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Introduction

Let X and Y be Banach spaces. Let L(X, Y ) be the space of bounded linear
operators from X to Y . When X = Y , we denote L(X, Y ) by L(X) for
simplicity. We denote by S(Rn;X) the space of rapidly decreasing functions
from Rn to X. The Fourier transform F : S(Rn;X) → S(Rn;X) is defined
by

(Ff)(t) ≡ f̂(t) :=

∫
Rn
e−it·sf(s)ds,

which is a bijection and whose inverse is given by

(F−1f)(t) ≡ f̌(t) :=
1

(2π)n

∫
Rn
eit·sf(s)ds,

where f ∈ S(Rn;X) and t ∈ Rn.
We say that a bounded and strongly measurable function m : Rn\{0} →

L(X, Y ) is a Fourier multiplier on Lp(Rn;X) if the expressions

Tmf = (m(·)[f̂(·)])∨, f ∈ S(Rn;X),
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are well defined, and Tm extends to a bounded operator Tm : Lp(Rn;X) →
Lp(Rn;Y ). Fourier multiplier theorems play an important role in analysis. In
particular, they can be used to prove maximal regularity of certain parabolic
evolution equations [3] or stability theory [5, 7, 13].

ForX, Y = C, we have the scalar-valued case. When p ∈ {1, 2,∞}, Weiss
and Stein [18] gave sufficient conditions for m to be a Fourier multiplier. In
Lp(Rd) for p /∈ {1, 2,∞}, a sufficient condition is

sup
α∈{0,1}d,x∈Rd

|xα||Dαm(x)| <∞,

which was obtained by Mihlin in [12]. In Lp(T), Marcinkiewicz [11] gave the
bounded variation condition

sup
k∈Z
|mk| <∞, sup

n∈N

∑
2n≤|k|<2n+1

|mk+1 −mk| <∞

for m to be a Fourier multiplier.
The study of operator-valued Fourier multipliers began in 1962 by Benedek,

Calderón and Panzone [4], who gave a sufficient condition for a function m
to be a Lq Fourier multiplier with 1 < q <∞. Amann [1] proved that for a
multiplier M : Rn → L(X, Y ) satisfying the modified Mihlin condition

‖DαM(ξ)‖L(X,Y ) ≤ cα(1 + |ξ|)m−α, |α| ≤ n+ 1,

the corresponding operator maps the vector-valued Besov spaceBs+m
p,q (Rn;X)

continuously into Bs
p,q(Rn;Y ) for all values of s ∈ Rn and p, q ∈ [1,∞]. In

[2, 3], Arendt and Bu described an operator-valued multiplier theorem for
Hilbert spaces and showed that the operator-valued Marcinkiewicz and Mih-
lin Fourier multiplier theorems are valid if and only if the underlying Banach
space is isomorphic to a Hilbert space.

Fourier multipliers also have important applications in the study of Lp-
maximal regularity, the asymptotic properties of solutions of evolution equa-
tions, and the semigroup of operators. However, asymptotic behavior can
be deduced from the associated resolvent operators R(λ,A) = (λ − A)−1

for λ ∈ ρ(A). A uniform bound for the resolvent is not sufficient to en-
sure exponential stability on general Banach spaces, but it was shown in
[7] that exponential stability can be characterized in terms of Lp Fourier
multiplier properties of the resolvent. Van Neerven [14] proved that a C0-
semigroup on Banach space X is uniformly exponentially stable if and only
if it acts boundedly on Lp(R+;X) by convolution. Wark [20] gave a neces-
sary and sufficient condition for the boundedness of Fourier-Haar multiplier
operators from L1([0, 1], X) to L1([0, 1], Y ), where X is an arbitrary finite
dimensional Banach space and Y is an arbitrary Banach space. Recently,
Rozendaal [17] gave an overview of some recent results on operator-valued
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(Lp, Lq) Fourier multipliers and stability theory for evolution equations and
indicated how operator-valued (Lp, Lq) Fourier multipliers can be applied to
functional calculus theory. Motivated by the Riesz transform, Vodák [19]
proved that singular integrals satisfying Calderón-Zygmund conditions are
well-defined on Orlicz spaces (for details on Orlicz spaces, which are natural
extensions of Lebesgue spaces, we refer to [6, 9, 15]).

Motivated by [14, 17, 19], in this paper, we extend the relationship be-
tween Fourier multipliers and evolution equations to vector-valued Orlicz
spaces.

The paper is organized as follows. In Section 1, we recall some notions
and results on vector-valued Orlicz spaces to be used in the sequel. In Section
2, we prove the operator-valued Fourier multiplier theorem on vector-valued
Orlicz spaces. In Section 3, we give a characterization of the growth bound of
a C0-semigroup via Fourier multipliers in Orlicz spaces and the relationship
between exponential stability and Fourier multipliers in vector-valued Orlicz
spaces.

