K can be
transferred to MK(T ). For instance, the initial study of MK(T )-spaces in
[9] was motivated by problems related to the transference of finitariness and
of structurality, being these properties important in the context of Abstract
Logic. Continuing with the application of MK(T )-spaces to the study of
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logical properties, we will show here some conditions that are necessary
for the preservation of the main properties of distributive logics (which will
be defined later). Moreover, these results can be related to some order-
theoretical aspects of the involved logics, as we shall see.

In order to develop all the results mentioned above, we will only con-
sider the notion of closure space, by the moment: other definitions will be
explained all along the paper.

Definition 1 Let X be a non-empty set.
(a) A closure system on X (c.s.) is a family K ⊆ ℘(X) closed by arbitrary
intersections (note that, by vacuity, X ∈ K for every c.s.).
(b) A closure operator on X (c.o.) is a map Cl : ℘(X) −→ ℘(X) satisfying
for every B,D ⊆ X,

b.1) Extensiveness: D ⊆ Cl(B).
b.2) Idempotency: Cl(Cl(B)) ⊆ Cl(B).
b.3) Monotonicity: if B ⊆ D, then Cl(B) ⊆ Cl(D).

The previous notions can be interdefined, as it is well-known.

Proposition 1 If Cl is a c.o. on X, then KCl := {B ⊆ X : B = Cl(B)}
is a c.s. on X. Reciprocally, for every closure system K ⊆ ℘(X), the map
ClK : ℘(X) −→ ℘(X) defined as ClK(B) =

⋂
D∈FK

B
D (where FKB := {D ∈

K : B ⊆ D}) is a c.o. on X. Moreover, KClK = K and ClKCl
= Cl.

From this, the following definition makes sense.

Definition 2 A closure space (CSP) is a pair (X,K) being K a c.s. on
X. Equivalently, we can say that a CSP is a pair (X,Cl) (with Cl a c.o.)
without risk of confusion.

Remark 1 As we said before, the definition of closure space simply gen-
eralizes the well-known families of closed sets of topological spaces (T.S.) of
the form (X, τ), where τ ⊆ ℘(X), additionally verifying:
− {∅, X} ⊆ τ ,
− τ is closed under arbitrary unions and under finite intersections.

In this case the family κτ := {V c : V ∈ τ}} is a c.s. (with additional
properties), and therefore, (X, κτ ) is a CSP. Note that there are other ways
of generalization of topological spaces. We will mention here, among others:
• Generalized topologies (see [7])]: pairs of the form (X,µ) such that µ is
closed under arbitrary unions (this implies that ∅ ∈ µ; on the other hand,
there are not requirements on X).
• Supra-topological spaces (see [1, 14]): roughly speaking, generalized topolo-
gies with X ∈ µ.
• Infra-topological spaces (see [18]): pairs (X, τi) such that τi is closed only
under finite intersections and {∅, X} ⊆ τi.
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All these notions (which are focused on open sets) also determine closed
sets, in the obvious way. From this, the notion of MK(T )-spaces that we
will develop in this paper can be adapted and studied in all the above gen-
eralizations of T.S. We will return to this point in the last section of this
paper.

Note additionally that closure spaces can be also defined by other ways.
In fact, it is very usual to work with closure relations ` ℘(X)×X, specially
when the closure spaces are obtained in the context of (Abstract) Logic.
However, we will work here only with the notions given in Definition 1.

A standard order-theoretical result about closure spaces is the following

Proposition 2 Given a CSP (X,K), the pair (K,⊆) is a complete lattice,
with ∧

i∈I

K
Bi =

⋂
i∈I

Bi and
∨
i∈I

K
Bi = ClK(

⋃
i∈I

Bi).

Here, the greatest (lowest) element of the lattice (K,⊆) is BK
1 = X

(BK
0 = ClK(∅)).

All the notions above indicated will be used several times along this
paper, depending on the results to be discussed. In any case, the more usual
formalization of CSP to be considered here will be (X,K) based on closure
systems. By the way, these c.s. will be denoted by K, K, H, H, and so on,
with sub/superscripts if were necessary.

Proposition 3 Given a fixed set X 6= ∅, the pair CSP(X) := (CSP (X),⊆)
(considering here CSP (X) = {K : K is a CSP of X}) is a complete lattice.
In this case, given any family {Ki}i∈I of CSP,

•
∧CSP(X){Ki}i∈I =

⋂
i∈I
Ki,

•
∨CSP(X){Ki}i∈I =

∧CSP(X){K : Ki ⊆ K for every i ∈ I},
or, alternatively,
•
∨CSP(X){Ki}i∈I =

⋂
F being F := {K :

⋃
i∈I
Ki ⊆ K}.

The previous standard results can be found on [3], for instance. They
will serve as the basis of this paper.

We conclude this section recalling the notion of relative closure space (as
a generalization of the relative topological spaces, see [8]), with the purpose
of fixing some notation.

Definition 3 Given K ∈ CSP (X), the closure space relative to T ⊆ X is
K�T := {B ∩ T : B ∈ K}. Note that K�T belongs to CSP (T ) instead of to
CSP (X). In addition, we define (K�T )∗ := K�T ∪{X}. It is easy to see that
(K�T )∗ ∈ CSP (X).

We remark that the definition above constitutes the underlying motiva-
tion of this notes. We will use it all along this paper.
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1 MK(T )-spaces and the families REK(T )

Definition 4 Let (X,K) be a (fixed) closure space, and T ⊆ X. The family
MK(T ) ⊆ ℘(X) is defined as MK(T ) := {A ⊆ X : A ∩ T ∈ K}. If MK(T )
is closed by arbitrary intersections, then the pair (X,MK(T )) will be called
the meet-closure space determined by K and T . By extension, every CSP
(X,H) such that there is T ⊆ X with H = MK(T ) will be called informally
as an MK(T )-space.

It is easy to prove that MK(T ) is a CSP iff T ∈ K. From this, in this
paper we will only focus on families MK(T ) such that T ∈ K. Some basic
results about MK(T )-spaces are summarized in the sequel.

