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Abstract. We interpret the Pascal-adic transformation as
a generalized induced automorphism (over odometer) and for-
mulate the σ-finite analog of odometer which is also known as
”Hajian-Kakutani transformation” (former ”Ohio state exam-
ple”). We shortly suggest a sketch of the theory of random walks
on the groups on the base of σ-finite ergodic theory.
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Infinite Ergodic theory, i.e. the abstract theory of transformations with
an infinite (σ-finite invariant measure) began with the well-known work of
E. Hopf and then became one of the branches of Ergodic theory. Many of
the concepts and facts of this theory failed to transfer on the case of actions
with infinite measure, while not all of them were automatic. However, the
authentic specificity of the area was revealed after the discovery by S. Kaku-
tani and his disciple A. Hajian so-called eww-sets. In my opinion, the theory
of these sets are still not took the worthy place in the dynamics. In this note,
I do not touch this issue, and write only about the problems more close to
me, which also are relevant to these sets. I pay tribute to Prof. Hajian for
his long-standing efforts in this area and for his faithfulness to the selected
topic.

1The research is supported by the Russian Science Foundation grant 14-11-00581.
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1 Short history of Pascal automorphism

Pascal automorphism was used (without this name) in the paper by S. Kaku-
tani [1] and coauthors in connection with a beautiful combinatorial problem
about equidistribution of sequences of partitions, and also in connection with
σ-finite ergodic theory. The main observation was in the paper by Kakutani
[1] where he considered that combinatorial problem: the formulas (8),(9) on
the page 266 in [1] is just the formula of Pascal automorphism as measure
preserving transformation of the unit interval with Lebesgue measure. It one-
to-one coincides with my formula of the next paragraph which I suggested in
1981 [5].

In the paper by A. Hajan, Y. Ito and S. Kakutani [2] it was proved that
(Pascal) automorphism is ergodic (with respect to any Bernoulli measure on
the interval). It is the key moment in the proof of equidistribution in the
Kakutani Problem. But in [2] Pascal automorphism was used for needs of σ-
finite ergodic theory. Namely the integral model over Pascal automorphism
was later called ”Ohio-State example” (OSE) and now ”Hajian-Kakutani
transformation” after one of the first presentations in [16], and later was
developed by A. Hajian and his collaborators. This is a natural example of
the big series of transformations with σ-finite invariant measure.

I did not know about papers [1, 2] before my visit to NE-University in
2011, when during my talk about Pascal automorphisms on seminar of Prof.
A. Hajian the participants pointed out that Pascal automorphism they knew
but from a different point of view.

I defined the Pascal automorphism in the paper [5] as a nice and sim-
plest non-trivial case of what I had called ”adic transformation”. 2 Adic
transformations was defined in the end of 70-th (see [4]) in order to develop
the strong approximation in ergodic theory. Adic realization of the trans-
formation is nothing more than sequence of the coherent Rokhlin towers
considered in the space of paths of the graph, and what is important the
height of towers can depend on the point and can change with n. 3

Now adic transformations became very popular — we can speak about
adic-type of dynamics as a theory of the special type of dynamical systems
like symbolic dynamics. This is a sort of constructions of important exam-
ples and counter-examples in the theory. Shortly speaking adic dynamics is
dynamics of paths of the graded graphs (Bratteli diagrams) rather action of
the group. 4

2”adic” means ”p-adic” without ”p”, like Arnold’s notion of ”versal” deformation
means ”universal” without ”uni-”.

3The Dye’s theorem about isomorphism of orbit partitions of any ergodic transforma-
tions is an easy corollary of adic realization (see [12]). The analog of Dye’s theorem for
ergodic transformation with σ-finite invariant measure ([15]) is corollary of the integral
realization of automorphism (see next paragraph).

4The popular term ”Bratteli-Vershik diagram” is not precise: the ”adic transforma-
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From topological point of view this is a dynamics on Cantor set or more
exactly on the space of paths of a graded graph. From symbolic point of
view this is a ”transversal dynamics” on the Markov or more general but in
general not stationary compact. For the stationary case this definition had
been considered by S.Ito [6]. Measure-theoretical and Borel approach to the
adic dynamics is useful for many asymptotical and probabilistic problems
about combinatorics and topological structure of space of paths or Markov
trajectories. As the examples we can mention limit shape theorems, approx-
imation, entropy and so on, see my survey [14]. In this notes I will mention
several questions which related to Pascal automorphism as well as to the
σ-finite Ergodic theory. We do not touch here more deeper properties of
automorphisms with infinite invariant measures, like ww-sets and others.