1 Preliminaries

First, we recall the definition of Young function.

Definition 1 A function Φ : [0,∞) → [0,∞) is called a Young function if
it satisfies the following conditions:

(i) Φ is an increasing, convex, left continuous function;

(ii) Φ(0) = 0, lim
s→0+

Φ(s) = 0 and lim
s→∞

Φ(s) =∞;

(iii) lim
s→0+

Φ(s)/s = 0 and lim
s→∞

Φ(s)/s =∞.

Let Φ be a Young function. Then

kΦ(t) ≤ Φ(kt), k ≥ 1, t ≥ 0;

and
Φ(kt) ≤ kΦ(t), 0 ≤ k ≤ 1, t ≥ 0.

Note also that Φ−1 is defined for 0 ≤ y by

Φ−1(y) = inf{x ≥ 0 : Φ(x) ≥ y}.

Let X be a Banach space. We denote by L0(Rn;X) the space of all X-valued
strongly measurable functions on Rn.

Definition 2 If Φ is a Young function, by a modular we mean a functional
ρΦ defined on the set of strongly measurable functions f by the following
formula

ρΦ(f) :=

∫
Rn

Φ(‖f(x)‖)dx.



4 Y. MEI AND J. XU

We set

LΦ(Rn;X) := {f ∈ L0(Rn;X) : ρΦ(λf) <∞ for some λ > 0},

and

EΦ(Rn;X) := {f ∈ L0(Rn;X) : ρΦ(λf) <∞ for any λ > 0}.

Directly from above it follows that

EΦ(Rn;X) ⊂ LΦ(Rn;X).

The space LΦ(Rn;X) equipped with the Luxemburg norm

‖f‖LΦ(Rn;X) := inf

{
λ > 0 : ρΦ

(
f

λ

)
≤ 1

}
is a Banach spaces.

Definition 3 Given a Young function Φ, we define its complemented func-
tion Φ∗ : [0,∞)→ [0,∞) by the Legendre transform,

Φ∗(t) := sup
s≥0

{
st− Φ(s)

}
for t ≥ 0.

Note that Φ∗ is a Young function as well. Moreover, one can check that
the complemented function of Φ∗(·) equals Φ(·), i.e., Φ∗∗ = Φ (see [6]).

Remark 1 The pair (Φ,Φ∗) is called a complementary pair of Young func-
tions. Its elements satisfy

x ≤ Φ−1(x)Φ∗−1(x) ≤ 2x, x ≥ 0,

and Young’s inequality

xy ≤ Φ(x) + Φ∗(y), x, y ≥ 0.

Thus, for x ∈ X and x∗ ∈ X∗, we get

|〈x∗, x〉| ≤ Φ(‖x‖) + Φ∗(‖x∗‖).

The following Orlicz norm will also be useful in the sequel:

‖f‖X,Φ := sup

{∫
Rn

〈
f(x), g(x)

〉
dx :

∫
Rn

Φ∗(‖g(x)‖)dx ≤ 1

}
.

The equivalence between Orlicz norm and Luxemburg norm is well-known
in the Orlicz spaces for scale-valued setting (see [10]); for the Banach space
valued functions, we also have

‖f‖LΦ(Rn;X) ≤ ‖f‖X,Φ ≤ 2‖f‖LΦ(Rn;X). (1)

Similar to the scalar-valued functions, we have the following result.
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Lemma 1 Let Φ be an Young function and Φ∗ be its complemented function.
Suppose f ∈ LΦ(Rn;X) and g ∈ LΦ∗(Rn;X∗). Then∫

Rn

∣∣〈f(x), g(x)
〉∣∣dx ≤ 2‖f‖LΦ(Rn;X)‖g‖LΦ∗ (Rn;X∗).

Definition 4 A Young function Φ : [0,∞) → [0,∞) is said to be in ∆2

(denoted Φ ∈ ∆2) if there exists a constant c∆2 > 0 such that

Φ(2s) ≤ c∆2Φ(s), s ≥ 0.

Similar to scalar-valued case, one can prove the following result.

Lemma 2 Let Φ be an Young function. If Φ ∈ ∆2, then

EΦ(Rn;X) = LΦ(Rn;X).

Lemma 3 [9] Let Φ be a Young function satisfying the ∆2-condition. Then
there exist p > 1 and b > 1 such that

Φ(t2)

tp2
≤ bΦ(t1)

tp1
, 0 < t1 < t2.

Definition 5 A function Φ is said to be quasiconvex if there exist a convex
function ω and a constant c > 0 such that

ω(t) ≤ Φ(t) ≤ ω(ct), t ∈ [0,∞).