Proposition 4 Given a c.s. (X,K), for every T , T1, T2 ∈ K, it holds
(a) For every B ⊇ T , B ∈MK(T ).
(b) T1 ⊆ T2 implies MK(T2) ⊆ MK(T1) (and thus, for every B ⊆ X,
ClMK(T1)(B) ⊆ ClMK(T2)(B)).
(c) If T = X, then MK(T ) = K; MK(T ) = [T ) := {W ⊆ X : T ⊆ W} if
and only if T = BK

0 (being Bk
0 the lowest element of K, cf. Proposition 2).

(d) K ⊆ MK(T ) for every T ∈ K (and thus, if B ⊆ X, ClMK(T )(B) ⊆
ClK(B)).
(e) For every B ⊆ X, ClMK(BK

0 )(B) = B ∪ BK
0 . Therefore, B ∪ BK

0 ⊇
ClMK(T )(B).
(f) ClMK(T )(B) ⊆ B ∪ T for every B ⊆ X.
(g) For every B ⊆ T , it holds

(g.i) B ∈MK(T ) iff B ∈ K,
(g.ii) ClMK(T )(B) ⊆ T ,
(g.iii) ClMK(T )(B) = ClK(B).

(h) The lowest elements of K and of MK(T ) coincide. That is, BK
0 =

B
MK(T )
0 .

In addition, the closure operator referred to any MK(T )-space can be
characterized as follows:

Lemma 1 ClMK(T )(B) = ClK(B ∩ T ) ∪B for every B ⊆ X.

Turning back to Proposition 2, we have that (MK(T ),⊆) is a complete
lattice for every T ∈ K. Moreover, from Lemma 1 it follows straightfor-
wardly that given {Bi}i∈I ⊆MK(T ),

•
∧
i∈I

MK(T )Bi =
⋂
i∈I
Bi;

•
∨
i∈I

MK(T )Bi = ClK

( ⋃
i∈I

(Bi ∩ T )
)
∪
⋃
i∈I
Bi =

[∨
i∈I

K(Bi ∩ T )
]
∪
⋃
i∈I
Bi.

That is,
∧
i∈I

M(T )(∨
i∈I

M(T )) can be naturally expressed in terms of
∧
i∈I

K(∨
i∈I

K).
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A deeper result about MK(T )-spaces can be proved considering Defi-
nition 3. Specifically, if we consider Proposition 4 (g.i), we see that this
simple property generalizes the notion of relative closure spaces of the form
(T,K�T ). This is because these spaces verifiy that property, too. That is:
for every A ⊆ T , A ∈ K�T iff A ∈ K. A similar fact happens with the
MK(T )-spaces, but in them it is considered all the set X as their support.
This comment suggests the following definition:

Definition 5 Given a c.s. (X,K) and T ∈ K, we define the family

REK(T ) := {H ∈ CSP (X) : for every B ⊆ T,B ∈ K iff B ∈ H}.

Proposition 5 The poset REK(T ) := (REK(T ),⊆) is a bounded one, being
MK(T ) its greatest element and (K�T )∗ := K�T ∪ {X} its lowest element.

All the previous results were proven in [9]. By the way, since obviously
K ∈ REK(T ), we have that (K�T )∗ ⊆ K ⊆ MK(T ). Proposition 5 can be
improved as it follows.

Theorem 1 REK(T ) is a sublattice of CSP(X).

Proof. Let K1, K2 ∈ REK(T ). Then:
(a) K1∨CSP(X)K2 ∈ REK(T ). Recall here (see Proposition 3) that K1∨CSP(X)

K2 =
⋂
F , being the family F := {H ∈ CSP (X) : K1 ∪K2 ⊆ H}. In addi-

tion, note that MK(T ) ∈ F , because it is the greatest element of REK(T ).
If B ∈ K1 ∨CSP(X) K2, then B ∈ MK(T ), from the exposed above. Since

MK(T ) ∈ REK(T ) and taking into account Definition 5 we have B ∈ K.
Suppose now that B ∈ K. Then obviously B ∈ K1 ⊆ K1 ∪K2. Hence,

for every H ∈ F , B ∈ H. That is, B ∈
⋂
F = K1 ∨CSP(X) K2.

Therefore, K1 ∨CSP(X) K2 ∈ REK(T ), cf. Definition 5.
(b) K1 ∧CSP(X) K2 = K1 ∩ K2 ∈ REK(T ). In fact, for every B ⊆ T , K1,
K2 ∈ REK(T ), one has B ∈ K1∩K2 if and only if B ∈ K. Actually, B ∈ K
if and only if B ∈ K1 and B ∈ K2, that is, if and only if B ∈ K1 ∩K2. �

Note that REK(T ) is not a complete sublattice of CSP (X), since∧CSP(X) ∅ (= ℘(X)) is not, necessarily, an element of REK(T ). However,
the argument exposed for the proposition above can be adapted to arbitrary
families of (specifically) elements of REK(T ). Thus, we have

Proposition 6 REK(T ) is a complete lattice itself.

We conclude this section showing some additional results involving
REK(T ), which will be useful later. Their proofs are easy (recall Defini-
tion 3 here).

Proposition 7 For every H1, H2 ∈ REK(T ), it holds H1�T = H2�T , and
therefore, (H1�T )∗ = (H2�T )∗.

Proposition 8 Suppose T ∈ K ∈ CSP (X). Then K�T = ((K�T )∗)�T .
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2 The poset of all the MK(T )-spaces

Another subposet of CSP(X), of special importance in this section, is the
following

Definition 6 Given a CSP (X,K), we define the poset M(K) := (M(K),⊆)
being M(K) := {H : H = MK(T ) for some T ∈ K}.

Again, it is natural here to ask the following question: is M(K) a sub-
lattice of CSP(X)? Unfortunately, the answer is negative as the following
example shows.