In the next section we made some definitions and define a new notion of
generalized induced automorphisms which shows that Pascal automorphism
is induced in the sense of new definition of odometer.

In the last section we gave a sketch of the σ-finite version of the theory
of random walks on the groups.

2 The odometer and Pascal automorphism

Recall the definitions of odometer and Pascal automorphisms. Consider
X = Z2, the compact additive dyadic group of dyadic integers with Haar
measure µ and let

T : Tx = x+ 1

be the addition of unity, or odometer-ergodic transformation with dyadic
spectra. The p-adic odometer can be define in the same way. Moreover we
can consider an arbitrary product-space of the finite sets∏

k

Zpk , pk ∈ (N \ 1), k = 1, 2 . . . ,

equipped with group structure as profinite group, and then define {pk}-
odometer. We will consider here only 2- or p-odometer.

Denote as P the Pascal automorphism of the space (Z2, µ) an automor-
phism which is defined by the following formula in terms of dyadic decom-
position:

x 7→ Px; P (0m1k10 ∗ ∗),= 1k0m01 ∗ ∗ m, k = 0, 1 . . . .

tion” was defined by myself as a model of approximation in the uniform topology of
automorphisms, and were a self-consistent collections of Rokhlin towers for given auto-
morphisms. The interpretation with Bratteli diagram was very convenient if we define the
lexicographic order on the paths. The corresponding automorphisms and their - names
for the given graphs (Pascal, Young etc.) I had used in the beginning of 80-th.
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For example:

P (10∗∗) = 01∗∗, P (0110∗∗) = 1001, P (00110∗∗) = 10001, P (1110∗∗) = 1101∗∗,

etc. More exactly, the rule is the following: to find the first appearance of
pair 10, change it to 01 and put all 1-s to the beginning of string, and all
zeros a next. The number of zeros and ones does not change under P . So
the orbit of P belongs to the orbit of action of infinite symmetric group.
Moreover it is clear that the orbit partition of P coincides with the orbit
partition of the action of the group SN. 5

We have the formulas:

Px = x+ n(x) = T n(x)x,

Remark that Px > x for all x in the sense of order in integers. So Px − x
is a natural (nonnegative) number n(x). The arithmetic properties of the
(ceiling) function n : Z2 → N are very interesting.

The implicit formula for the function n(·) is the following:

n(0m1k10 ∗ ∗) = 1k0m01− 0m1k10 = 2m + 2k − 1

Easy calculation shows: ∫
Z2

n(x)dµ = +∞.

Consequently, the Pascal automorphism is not the induced automorphism
by odometer T and vice versa odometer is not the integral automorphism
over Pascal automorphism. By this construction Pascal automorphism is
induced by the automorphism T̄ with infinite invariant measure (see next
section with the general definitions). Pascal automorphism is a partial case
of the general definition of adic transformation, see [5], [13]].

The Pascal automorphism as a transformation on Z2 has the continuum
mutually nonequivalent invariant ergodic measures (Bernoulli (p, q); p+ q =
1; p, q > 0 measures; this is so called exit boundary of the space of paths of
Pascal graph). In the same time the odometer has only one ergodic invariant
measure (Haar measure). It is possible to extent all Bernoulli measures up
to invariant measures under the automorphism T̄ (see [2]). There is the
sufficiently large literature on Pascal automorphism after [5](see f.e.[7, 13],
and references therein). The exceptionally interesting papers are [8, 9] on
the loosely Bernoulli property and Takage curve, see recent continuation
[10]. There are many open problems about it, e.g. the weak mixing (my

5The initial definition of P starts from the fact that the space of paths of infinite
Pascal triangle is exactly the set of all infinite sequences of 0-1 on Z2. In the paper [13]
we define Pascal automorphism as the inverse automorphism P−1 as it was defined above.
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conjecture in 80-th) is still (11.2015) not proved, however there are several
plans to attack this problem, see [13]. 6.