Given a Banach space X, we denote by Lp,X = Lp(Rn;X), p < ∞, the
space consisting of all X-valued measurable functions f defined in Rn such
that

‖f‖Lp,X =

(∫
Rn
‖f(x)‖pXdx

)1/p

<∞.

Similarly, the space WLp,X = weak-Lp,X is formed by all X-valued functions
f such that

‖f‖WLp,X = sup
t>0

t
∣∣{x ∈ Rn : ‖f(x)‖X > t}

∣∣1/p <∞.
Here and in what follows, |E| denotes the measure of measurable set E in Rn.

Definition 6 An operator T is said to be of weak type (p, q) if

λ(α, Tf) ≤
(
C‖f‖p
α

)q
, f ∈ Lp(Rn;X), α > 0,

with C independent of f , where and in what follows λ(α, Tf) := |{x ∈ Rn :
‖Tf(x)‖ > α}|. An operator T is said to be of weak type (Φ,Φ) if

Φ(α)λ(α, Tf) ≤ C

∫
Rn

Φ(‖f(x)‖)dx, f ∈ LΦ(Rn;X), α > 0,

with C independent of f .



6 Y. MEI AND J. XU

2 Fourier multipliers

Given a Young function Φ, the space of all functions m ∈ L∞(Rn,L(X, Y ))
for which Tm has a bounded extension from LΦ(Rn;X) to LΦ(Rn;Y ) will be
denoted by MΦ(Rn;X, Y ).

Direct calculation of Tm may encounter some problems that can not be
solved at present. For this reason, we consider acting on them in C∞0 (Rn;X),
the set of infinitely differentiable functions compactly supported in Rn and
taking values in X. We will prove the density of C∞0 (Rn;X) in LΦ(Rn;X)
with respect to the Luxemburg norm by the method developed in [21].

First, we give some notations and definitions. By Bc(Rn;X) we denote
the set of bounded measurable functions compactly supported in Rn and
taking values in X. By Definition 1 for any constant number c > 0 and for
every compact set K ⊂ Rn, ∫

K

Φ(c)dx <∞. (2)

Indeed, since Φ : [0,∞) → [0,∞), we have Φ(c) < ∞ for any c ∈ [0,∞).
Then for every compact set K ⊂ Rn, we have

∫
K

Φ(c)dx < ∞, because we
have |K| < ∞ for any compact set in Rn. In the sequel, we shall use C to
denote a constant which may differ from line to line.

For h ∈ Rn, let τhu stand for the translation operator defined by

τhu(x) =

{
u(x+ h), for x ∈ Rn and x+ h ∈ Rn,

0, otherwise.

Theorem 1 Let Φ be a Young function. Then for any u ∈ Bc(Rn;X) and
every ε > 0, there exists η = η(ε) > 0 such that for h ∈ Rn with |h| < η, we
have

‖τhu− u‖LΦ(Rn;X) < ε.

Proof. For u ∈ Bc(Rn;X), let supp u := U ⊂ BR, where by BR we denote
a ball with radius R > 0. Let h ∈ Rn with |h| < 1. We have supp τhu ⊂
BR+1. Let BR+1 stand for the closed ball with radius R + 1. Thanks to
(2), for any constant C > 0 and any compact subset K ⊂ Rn, we have
Φ(C) ∈ L1(K). Therefore, for arbitrary ε ∈ [0, 1), there is ν > 0 such that
for every measurable subset G ⊂ K,∫

G

Φ(C)dx <
ε

2
whenever |G| < ν. (3)

For this ν, there exists % ∈ (0, 1) such that |H%| < 4−1ν, where

H% = {x ∈ BR+1 : dist(x, ∂BR+1) ≤ %}.
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Define U% = BR+1 \ H%. Since u is measurable on U%, Luzin’s theorem
ensures that for ν > 0, there exists a closed set F1,ν ⊂ U% such that the
restriction of u to F1,ν is continuous and |U% \ F1,ν | < 4−1ν. Then we have

|BR+1 \ F1,ν | = |((BR+1 \H%) \ F1,ν) ∪H%| = |(U% \ F1,ν) ∪H%| < 2−1ν.

The function u is uniformly continuous on the compact set F1,ν . It follows
that for a fixed ε, there exists an η ∈ (0, %) such that for all x, x + h ∈ F1,ν

and |h| < η, we have

‖u(x+ h)− u(x)‖ < ε

2(
∫
U

Φ(1)dx+ 1)
. (4)

Define two sets

F2,ν = {x ∈ U, x+ h ∈ F1,ν} and Fν = F1,ν ∩ F2,ν .

The set Fν is a closed subset of Rn. In addition, we have |BR+1 \ Fν | < ν.
Indeed, since the Lebesgue measure is translation invariant we get

|BR+1 \ F1,ν | = |BR+1 \ F2,ν |.