Example 1 Consider X := [1, 7]N = {x ∈ N : 1 ≤ x ≤ 7}. It is easy to see
that the family K1 := {{1}, {1, 2}, {1, 3}, {1, 4, 5}, {1, 2, 6}, {1, 2, 3, 7}, X} is
a CSP with support X. Consider now T1 := {1, 4, 5} and T2 := {1, 2, 3, 7}.
We have that MK1(T1), MK1(T2) ∈M(K1), but MK1(T1)

∧CSP(X) MK1(T2) =
MK1(T1)∩MK1(T2) /∈M(K1). To prove our claim, let us show that for every
T ∈ K1,

MK1(T ) 6= MK1(T1) ∩MK1(T2). (1)

Note that

MK1({1}) = MK1({1, 2}) = MK1({1, 3}) = {W ⊆ X : 1 ∈ W}.

Now, MK1({1}) 6= MK1(T1)∩MK1(T2), because {1, 4} ∈MK1({1})\MK1(T1).
Thus, MK1(T1) ∩MK1(T2) 6= MK1({1, 2}) and then, MK1(T1) ∩MK1(T2) 6=
MK1({1, 3}). In addition, {1, 3, 6} ∈ MK1(T1) ∩MK1(T2) \MK1({1, 2, 6}),
{1, 7} ∈ MK1(T1) \ MK1(T1) ∩ MK1(T2), {1, 5} ∈ MK1(T2) \ MK1(T1) ∩
MK1(T2). Finally, MK1(X) = K1 6= MK1(T1) ∩MK1(T2), obviously. From
all these facts together (that can be checked in a straightforward, thorough,
way), (1) is valid. Hence, M(K) is not a sublattice of CSP(X).

The previous example shows that the meet of CSP(X) does not belong,
in a general way, to M(K). In a similar way, the join of CSP(X) is not
always an element of M(K).

Example 2 Consider X := [1, 7]N again, and

K2 := {{1}, {1, 2}, {1, 3}, {1, 2, 6}, {1, 3, 7}, {1, 2, 3, 5, 7}, X} ∈ CSP (X).

The families K2 and M(K2) are ordered as it is shown in Figure 1. Suppose
now that it holds

MK2(T1) ∨CSP(X) MK2(T2) ∈M(K2). (2)

If we consider T1 := {1, 2, 6} and T2 := {1, 2, 3, 5, 7}, then (supposing
that (2) is valid) MK2(T1) ∨CSP(X) MK2(T2) = MK2(T1) ∨M(K2) MK2(T2)
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(= MK2({1}) = [{1}), according to Proposition 4, (c), and Figure 1). Con-
sider now the family K := [{1}) \ G, with

G := {{1, 5, 6}; {1, 3, 5, 6}; {1, 5, 6, 7}; {1, 3, 5, 6, 7}; {1, 4, 5, 6};
{1, 3, 4, 5, 6}; {1, 4, 5, 6, 7}; {1, 3, 4, 5, 6, 7}} .

By a straightforward checking, K is a CSP, and MK2(T1) ∪MK2(T2) ⊆ K.
These facts would imply (assuming (2))

MK1(T1) ∨CSP(X) MK2(T2) = [{1}) ⊆ K.

But this is not the case. Therefore, MK2(T1) ∨CSP(X) MK2(T2) /∈M(K2).

•
{1}

•{1, 2} •{1, 3}

•{1, 3, 7}

•{1, 2, 3, 5, 7}•{1, 2, 6}

•
X

•
MK2(X) = K2

•MK2({1, 2, 6}) •MK2({1, 3, 7})

•MK2
({1, 2, 3, 5, 7})

•
MK2

({1})

Figure 1: K2 →M(K2)

Note here that in the previous example, M(K2) = (M(K2),⊆) is a lattice
itself. Actually, M(K2) is isomorphic to the “pentagon” M5. In a similar
way, it can be verified that M(K1) of Example 1 is isomorphic to the non-
distributive lattice N5 (both denominations are taken from [4]). Actually,
these cases are not isolated: we will prove in the sequel that the system M(K)
is always a lattice, independently of the properties of the lattice CSP(X).
For that, we need the following

Definition 7 We define the equivalence relation ∼⊆ K×K by: T1 ∼ T2 iff
MK(T1) = MK(T2). In addition, for every T ∈ K, we define T 0 :=

⋂
{A ∈

K : A ∼ T}. That is, T 0 is the smallest set (according to ⊆) of [T ]∼, the
equivalence class of T with respect to the relation ∼.

Proposition 9 Let T ∈ K: for every T ∈ K such that MK(T ) ⊆ MK(T ),

it holds MK(T ∩ T 0
) = MK(T

0
) being T

0
given as in Definition 7.
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Proof. Since T∩T 0 ⊆ T
0
, we have MK(T

0
) ⊆MK(T∩T 0

) by Proposition 4

(b). For the other inclusion, consider F ∈MK(T ∩T 0
). Thus, F ∩(T ∩T 0

) ∈
K, and hence (F ∩ T 0

) ∩ T ∈ K. That is, F ∩ T 0 ∈ MK(T ) ⊆ MK(T
0
)

by Hypothesis. In other words, (F ∩ T 0
) ∩ T = F ∩ T 0 ∈ K. That is,

F ∈MK(T
0
). �

Corollary 1 For every T , T ∈ K such that MK(T ) ⊆ MK(T ), it holds

T
0 ⊆ T .

Proof. By the previous proposition, T
0 ∼ T

0∩T . Then T
0 ⊆ T

0∩T ⊆ T
0
.

That is, T
0 ⊆ T . �

Theorem 2 M(K) = (M(K),⊆) is a lattice, where ∨ and ∧ can be char-
acterized as follows: for every pair {MK(T1),MK(T2)} ⊆M(K),
(a) MK(T1) ∨MK(T2) := MK(T1 ∩ T2),
(b) MK(T2)∧MK(T2) := MK(ClK(T 0

1 ∪T 0
2 )) being T 0

i (i = 1, 2) as presented
in Definition 7.