I will give one example of the problem. Important characteristic of Pascal
automorphism and more general — adic transformations) is the following.
Consider a point x = {xn, n ∈ N} ∈ Z2 and for each n fix the n-fragment
of x of length n: {xk, k < n}. Suppose that this fragment as a sequence of
0, 1 has m zeros and n−m ones, and so belongs to the linear ordered set of
all sequences of length n and m zeros; suppose tn(x) is its ordinal number
in this linear ordered set.

Conjecture 1 (Non-linear limit theorem) There exist such a sequence an of
natural numbers and a sequence of positive numbers bn such that for almost
all x ∈ Z2 with respect to Haar measure there exists the limit

lim
n
m{x :

tn(x)− an
bn

≤ α} = Ψ(α),

where m is Haar measure on Z2 and Ψ(.) is a non-degenerated distribution
on R.

It is intriguing question if this problem has any connection with Takagi curve
in the sense of the paper [9].

3 Generale model

3.1 The notion of generalized induced automorphisms

We want to generalize the notion of induced automorphism due to S.Kakutani.

Theorem 2 Let T be a m.p. automorphism of the space (X,µ). The au-
tomorphism P of the same space is called the generalized induced automor-
phism over T if one of the following equivalent conditions takes place:

1. Px = T n(x)x, where n(x) ≥ 0 for almost all x.

2. The orbit partition τ(P ) of automorphism P is a subpartition of the
orbit partition of the automorphism T :

τ(P ) � τ(T )

and the order on the orbits of P is induced by the order on the orbits of T .

6The title of that article is not a claim but used to express the old certitude of author
that the spectra of Pascal is pure continuous, and the assurance that the proof will be
done soon
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The equivalence of the conditions is evident.
The notion of induced automorphism TA where A is a measurable set of

positive measure evidently agrees with this generalization. Usually define
TAx = x if x /∈ A. In this case TAx = T n(x)x where n(x) is the moment of
the first return to A if x ∈ A and 0 if x /∈ A; it is clear that in this case∫
X
n(x)dµ <∞.
The class of generalized induced automorphisms is a proper subclass of

all automorphisms which has the form Px = T n(x)x with arbitrary function
n(·) (which defines an automorphism).

Problem. Describe all automorphisms which are generalized induced
over the odometer (dyadic or p-adic).

It is easy to answer this question in terms of adic transformation:

Proposition 1 Suppose the directed graph Γ has the property: the number
of edges which started from the vertices of the level n to the level n + 1
does not exceed p. Then any adic automorphism on the graph is generalized
induced over the p-odometer.

But this description does not answer on the question about the properties
of this class of automorphisms like spectra, rank and so on,

Evidently any automorphism can be represented as generalized induced
over an odometers of the spaces (

∏
n Zkn ,

∏
nmkn) with sufficiently large

growth of the sequence kn — this is a corollary of the universality of adic
realization ([5]).

In the previous examples it is easy to express
∫
X
n(x)dµ(x) via ”binomial

coefficients”— number of paths. Usually it is equal to infinity, so the typical
generalized induced automorphism is not ordinary induced.

3.2 HK-automorphism as quasi-odometer

Pascal automorphism is the simplest generalized induced automorphism over
dyadic odometer. But because of infinity of the integral

∫
X
n(x)dm(x) it is

not the induced automorphism by odometer T and consequently odometer is
not the integral automorphism over Pascal automorphism.

In the same time we can define the integral automorphism over Pascal
automorphism, using the same function n(x) — that will be the measure
preserving automorphism of the space with infinite measure, we call it
now Haijan-Kakutani transformation.

We have the scheme:

T → P = T n(·) → T̄ = P n(·)

Here T is 2-odometer, P is Pascal automorphism and T̄ is HK or quasi-
odometer which is integral over P and is measure preserving automorphism
with σ-finite measure µ̄.
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More exactly: define the space with σ-finite measure and measure pre-
serving transformation on it:

(X̄, µ̄, T̄ ).

Here X̄ is the intersection of the lattice Z2 with the subgraph of function
n ≥ 0 (from the formula Px = T n(x)x); the measure µ̄ is a σ finite measure
which coincides with µ on the base X, and whose conditional measure on
the finite sets ((x, 0), (x, 1), . . . (x, n(x)) is the counting measure; finally T̄ is
defined as the automorphism which has the automorphism T as induced on
the subset (X, 0) and acts as (x, i) 7→ (x, i+ 1) if i = 0, . . . n(x)− 1.