Therefore,

|BR+1 \ Fν | = |BR+1 \ (F1,ν ∩ F2,ν)|
= |(BR+1 \ F1,ν) ∪ (BR+1 \ F2,ν)|
≤ |BR+1 \ F1,ν |+ |BR+1 \ F2,ν | < ν.

If x /∈ BR+1, then for |h| < η we have x + h /∈ BR, since otherwise we
would get x ∈ BR+1. Hence, we obtain∫

Rn
Φ(‖τhu(x)− u(x)‖)dx =

∫
BR+1

Φ(‖τhu(x)− u(x)‖)dx

=

∫
BR+1∩Fν

Φ(‖τhu(x)− u(x)‖)dx+

∫
BR+1\Fν

Φ(‖τhu(x)− u(x)‖)dx

=: I1 + I2.

By (4) and the convexity of Φ, for ε/2 < 1, I1 can be estimated as

I1 ≤
∫
BR+1∩Fν

Φ

(
ε

2(
∫
U

Φ(1)dx+ 1)

)
dx ≤ ε

2

∫
BR+1∩Fν

Φ

(
1∫

U
Φ(1)dx+ 1

)
dx

≤ ε

2

∫
BR+1∩Fν

Φ

(
1∫

U
Φ(1)dx

)
dx <

ε

2
.

As regards I2, we use the fact that u ∈ Bc(Rn;X) is bounded by a
constant c > 0 and then (3) to obtain

I2 ≤
∫
BR+1\Fν

Φ(2c)dx ≤ ε

2
.
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Hence, for any ε > 0, there exists η > 0 such that∫
Rn

Φ(‖τhu(x)− u(x)‖)dx < ε as soon as |h| < η.

Therefore, for uε−1 ∈ Bc(Rn;X), we get∫
Rn

Φ(‖τhu(x)− u(x)‖ε−1)dx ≤ 1,

which gives
‖τhu− u‖LΦ(Rn;X) ≤ ε whenever |h| < η.

This finishes the proof.�

Let J stand for the Friedrichs mollifier kernel defined on Rn by

J(x) =

{
ke−1/(1−|x|2), if |x| < 1,

0, if |x| ≥ 1,

where k > 0 is such that
∫
Rn J(x)dx = 1. For ε > 0, we define Jε(x) =

ε−nJ(xε−1) and uε = Jε ∗ u by

uε(x) =

∫
Rn
Jε(x− y)u(y)dy =

∫
B(0,1)

u(x− εy)J(y)dy. (5)

A direct consequence of Theorem 1 is the following approximation result.

Corollary 1 Let Φ be a Young function and let u ∈ Bc(Rn;X). For any
ε > 0, we have uε ∈ C∞0 (Rn;X). Furthermore,

‖uε − u‖LΦ(Rn;X) → 0, as ε→ 0+.

Proof. Let u ∈ Bc(Rn;X). The function uε defined in (5) belongs to
C∞0 (Rn;X) whenever ε > 0. Let Φ∗ stand for the complementary Young
function of Φ and let v ∈ LΦ∗(Rn;X∗). By Fubini’s theorem and Hölder’s
inequality we can write∫

Rn
|〈v(x), uε(x)− u(x)〉|dx

=

∫
Rn

∣∣∣∣〈v(x),

∫
B(0,1)

u(x− εy)J(y)dy − u(x)

〉∣∣∣∣dx
=

∫
Rn

∣∣∣∣〈v(x),

∫
B(0,1)

u(x− εy)J(y)dy −
∫
Rn
u(x)J(y)dy

〉∣∣∣∣dx
≤
∫
Rn

∣∣∣∣〈v(x),

∫
Rn

(u(x− εy)− u(x))J(y)dy

〉∣∣∣∣dx
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≤
∫
Rn

∫
Rn
|〈v(x), u(x− εy)− u(x)〉|J(y)dydx

=

∫
Rn

∫
Rn
|〈v(x), u(x− εy)− u(x)〉|J(y)dxdy

≤ 2‖v‖LΦ∗ (Rn;X∗)

∫
|y|≤1

‖τ−εyu− u‖LΦ(Rn;X)J(y)dy.

Hence, by the definition of the Orlicz norm and the inequality (1), we obtain

‖uε − u‖LΦ(Rn;X) ≤ 2

∫
|y|≤1

‖τ−εyu− u‖LΦ(Rn;X)J(y)dy.

We can now use Theorem 1. Given µ > 0, there exists η > 0 such that for
ε < η, we get

‖τ−εyu− u‖LΦ(Rn;X) ≤ µ

for every y with |y| ≤ 1. Then we conclude that

‖uε − u‖LΦ(Rn;X) ≤ 2µ

∫
|y|≤1

J(y)dy = 2µ,

which gives the result. �

Lemma 4 Let Φ be a Young function. Then Bc(Rn;X) is dense in EΦ(Rn;X)
with respect to the strong topology in LΦ(Rn;X).