Proof. Suppose T1, T2 ∈ K. To prove (a), note that by Proposition 4 it
holds MK(Ti) ⊆ MK(T1 ∩ T2) (i = 1, 2). Consider now MK(T ) ∈ M(K)
such that MK(Ti) ⊆MK(T ) for i = 1, 2. We will prove that MK(T1 ∩ T2) ⊆
MK(T ). For that, suppose F ∈ MK(T1 ∩ T2) (that is, F ∩ (T1 ∩ T2) ∈ K).
Hence, F ∩T1 ∈MK(T2) ⊆MK(T ) (by Hypothesis), and then (F ∩T1)∩T ∈
K. This implies that F∩T ∈MK(T1) ⊆MK(T ). Thus, F∩T = (F∩T )∩T ∈
K. That is, F ∈MK(T ), proving our claim.

To prove (b), consider i ∈ {1, 2}. Obviously, MK(ClK(T 0
1 ∪ T 0

2 )) ⊆
MK(T 0

i ) = MK(Ti). Then,

MK(ClK(T 0
1 ∪ T 0

2 )) ⊆MK(Ti). (3)

Consider now T ∈ K such that MK(T ) ⊆MK(Ti), i = 1, 2. By Corollary
1, T 0

1 ⊆ T and T 0
2 ⊆ T , and then ClK(T 0

1 ∪ T 0
2 ) ⊆ T . Hence,

MK(T ) ⊆M(ClK(T 0
1 ∪ T 0

2 )). (4)

(by Proposition 4 again). From (3) and (4), (b) is proved. �

Remark 2 The equivalence relation ∼ is not compatible w.r.t. to ∪. This
is the reason why we must deal specifically with the closed sets of the form
T 0 to obtain ∧ in M(K). Anyway, ∼ is compatible with respect to ∩, which
allows us to obtain the characterization of ∧ in terms of the “T 0-sets”.

Proposition 10 Let Ti ∈ K, i = 1, 2, and let T 0
i be as in Definition 7.

Then MK(T 0
1 ∩ T 0

2 ) = MK(T1 ∩ T2), that is, T 0
1 ∩ T 0

2 ∼ T1 ∩ T2.
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Proof. Since T 0
i ⊆ Ti, i = 1, 2, we have MK(T1 ∩ T2) ⊆ MK(T 0

1 ∩ T 0
2 ).

Suppose now F ∈ MK(T 0
1 ∩ T 0

2 ), that is, F ∩ (T 0
1 ∩ T 0

2 ) ∈ K. Hence,
F∩T 0

1 ∈MK(T 0
2 ) = MK(T2) ⊆MK(T1∩T2), and thus F∩T 0

1 ∈MK(T1∩T2).
Then (F ∩ T 0

1 ) ∩ (T1 ∩ T2) ∈ K and thus F ∩ (T1 ∩ T2) ∈ MK(T 0
1 ) =

MK(T1) ⊆MK(T1 ∩ T2). Then, F ∩ (T1 ∩ T2) ∈MK(T1 ∩ T2), and therefore,
F ∈MK(T1 ∩ T2). This concludes the proof. �

A parallel corollary derived from Proposition 10 is the following

Corollary 2 If T1 ∼ T1
′ and T2 ∼ T2

′, then T1 ∩ T2 ∼ T1
′ ∩ T2

′.

Turning back to the characterization of the join ∨ and the meet ∧ in
M(K) = (M(K),⊆), taking into account Theorem 2 and Proposition 10,
these operations can be defined as follows:

(a) MK(T1) ∨MK(T2) := MK(T 0
1 ∩ T 0

2 ),

(b) MK(T2) ∧MK(T2) := MK(ClK(T 0
1 ∪ T 0

2 )).

In both cases, T 0
i , i = 1, 2, are defined as it is indicated in Definition 7.

Note, finally, that the argumentation in Theorem 2 can be generalized
to families of CSP in CSP (X) with arbitrary cardinality. Thus, it is valid

Theorem 3 (M(K),⊆) is a complete lattice, where
∨M(K) and

∧M(K) for
every family {MK(Ti)}i∈I ⊆M(K), can be characterized as follows:

(a)
∨M(K){MK(Ti)}i∈I := MK

( ⋂
i∈I
T 0
i

)
,

(b)
∧M(K){MK(Ti)}i∈I := MK

(
ClK

( ⋃
i∈I
T 0
i

))
.

3 On recovery of closure spaces

Along this section we will work with several closure spaces at the same time.
With this in mind, note that if T ∈ K1 ⊆ K2, then MK1(T ) ⊆ MK2(T ).
From this and from Proposition 2.2, it holds: if T1, T2 ∈ K1 ∩K2, K1 ⊆ K2

and T1 ⊆ T2, then

� MK1(T2) ⊆MK1(T1),
� MK1(T2) ⊆MK2(T2),
� MK1(T1) ⊆MK2(T1),
� MK2(T2) ⊆MK2(T1).

MK1(T1) and MK2(T2) are incomparable families, obviously.
Besides that, the use of different closure spaces at the same time allows

getting a certain kind of “idempotency” in the application of MK(T )-spaces
in the following sense.
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Proposition 11 Let T ∈ K ∈ CSP (X). Then MMK(T )(T ) = MK(T ).

Proof. Obviously, T ∈MK(T ) and then MMK(T )(T ) is a CSP. In addition,
MK(T ) ⊆ MMK(T )(T ), because K ⊆ MK(T ). On the other hand, if B ∈
MMK(T )(T ), then B ∩ T ∈ MK(T ), and then (B ∩ T ) ∩ T ∈ K. Thus,
B ∩ T ∈ K, which means that B ∈MK(T ). �

We will see that these preliminar results are related with the essential
notion of this section.

Definition 8 Let (K,T ) be a pair such that T ∈ K ∈ CSP (X). The
recovery of (K,T ) is the family F(K,T ) := {H ∈ CSP (X) : MH(T ) = K}.
Every closure space H ∈ F(K,T ) will be called a pre-(K,T ) space.