Proof. If u ∈ EΦ(Rn;X), then for all λ > 0, we have Φ(||u||λ−1) ∈
L1(Rn;X). Denote by Tj, j > 0, the truncation function at levels ±j
defined on R by Tj(s) = max{−j,min{j, s}}. We define the sequence {uj}
by

uj = TjuχKj ,

where χKj stands for the characteristic function of the set

Kj = {x ∈ Rn : |x| ≤ j}.

Hence, the functional sequence {uj} belongs to Bc(Rn;X) and converges
almost everywhere to u in Rn. Thus, Φ(λ−1‖uj(x)− u(x)‖)→ 0 a.e. in Rn,
and

Φ((2λ)−1‖uj(x)− u(x)‖) ≤ Φ(λ−1‖u(x)‖) ∈ L1(Rn;X).

Therefore, by the Lebesgue dominated convergence theorem, we obtain∫
Rn

Φ((2λ)−1‖uj(x)− u(x)‖)dx ≤ 1 for j large enough,

which yields limj→+∞ ‖uj−u‖LΦ(Rn;X) ≤ 2λ. Since λ is an arbitrary positive
number, we get

lim
j→+∞

‖uj − u‖LΦ(Rn;X) = 0.

This yields the result. �
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Combining Corollary 1 and Lemma 4, we obtain

Theorem 2 Let Φ be a Young function. Then C∞0 (Rn;X) is dense in
EΦ(Rn;X) with respect to the strong topology in EΦ(Rn;X).

Combining Theorem 2 and Lemma 2, we obtain

Theorem 3 Let Φ be a Young function and Φ ∈ ∆2. Then C∞0 (Rn;X) is
dense in LΦ(Rn;X) with respect to the strong topology in LΦ(Rn;X).

Now we present our main results. The proof of the following one is
similar to the scalar-valued case (see Theorem 3.2 in [22]) and therefore will
be omitted

Theorem 4 Let Φ ∈ ∆2. Suppose that Tm is an operator of weak type (1, 1)
and weak type (p, p), p > 1. Then there exists c > 0 such that

Φ(α)λ(α, Tmf) ≤ c

∫
Rn

Φ(‖f(x)‖)dx

for f ∈ LΦ(Rn;X) and for all α ∈ [0,∞).

Theorem 5 Let Φ ∈ ∆2 and let Φγ be quasiconvex for some γ ∈ (0, 1).
Suppose that Tm is an operator of weak type (1, 1) and weak type (p, p),
p > 1. Then there exists C > 0 such that∫

Rn
Φ(‖Tmf(x)‖)dx ≤ C

∫
Rn

Φ(‖f(x)‖)dx (6)

and
‖Tmf‖LΦ(Rn;Y ) ≤ C‖f‖LΦ(Rn;X) (7)

for all f ∈ LΦ(Rn;X).

Proof. The proof of (6) is similar to the scalar-valued case, see Theorem
3.3 in [19].

To prove (7), we suppose ‖f‖LΦ(Rn;X) = 1. Then∫
Rn

Φ(‖f(x)‖)dx ≤ 1,

and therefore, ∫
Rn

Φ(‖Tmf(x)‖)dx ≤ C.

If C ≤ 1, we have ‖Tmf‖LΦ(Rn;Y ) ≤ ‖f‖LΦ(Rn;X). If C > 1, then 1/C < 1,
and we find that

1

C

∫
Rn

Φ(‖Tmf(x)‖)dx ≤ 1.
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Since Φ is a convex function, we have∫
Rn

Φ

(
1

C
‖Tmf(x)‖

)
dx ≤ 1.

Hence,
‖Tmf‖LΦ(Rn;Y ) ≤ C,

therefore,
‖Tmf‖LΦ(Rn;Y ) ≤ max{1, C}.

By the scale argument, we obtain

‖Tmf‖LΦ(Rn;Y ) ≤ C‖f‖LΦ(Rn;X),

which finishes the proof. �

In the following we apply Theorem 5 to Fourier multipliers which satisfy
the Hörmander condition.

Definition 7 Let X, Y be Banach spaces. We say that k : Rn \ {0} →
L(X, Y ) satisfies the Hörmander condition if k satisfies the size condition

sup
R>0

∫
R≤|x|≤2R

‖k(x)‖dx = A1 <∞,

and smoothness condition

sup
y 6=0

∫
|x|>2|y|

‖k(x− y)− k(x)‖dx = A2 <∞.

Lemma 5 (Theorem 11.2.5 in [8]) Let X and Y be Banach spaces and
p0 ∈ [1,∞]. Let

T ∈ L(Lp0(Rn;X), Lp0,∞(Rn;Y ))

with norm A0 := ‖T‖L(Lp0 (Rn;X),Lp0,∞(Rn;Y )). If T has a Hörmander kernel K,
then

(i) T extends uniquely to T ∈ L(Lp(Rn;X), Lp(Rn;Y )) for all p ∈ (1, p0),
and

‖T‖L(Lp(Rn;X),Lp(Rn;Y )) ≤ cd

( p0 − 1

(p0 − p)(p− 1)

)1/p

(A0 + ‖K‖);

(ii) T extends uniquely to T ∈ L(L1(Rn;X), L1,∞(Rn;Y )) and

‖T‖L(L1(Rn;X),L1,∞(Rn;Y )) ≤ cd(A0 + ‖K‖).

where ‖K‖ is the smallest constant that makes the Hörmander condition
hold.
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Combining Theorem 5 and Lemma 5, we obtain the following corollary.

Corollary 2 Let k be as in the assumptions of Definition 7. Let Φ ∈ ∆2,
Φγ be quasiconvex for some γ ∈ (0, 1). Suppose that the operator T given
by convolution with k maps Lr(Rn;X) to Lr(Rn;Y ) for some 1 < r ≤ ∞.
Then there exists a positive constant C > 0 such that

‖Tf‖LΦ(Rn;Y ) ≤ C‖f‖LΦ(Rn;X),

where Tf(x) = limε→0+

∫
|x−y|>ε k(x− y)f(y)dy.

3 Applications to evolution equations

The purpose of this section is to generalize the results in [17] to Orlicz
spaces, namely, to find the relationship between exponential stability and
Fourier multipliers in vector-valued Orlicz spaces. Due to the relationship
between the generator and semigroups, we can examine the spectral prop-
erties of generator A instead of semigroups (T (t))t≥0. This approach to the
asymptotic behavior of solutions to evolution equations is useful in practice,
because the resolvent is typically more accessible than the semigroup itself
( see, for example, [7, 14, 16]).

To state our results, we need notations and lemmas. The identity oper-
ator on X is denoted by IX , and we typically write λ for λIX when λ ∈ C.
The domain of a closed operator A on X is D(A), a Banach space with the
norm

‖x‖D(A) := ‖x‖X + ‖Ax‖X , x ∈ D(A).

The resolvent set is ρ(A) = C\σ(A). We write R(λ,A) = (λ− A)−1 for the
resolvent operator of A at λ ∈ ρ(A).

Let T be a C0-semigroup with generator A. By

s(A) := sup{Reλ : λ ∈ σ(A)}

we denote the spectral bound of A, and the growth bound

ω0(T ) := inf

{
ω ∈ R : sup

t≥0
‖e−ωtT (t)‖ <∞

}
.

Then s(A) ≤ ω0(T ) but strict inequality may occur. For examples illustrat-
ing this fact, we refer to [13]. For this reason, it is interesting to characterize
the ω0(T ) of T by properties of the resolvent R(λ,A) of A.

Lemma 6 [5] Let (T (t))t≥0 be a strongly continuous semigroup on the Ba-
nach space X, and take constants ω′ ∈ R, M ≥ 1 such that

‖T (t)‖ ≤Meω
′t

for t ≥ 0. For the generator A of (T (t))t≥0, the following properties hold:
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(i) if λ ∈ C is such that R(λ)x :=
∫∞

0
e−λsT (s)xds exists for all x ∈ X,

then λ ∈ ρ(A) and R(λ,A) = R(λ);

(ii) if Reλ > ω′, then λ ∈ ρ(A), and the resolvent is given by the integral
expression in (i);

(iii) ‖R(λ,A)‖ ≤M/(Reλ− ω′) for all Reλ > ω′.

Without loss of generality, suppose that ω′ = 0 in Lemma 6. Then the
resolvent R(ω + iξ, A) exists for all ω > 0 and ξ ∈ R, and the integral
expression for resolvent is given by

R(ω + iξ, A)x =

∫ ∞
0

e−t(ω+iξ)T (t)xdt

for all x ∈ X. We can invert this Laplace transform:

e−ωtT (t)x =
1

2π

∫
R
eitξR(ω + iξ, A)xdξ (8)

for t ≥ 0, where the integral converges absolutely for x in suitable dense
subspaces of X, such as the fractional domain D((−A)α) for α > 1 (see
[16]). For a general x ∈ X, we can use information about R(ω + iξ, A)x to
bound the integral in (8) and obtain C ′ ≥ 0 such that

‖T (t)x‖X ≤ C ′eωt, t ≥ 0. (9)

If ω < 0, we also can obtain decay estimates for the orbit t → T (t)x.
Suppose that iR ⊆ ρ(A) and that supξ∈R ‖R(iξ, A)‖L(X) <∞. Then a Neu-
mann series argument yields that for any ω < 0,

ω + iR ⊆ ρ(A)

and
sup
ξ∈R
‖R(ω + iξ, A)‖L(X) <∞.