Roughly speaking, the recovery F(K,T ) of (K,T ) can be intended as fol-
lows: consider T ⊆ X fixed and suppose that M...(T ) (with “. . . ” to be
fulfilled with certain CSP) can be understood as a map between certain
classes of specific closure spaces (specifically, from the family of the CSP
having T as a closed set, to itself), then F(K,T ) is the inverse image (for K)
of such kind of map. This explains the name “recovery” for this family.

Some basic results about the families F(K,T ) are summarized in the sequel.

Proposition 12 Given T ∈ K ∈ CSP (X), it holds
(a) For every H ∈ F(K,T ), (H�T )∗ = (K�T )∗.
(b) If H ∈ F(K,T ), then (H�T )∗ ∈ F(K,T ), too.
(c) If H ∈ F(K,T ), then MH(T ) ∈ F(K,T ), too.

Proof. (a) Note that (H�T )∗ ∈ REH(T ) and K = MH(T ) ∈ REH(T ), too.
Then, by Propositions 7 and 8, we have (H�T )∗ = (((H�T )∗)�T )∗ = (K�T )∗.

(b) We will prove that M(H�T )∗(T ) = K by double inclusion. Suppose
W ∈ M(H�T )∗(T ), then W ∩ T ∈ (H�T )∗ ⊆ H, obviously. Therefore, W ∈
MH(T ) = K. On the other hand, suppose W ∈ K = MH(T ). Then,
W ∩ T ∈ H. Thus, W ∩ T = (W ∩ T ) ∩ T ∈ (H�T ) ⊆ (H�T )∗. Hence,
W ∈M(H�T )∗(T ).

(c) It is a consequence of Proposition 11. �

Items (b) and (c) establish that F(T,K) is closed by a certain kind of “op-
erators” for closure systems. Roughly speaking, (b) is focused on the “ex-
tended restriction” (. . .�T )∗, meanwhile (c) proves preservation of belonging
to F(K,T ) after “application of the operator M...(T )”. On the other hand,
items (a) and (b) are referred to closure spaces of the form (H�T )∗ which, as
we said, are the first elements of the families REH(T ) (see Section 1). By
the way, the relation of this kind of families with F(K,T ) is stronger yet.
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Proposition 13 Suppose T ∈ K ∈ CSP (X). For every H1, H2 ∈ F(K,T ) it
holds that REH1(T ) = REH2(T ).

Proof. Our hypothesis is MH1(T ) = MH2(T ) (= K). We will prove that
REH1(T ) ⊆ REH2(T ) (the other inclusion is similar). For that, suppose H
in REH1(T ). That is, for every B ⊆ T ,

B ∈ H iff B ∈ H1. (5)

Consider now any subset F ⊆ T . If F ∈ H, then F ∈ H1 by (5). Thus,
F ∈ MH1(T ) = MH2(T ) ∈ REH2(T ) (by Proposition 5). Since F ⊆ T , we
have

F ∈ H2. (6)

On the other hand, suppose F ∈ H2 ⊆ MH2(T ) = MH1(T ) ∈ REH1(T )
(by Proposition 5, again). Since F ⊆ T , we have F ∈ H1. Hence, by (5),

F ∈ H. (7)

Thus, by (6) and (7), for every F ⊆ T , it holds that F ∈ H iff F ∈ H2. This
proves that H ∈ REH2(T ). We have just proven that REH1(T ) ⊆ REH2(T ),
as it was desired. �

The previous result provides an interesting connection between the fam-
ilies F(K,T ) and the set REK(T ). In fact, it implies that if H1, H2 ∈ F(K,T ),
then these closure systems can only differ in the sets B such that B 6⊆ T .

An additional problem about F(K,T ) is the following: in which case the
family F(K,T ) is a singleton? That is, when is it possible to know which
is the only family H in CSP (X) (if there is such only set, indeed) such
that MH(T ) = K? To understand this motivation, let us see some exam-
ples/counterexamples.

Example 3 Consider X = {1, 2, 3, 4, 5} and (K,T1) with T1 := {1, 3} and
K = {{1, 3}; {1, 2, 3}; {1, 3, 4}; {1, 3, 5}; {1, 2, 3, 4}; {1, 2, 3, 5}; {1, 3, 4, 5};X}.

We have that F(K,T1) is not a singleton because we have the following
pre-(K,T1)-spaces (among others):

H1 = {{1, 3}; {1, 2, 3}; {1, 3, 4}; {1, 3, 4, 5};X},

H2 = {{1, 3};X}.

By a straightforward checking, MH1(T1) = MH2(T1) = K.

Some (partial) answers to the problem posed above are related to the
status of T in the ordered structure of K. Indeed, the following results deal
with some properties of F(K,T ) when T is the lowest (greatest) element of K.
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Proposition 14 For every H ∈ F(K,T ), B
H
0 = BK

0 .

Proof. Obvious, taking into account Proposition 4 (h). �

Lemma 2 Let K be a CSP such that |K| ≥ 3, and let BK
0 be its first

element. Then F(K,Bk
0 ) is not unitary.

Proof. Recalling the notation [B):={W ⊆ X : B ⊆ W}, we have two cases:
(a) K 6= [BK

0 ). Then, F(K,BK
0 ) = ∅. If there is some H ∈ F(K,BK

0 ), then (using

Propositions 14 and 4 (c)), K = MH(BK
0 ) = MH(BH

0 ) = [BH
0 ) = [BK

0 ),
contradicting our assumption.
(b) K = [BK

0 ). Then, the following fact is valid: for every CSP H ⊆ K such
that BK

0 ∈ H, it holds that H ∈ F(K,BK
0 ). Indeed, BH

0 = BK
0 again, and thus

MH(BK
0 ) = [BK

0 ) = K. In particular, K and K ′ := {BK
0 , X} ∈ F(K,BK

0 )

being K 6= K ′ because of our hypothesis. Therefore, |F(K,BK
0 )| ≥ 2 in this

case. �

On the other hand, we have this obvious fact since F(K,X) = {K}.