Using the above equation, we obtain
∫
R ‖R(ω + iξ, A)x‖Xdξ < ∞ for all

x ∈ D((−A)α) and α > 1. And then (8) indeed implies (9) for such x.
The resolvent also appears as a Fourier multiplier in the asymptotic

theory of evolution equations (see [16]). Suppose A generates a uniformly
bounded C0-semigroup (T (t))t≥0 and supξ∈R ‖R(iξ, A)‖L(X) < ∞. Then we
may fix ω < 0 such that supξ∈R ‖R(ω + iξ, A)‖L(X) <∞.

Lemma 7 [16] Let n ∈ N0, x ∈ X and ξ ∈ R, and let A be the generator
of a C0-semigroup (T (t))t≥0 on a Banach space X. Suppose that iξ ∈ ρ(A)
and [t 7→ tnT (t)x] ∈ L1([0,∞), X). Then

F [t 7→ tnT (t)x](ξ) = n!(iξ − A)−n−1x
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and

F
(∫ ∞

0

tnT (t)g(· − t)xdt

)
(ξ) = ĝ(ξ)n!(iξ − A)−n−1x, g ∈ L1(R).

Definition 8 Let A be the generator of a C0-semigroup (T (t))t≥0 on a Ba-
nach space X, and let n ∈ N0. A Banach space Y which is continuously
embedded in X is (A, n)-admissible if the following conditions hold:

(i) there exists a constant CT ∈ [0,∞) such that T (t)Y ⊆ Y and

‖T (t)‖L(Y ) ≤ CT‖T (t)‖L(X) for t ∈ [0,∞);

(i) there exists a dense subspace Y0 ⊆ Y such that [t 7→ tnT (t)y] ∈
L1([0,∞);X) for all y ∈ Y0.

Next result establishes polynomial stability of the semigroup (T (t))t≥0.

Theorem 6 Let A be the generator of a C0-semigroup (T (t))t≥0 on a Ba-
nach space X, and assume that (T (t))t≥0 is uniformly bounded. Let n ∈ N0

and let Y be an (A, n)-admissible space, Φ ∈ ∆2. Suppose R(i·, A)k ∈
MΦ(R;Y,X) for k ∈ {n, n+ 1} ∩ N0. Then

sup
t≥0
‖tnT (t)‖L(Y,X) <∞.

Proof. First, let M,ω ≥ 1 be such that ‖T (t)‖L(X) ≤ Me(ω−1)t, for all
t ≥ 0, and set

m(ξ) : = n!R(iξ, A)n(IX + ωR(iξ, A))

= n!R(iξ, A)n + n!ωR(iξ, A)n+1 ∈ L(Y,X), ξ ∈ R \ {0}.

It follows from the assumptions that for f ∈ LΦ(R;Y ),

Tm : LΦ(R, Y )→ LΦ(R;X)

is bounded:
‖Tm‖ ≤ n!(Cn + ωCn+1). (10)

Here Ck is a suitable constant of ‖R(iξ, A)k‖MΦ(R;Y,X) for k ∈ N, and C0 :=
‖IY ‖L(Y,X). Now let Y0 ⊆ Y be as in Definition 8 and fix x ∈ Y0. Lemma 7
yields

F [t 7→ tnT (t)x](ξ) = n!(iξ − A)−n−1x = n!R(iξ, A)n+1x. (11)

Set

t 7→ f(t) :=

{
e−ωtT (t)x, t ≥ 0,

0, t < 0.



OPERATOR-VALUED FOURIER MULTIPLIERS ON ORLICZ SPACES 15

According to Definition 8, we have

‖f(t)‖Y ≤ ‖e−ωtT (t)‖L(Y )‖x‖Y ≤ CT‖e−ωtT (t)‖L(X)‖x‖Y ≤ CTMe−t‖x‖Y .
(12)

Hence, f ∈ L1(R;Y )∩L∞(R;Y ). Indeed, as t tends to infinity, the value of
e−t tends to 0. Since Φ ∈ ∆2, from Lemma 3 we find that∫ ∞

0

Φ

(
‖f(t)‖Y
CTM‖x‖Y

)
dt ≤

∫ ∞
0

Φ(e−t)dt ≤ C

∫ ∞
0

e−tpΦ(1)dt ≤ Cp−1Φ(1).

If Cp−1Φ(1) ≤ 1, we get ‖f‖LΦ(R;Y ) ≤ CTM‖x‖Y .
If Cp−1Φ(1) > 1, then (Cp−1Φ(1))−1 < 1, and we have∫ ∞

0

Φ

(
‖f(t)‖Y

CTM‖x‖YCp−1Φ(1)

)
dt

≤ (Cp−1Φ(1))−1

∫ ∞
0

Φ

(
‖f(t)‖Y
CTM‖x‖Y

)
dt = 1.