Proposition 15 F(K,X) is always unitary for every K ∈ CSP (X).

The last result of this section shows that, even considering closed sets T
“very near to X”, some information about recovery sets is missed.

Proposition 16 Let T ∈ K ∈ CSP (X) such that T = X \ {a} for some
a ∈ X. Then
(a) K \ {T} ∈ CSP (X).
(b) For every B ∈ K, X 6= B 6= T , we have MK(B) = MK\{T}(B).
(c) For every B ∈ K \ {T}, F(MK(B),B) is not unitary.

Proof. (a) Let G = {Bi}i∈I be a family included in K \ {T}. Then, obvi-
ously,

⋂
G ∈ K. In addition,

⋂
G 6= T . In fact, if I = ∅, then

⋂
G = X 6= T .

On the other hand, suppose that I 6= ∅. We have two possibilities here. If⋂
G = Bi0 ∈ G, then

⋂
G 6= T . If not, there are B1, B2 ∈ G, b1, b2 ∈ X,

such that b1 ∈ B1 \B2, b2 ∈ B2 \B1, b1 6= b2. That is, there are at least two
elements in X not belonging to B1 ∩ B2. Thus,

⋂
G ⊆ B1 ∩ B2 6= T in this

case, too. From all this,
⋂
G ∈ K \ {T}.

(b) Given B ∈ K \ {T}, we only will prove that MK(B) ⊆ MK\{T}(B),
because of the previous comments. That is, we will prove that for every D ⊆
X, if D ∩B ∈ K, then D ∩B 6= T . We have the following cases/subcases:
If B ⊆ T , then, by Hypothesis, B ⊂ T . Thus, D ∩B 6= T , obviously.
If B 6⊆ T , then a ∈ B (because T = X \ {a}). In addition, since B 6= X,
there is b /∈ B, and then b ∈ T \ B, b 6= a. Now, if a ∈ D, then a ∈ B ∩D,
a /∈ T . Otherwise, b /∈ D ∩B. Hence, T 6= D ∩B in both cases.

Finally, (c) is immediate from (b). �
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4 Some applications to distributive logics

As we said at the beginning of this work, MK(T )-spaces can be studied in
the context of Abstract Logic. The last section of this paper is devoted to
these topics. In particular, we will study some relations between the MK(T )-
spaces and the family of distributive logics to be defined in the sequel. For
the self-contention of this paper, let us recall first the formal definition of
abstract logic (this definition is based on [3, 10] and, considering its algebraic
aspects, on [4]).

Definition 9 An abstract algebra is a pair A = (A, {fi}i∈I) such that for
every i ∈ I, fi is an operation fi : Ani → A with ni ∈ ω, being ni the arity
of fi (the ordered set of the arities of such maps is the similarity type of A).
An abstract logic is just a closure space of the form L = (A,K), being A the
support of an abstract algebra A.1

In this paper, we will work specifically with the class of distributive
logics, whose definition and basic development can be found in [11] and [12].
These logics are built up considering the notion of the closure operator ClK
as fundamental one. Recall here that we can work with c.o. ClK (and with
the underlying closure operators ClMK(T )) instead of with closure systems
because of Lemma 1. Then, this change is insignificant w.r.t. the results
to be obtained. Besides that, some usual abbreviations in the context of
closure operators applied to logic are the following: ClK(B∪{a}) is denoted
simply as ClK(B, a). With the same spirit, ClK(a, b) denotes ClK({a, b}).

Definition 10 A distributive logic is a logic (A,K) defined on an algebra
A = (A,∧,∨) of type (2, 2) such that ClK verifies the following properties:

(1) PCI w.r.t. ∧: ClK(a, b) = ClK(a ∧ b) for every a, b ∈ A,
(2) PDI w.r.t ∨: ClK(Y, a) ∩ ClK(Y, b) = Cl(Y, a ∨ b) for every

Y ∪ {a, b} ⊆ A,
(3) Fin: ClK(A) =

⋃
{ClK(B) : B ∈ ℘fin(A)}, where ℘fin(A) := {B ⊆

A : B is finite},
(4) nPA: ClK(∅) =

⋂
{ClK(Y ) : ∅ 6= Y ⊆ A}.

Property Fin is usually called finitariness (or compactness). In addition,
a logic that verifies nPA is called not pseudo-axiomatic. This property is
equivalent to say that ∅ /∈ B for some basis B of K, cf. [11] (recall here that
B is a basis of K if and only if every T ∈ K can be expressed by intersections
of elements of B.). Thus, every logic L = (A,K) such that ∅ /∈ K is a not
pseudo-axiomatic one.

1Following the standard literature in Universal Algebra and Abstract Logic, we do not
denote the supports of the abstract algebras by X but by A.
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We will begin this section analyzing if every one of the properties (1)-(4)
is preserved in the MK(T )-spaces. We will answer this question “item by
item”, by means of several results/counterexamples.

Example 4 PCI is not preserved by applications of MK(T ). Let (A,∨,∧)
be the algebra with A = {0, a, 1} such that ∧ (∨) is the meet (join) defined
on the chain 0 ≤ a ≤ 1. Let (A,K) be the logic such that K = {{1}, A},
which verifies PCI, straightforwardly (see Table 1). On the other hand, con-
sidering {1} ∈ K, we have that MK({1}) = {{1}, {0, 1}, {a, 1}, A}. Then,
(A,M({1})) does not verify PCI according to Table 2 below.

The same tables show that (A,K) verifies PDI, but this property is
not verified by the closure space MK({1}). Indeed, ClMK({1})(0 ∨ a) =
ClMK({1})(a) = {a, 1} 6= {1} = ClMK({1})(0) ∩ ClMK({1})(a).

x y x ∧ y ClK(x, y) ClK(x ∧ y)
0 a 0 A A
0 1 0 A A
a 1 a A A

Table 1: ClK(x, y) and ClK(x ∧ y)

x y x ∧ y ClMK({1})(x, y) ClMK({1})(x ∧ y)
0 a 0 X {0, 1}
0 1 0 {0, 1} {0, 1}
a 1 a {a, 1} {a, 1}

Table 2: ClMK({1})(x, y) and ClMK({1})(x ∧ y)

Finitariness is always preserved by MK(T )-spaces (see [9]). Finally, we
have

Proposition 17 If a distributive logic (A,K) verifies nPA, then for every
T ∈ K, (A,MK(T )) verifies nPA, too.

Proof. Suppose (A,K) verifies ClK(∅) =
⋂
{ClK(Y ) : ∅ 6= Y ⊆ A}.

By Proposition 4 (d), ClMK(T )(Y ) ⊆ ClK(Y ) for every Y ⊆ A, Y 6= ∅.
Thus, it holds

⋂{
ClMK(T )(Y ) : ∅ 6= Y ⊆ A

}
⊆
⋂
{ClK(Y ) : ∅ 6= Y ⊆ A} =

ClK(∅). Then, by Propositions 2 and 4 (h),
⋂{

ClMK(T )(Y ) : ∅ 6= Y ⊆ A
}
⊆

ClMK(T )(∅). The other inclusion is obvious. �

Thus, not every property related to distributive logics is preserved by
means of the “application of MK(T )”. However, in the sequel, we will give
some conditions that are weaker than the previous ones and that will be
preserved by the MK(T )-closure operators.
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Definition 11 An abstract logic (A,K), with A = (A,∧,∨) verifies weak-
PDI property (WPDI for short) if and only if every Y ∪ {a, b} ⊆ A verifies
ClK(Y, a) ∩ ClK(Y, b) ⊆ ClK(Y, a ∨ b).

In addition, we need the following definition.

Definition 12 A logic (A,K) with A = (A,∧,∨) of type (2, 2) is called an
idempotent logic iff for every a ∈ A, a ∨ a = a ∧ a = a.

Classical logic (and every logic where ∧ and ∨ are intended as meets
and joins in a lattice-structure defined on a certain set A) is an idempotent
logic. On the other hand, some logics of the family of fuzzy logics are not
idempotent. More specifically, if we consider the real interval [0, 1] and ∧ is
defined by means of the operation ∗, being ∗ : [0, 1]2 → [0, 1] a t-norm (see
[13]), we can see that in these logics is only warranted that x ∗ x ≤ x for
every x ∈ [0, 1].

Lemma 3 If an idempotent logic (A,K) verifies PDI, then for every T ∈ K,
it holds that (A,MK(T )) verifies WPDI.

Proof. Suppose that (A,K) verifies PDI and consider Y ∪ {a, b} ⊆ A,
T ∈ K. By Lemma 1, it is easy to see the following: for every x /∈ T ,

ClMK(T )(Y, x) = ClMK(T )(Y ) ∪ {x}. (8)

With this in mind, let us consider the following possibilities:
(1) a ∨ b /∈ T . Then a /∈ T . Indeed, if a ∈ T , then T = ClK(T, a), and
therefore, since (A,K) verifies PDI, a∨b ∈ ClK(T, a∨b) = T∩ClK(T, b) ⊆ T ,
which is absurd. Then, in this case, by (8), we have that ClMK(T )(Y, a) =
ClMK(T )(Y )∪{a}, ClMK(T )(Y, b) = ClMK(T )(Y )∪{b} and ClMK(T )(Y, a∨b) =
ClMK(T )(Y ) ∪ {a ∨ b}. Thus, ClMK(T )(Y, a) ∩ClMK(T )(Y, b) = ClMK(T )(Y ) ∪
({a} ∩ {b}).

Further, if a 6= b, then ClMK(T )(Y, a) ∩ ClMK(T )(Y, b) = ClMK(T )(Y ) ⊆
ClMK(T )(Y, a ∨ b), and, if a = b, then ClMK(T )(Y, a) ∩ ClMK(T )(Y, b) =
ClMK(T )(Y ) ∪ {a} = ClMK(T )(Y ) ∪ {a ∨ b} (this is the reason why idem-
potency is necessary).
(2) a ∨ b ∈ T . Then,

ClMK(T )(Y, a ∨ b) = ClK((Y ∩ T ), a ∨ b) ∪ Y ∪ {a ∨ b}. (9)

On the other hand, ClMK(T )(Y, a) ⊆ ClK((Y ∩T ), a)∪Y and ClMK(T )(Y, b) ⊆⊆
ClK((Y ∩ T ), b) ∪ Y . All this implies ClMK(T )(Y, a) ∩ ClMK(T )(Y, b) ⊆⊆
[ClK((Y ∩ T ), a) ∩ ClK((Y ∩ T ), b)] ∪ Y = ClK((Y ∩ T ), a ∨ b) ∪ Y . Hence,
ClMK(T )(Y, a) ∩ ClMK(T )(Y, b) ⊆ ClMK(T )(Y, a ∨ b) by (9). Thus, from (1)
and (2), (A,MK(T )) verifies WPDI. �
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With respect to PCI, we have a weaker version, too.

Definition 13 A logic (A,K) with A = (A,∧,∨) of type (2, 2) verifies
weak-PCI property (w.r.t. to ∧), WPCI, iff for every a, b ∈ A, CK(a ∧ b) ⊆
CK(a, b).

Lemma 4 Let (A,K) be a logic defined on the basis of A = (A,∧,∨). If
(A,K) verifies PCI and, in addition, for every a, b ∈ A, a∧ b ∈ {a, b}, then
for every T ∈ K, (A,MK(T )) verifies WPCI.

Proof. Since (A,K) verifies PCI then for every T ∈ K,

{a, b} ⊆ T implies a ∧ b ∈ T. (10)

On the other hand, by Lemma 1 we have CMK(T )(a, b) = CK(T ∩ {a, b}) ∪
{a, b} and CMK(T )(a∧ b) = CK(T ∩ {a∧ b})∪ {a∧ b}. Comparing both sets
(by a combinatorical analysis of all the possible cases), and using (10), we
obtain the desired result. �

Definition 14 A logic (A,K) is weakly distributive if and only if it verifies
WPCI, WPDI, Fin and nPA.