Hence,

‖f‖LΦ(R;Y ) ≤ CTM‖x‖YCp−1Φ(1).

Therefore,

‖f‖LΦ(R;Y ) ≤ C‖x‖Y ,

where C is independent of x.
Moreover, f̂(·) = R(ω + i·, A)x. Therefore, by the resolvent identity,

m(ξ)f̂(ξ) = n!R(iξ, A)n+1x.

Thus,

F [t 7→ tnT (t)x](ξ) = n!R(iξ, A)n+1x = m(ξ)f̂(ξ),

i.e.,

[t 7→ tnT (t)x] = F−1(m(·)f̂(·)) = Tmf.

Combining (11) and (12) with (10) yields

sup
t≥0
‖tnT (t)x‖X ≤ ‖Tmf‖LΦ(R;X) ≤ ‖Tm‖ · ‖f‖LΦ(R;Y ) ≤ C‖x‖Y

where C is independent of x. The required result now follows since Y0 ⊆ Y
is dense. �

Further, we establish general exponential stability.

Theorem 7 Let Y be a Banach space that is continuously embedded in X
and is dense in X. Let (T (t))t≥0 be a C0-semigroup with generator A on a
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Banach space X, Φ ∈ ∆2. Let ω′ ∈ R be such that λ ∈ ρ(A) for all λ ∈ C
with Re(λ) ≥ ω′ and

sup
Re(λ)≥ω′

‖R(λ,A)‖L(X) <∞.

For each ω > ω′, suppose R(ω + i·, A) ∈ MΦ(R;Y,X). Then there exists
C ≥ 0 such that ‖T (t)x‖X ≤ Ceωt‖x‖Y for all x ∈ Y and t ≥ 0.

Proof. First, we choose ω̃ > 0 such that (e−ω̃tT (t))t≥0 is exponentially
stable, i.e., there exist M > 0, µ > 1 such that ‖e−ω̃tT (t)x‖X ≤Me−µt‖x‖Y
for all t ≥ 0, x ∈ Y , and set

m(ξ) := IX + (ω̃ − ω)R(ω + iξ, A) ∈ L(Y,X).

It follows from the assumptions that for f ∈ LΦ(R;Y ),

Tm : LΦ(R;Y )→ LΦ(R;X)

is bounded by
‖Tm‖ ≤ C0 + (ω̃ − ω)C1.

Here, C1 is a suitable constant of ‖R(ω+iξ, A)‖MΦ(R;Y,X) and C0 := ‖IY ‖L(Y,X).
Set f(t) := e−ω̃tT (t)x for t ≥ 0, and f ≡ 0 on (−∞, 0). Then

‖f(t)‖Y = ‖e−ω̃tT (t)x‖Y ≤Me−µt‖x‖Y .

Similar to the proof of Theorem 6, we find that

‖f‖LΦ(R;Y ) ≤ C‖x‖Y ,

where C is independent of x.
Moreover, f̂(·) = R(ω̃+i·, A)x and by the resolvent identity we can write

m(ξ)Ff(ξ) = (IX + (ω̃ − ω)R(ω + iξ, A))R(ω̃ + iξ, A)x

= R(ω̃ + iξ, A)x+ (ω̃ − ω)R(ω + iξ, A)R(ω̃ + iξ, A)x

= R(ω̃ + iξ, A)x+R(ω + iξ, A)x−R(ω̃ + iξ, A)x

= R(ω + iξ, A)x.

Hence, for x ∈ Y , we can use
∫
R ‖R(ω+iξ, A)x‖Xdξ <∞ to take the inverse

Fourier transform in (8) and obtain

e−ωtT (t)x =
1

2π

∫
R
eitξR(ω + iξ, A)xdξ = F−1(m · Ff)(t) = Tm(f)(t)

for t ≥ 0, i.e., [t 7→ e−ωtT (t)x] = Tm(f). Since the resolvent is absolutely
integrable for x ∈ Y ,

sup
t≥0
‖e−ωtT (t)x‖X ≤ ‖Tmf‖LΦ(R;X) ≤ ‖Tm‖ · ‖f‖LΦ(R;Y ) ≤ C‖x‖Y .
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Thus,
‖T (t)x‖X ≤ Ceωt‖x‖Y , t ≥ 0,

where C is independent of x. �

Directly from Theorem 7, it follows

Corollary 3 Let (T (t))t≥0 be a C0-semigroup on a Banach space X with
generator A. Let Φ ∈ ∆2. Then

ω0(T ) = inf

{
µ > s(A) : sup

α≥µ
‖R(α + i·, A)‖MΦ(R;X) <∞

}
.
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