Corollary 3 If (A,K) is a distributive idempotent logic such that a ∧ b ∈
{a, b} for every a, b ∈ A, then (A,MK(T )) is weakly distributive.

Example 5 All the previous results together can be applied to the following
example, based on the support of the standard matrices of Gödel n-valued
logics (see [13]). For n ≥ 2, consider the set An = {1/n, 2/n, . . . , (n−1)/n, 1}
and the algebra An = (An,∧,∨) defined by a ∧ b = max({a, b}), a ∨ b =
min({a, b}). If we consider Kn = {Bj : j ∈ An}, being Bj = {x ∈ An : j ≤
x}, then (An, Kn) is a distributive logic for every n ≥ 2. In fact, all these
logics verify obviously PDI and PCI. Moreover, they are finitary and they
verify nPA (because ∅ /∈ Kn). In addition, every (An, Kn) is ∧-idempotent,
and it verifies that a∨ b ∈ {a, b}. From all this we have that for every n ≥ 2
and every Bj ∈ K, each logic (A,MKn(Bj)) is weakly distributive, according
to Lemmas 3, 4, 1 and Corollary 3.

We conclude this section with the following remark: preservation of PCI
and of PDI “in the inverse sense” is always valid. For that, let us take into
account the following definitions, taken from [11] and [12] 2.

2These definitions are abstract ones. They are not concerned with any kind of estab-
lished order on A.
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Definition 15 Let (A,K) be a logic and let F ⊆ A. We say that
− F is ∧-filter iff for every a, b ∈ F , a ∧ b ∈ F if and only if a ∈ F and
b ∈ F ;
− F is ∨-prime iff for every a, b ∈ F , a ∨ b ∈ F if and only if a ∈ F or
b ∈ F .

Proposition 18 Let (A,K) be an abstract logic, T ∈ K. If (A,MK(T ))
verifies PCI (resp., PDI), then (A,K) verifies PCI (resp. PDI), too.

Proof. From Proposition 3.2 in [11], it follows that a c.o. Cl verifies PCI
iff every T ∈ K is a ∧-filter. Thus, if (A,K) does not verify PCI, then there
is F ∈ K such that F is not a ∧-filter. Since K ⊆MK(T ), MK(T ) does not
verify PCI. The same reasoning can be applied to PDI using this fact (see
[11], Proposition 3.4): Cl verifies PDI iff every F ∈ K is ∨-prime. �

5 Final Conclusions

Besides its original motivation to extend relative closure spaces, MK(T )-
spaces can be considered as particular cases that can motivate the study of
several interesting topics. Among them, the behavior of MK(T )-spaces when
considered as operators between CSPs deserves an in-depth study. With this
in mind, we have studied the different order-theoretical aspects involving
MK(T )-spaces that were showed in this paper. In addition, we studied some
applications of such spaces to Abstract Logic. It is worth noting that, even
we were focused on MK(T )-spaces, this kind of approach can be adapted to
other “transformation of closure spaces”, too.

Several notions of operators weaker than closure ones were studied in the
literature (see, for example, [7, 15, 16]), but taking generalized topologies as
a starting point. This notion is just the “interior-spaces general approach”,
dual to the “closure-spaces approach” given in this paper. Then, both con-
cepts can be interdefined, and it would be very interesting to analyze in
which way the MK(T )-spaces (and all its order-theoretical considerations
analyzed here) can be adapted to the interior operators mentioned above.
Moreover, note that generalized topologies (as closure spaces) are just weak-
enings of the standard notion of Topological Spaces, as we previously said.
Then, other weaker forms of T.S. can be analyzed in the context of the ap-
plication of MK(T )-spaces. We cite here the supra-topological spaces (see
[14, 1]) and infra-topological spaces defined by Al-Odhari (see [18] for an
actualized survey) among other related notions.

Another kind of application of MK(T )-spaces deserves to be studied is
its relation with the fuzzy topological spaces (F.T.S.) and, more specifically,
with the intuitionistic fuzzy topological spaces (I.F.T.S.). The latter concept
was defined by K. Atanassov (see [2]) based on the well-known definition of
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fuzzy set developed by L. Zadeh, and was further developed by D. Çoker.
In the following, we briefly summarize the notions that are involved.

Given a “referential” set X 6= ∅, a fuzzy set is a pair A = {〈x, µA〉 :
x ∈ X}. Here, µA : X → [0, 1] indicates the “fuzzy degree of membership”
(of every point x ∈ X) to A. When A is a “classical subset” of X, µA is
nothing but its characteristic function. That is, µA(x) = 1 if x belongs to
A in the standard sense. If not (and only these two possibilities can exist),
µA(x) = 0. Now, if we add to this notion the conceptual framework of
Intuitionistic Logic, then the “fuzzy membership” of x to A is independent
of the “fuzzy non-membership” in the following sense: the Middle-Excluded
Law does not need to be validated. Thus, an intuitionistic fuzzy set (I.F.S.)
can be understood as a family A = {〈x, µA, γA〉 : x ∈ X} such that for every
x ∈ X, 0 ≤ µA(x) + γA(x) ≤ 1 3.

Once I.F.S. are defined, the respective “intuitionistic fuzzy” relations and
operations (inclusion, union, intersection, and so on) can be redefined under
this perspective (see [5] and [6]). These notions allow us to define I.F.T.S.
in a natural way. At this point, it become obvious to study MK(T )-spaces.
This line of research (which was suggested by the referee) seems to be very
interesting, because it focuses not only on the weakening of the notion of
T.S., but on the “weak intersection” used here.

Finally, by inverting the problems posed in Section 4, the following ques-
tion can be proposed: which kind of operators from/to abstract logics pre-
serves all the properties that characterize, specifically, distributive logics?

All in all, we consider that the study of MK(T )-spaces (and of other
transformations between closure spaces related to them) deserve a deeper
analysis, generalizing and/or improving the results presented in this paper.
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