This construction is universal: one can use any automorphism instead
of odometer T and any generalized induced over it. This gives the class of
realizatiosn of automorphisms with σ-finite invariant measure.

Suppose T and P are m.p.(=measure preserving) automorphisms of the
space (X,µ) and τ(T ), τ(P ) are their orbit partitions; assume that τ(P ) �
τ(T ) which means that each orbit of P belongs to an orbit of T . In this case
the formula takes place:

Px = T n(x)x,

where n(x) is a measurable integer-valued function on x. Assume also that
for almost all x the T -orbit of x consists of infinitely many orbits of P .
As was proved in [11] this means that the function n(·) is not integrable.
Remark that this means that the function n(·) is far from to be arbitrary
integer values function on X — in contrast to the case of construction of
the integral automorphisms where the ceiling function is arbitrary. Thus we
have a special class of the integer-valued functions n(·) for which we want
to give a model of infinite measure preserving transformations.

Theorem 3 Each ergodic automorphism P with finite invariant measure
can be realized in the form

Px = T n(x)

where T is 2-odometer and the orbit partitions τ(·) of T and P have property
τ(P ) � τ(T ) and almost each orbit of T contains countably many orbits of
P .

The proof is similar to the proof of Dye’s theorem and is based on the fact
that each ergodic P has universal adic realization in the space of paths of
the distinguish graph of unordered pairs (UP ) — see [14] — this is the
strengthen of the theorem on adic realization [5]. But the space of paths of
UP can be identified with the dyadic group Z2 preserving the tail filtrations.

Of course the dyadic odometer can be changed on any space of type
X =

∏∞
k=1 pk where pk > 1 is any sequence of naturals, pk > 1. Sometimes

this is more convenient than pn ≡ 2.
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It is convenient to make the following form for T̄ . Consider the space Q2

of rational dyadic numbers (as a space but not as an additive group):

Q2 =

(∑
n<0

Z2}

)
×
∏
n≥0

Z2 ≡ N× Z2;

it is useful to consider the first summand as natural numbers with addition
as operation and second summand as dyadic integers with natural 2-adic
operation. We equip Q2 with (infinite) Haar measure m with normalization
m(Z2) = 1.

Consider the automorphism P which satisfies our assumptions

Px = T n(x)x = x+ n(x), x ∈ Z2,

where T is 2-odometer and n is a suitable function. Define the automorphism
T̄ of Q2 with invariant Haar measure by the following formula:

T̄ (y, x) = (y′, x′); y, y′ ∈
∑
n<0

Z2, x, x
′ ∈
∏
n≥0

Z2,

where
x′ = Px = T n(x)x, if y = n(x);
x′ = x, if y 6= n(x);
y′ = y + 1, if y 6= n(x);
y′ = 0, if y = n(x).
We emphasize that the function n(x) plays two roles - as ceiling function

and as time change for P . It is natural to call T̄ the ”pseudo-odometer”, or
”reflection of odometer” with respect to the automorphism P .

It is possible to give another transparent description of this construction
for T̄ :

The measure space can be realized in the space Q2 in the form which
used the previous notations: x ∈ Z2; y ∈ N, y ≤ n(x) :

T̄ (x, y) = (T 1
y (x), T 2

x (y)),

where

T 1
xy = y + 1, if y < n(x), and T 1

xy = 0 ∈ N if y = n(x).

For T 2 we have:

T 2
y x = x, if y < n(x), T 2

n(x)x = Px.

This is simply ”horizontal” expression of the fact T̄ is generalized the
induced automorphism. But this form is very convenient for operation and
for graph interpretation.
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In general {Tx} is a measurable family of permutaions of N and {Ty}
is a countable family of Z2 (This construction could be called ”bi-skew-
product”). But our realization is a little bit special.

Problem For what ergodic automorphism T̄ with infinite invariant mea-
sure there exists such representation (integral representation) where T is
odometer and with the some function n(·)?

Recall also that the simple generalization of well-known Dye’s theorem
(see f.e.[15]) claimed that the orbit partition of any ergodic automorphism S
is isomorphic to the partition of the space Q2 into cosets with respect to the
subgroup Q (rational numbers). The model above gives more or less simple
way to represent automorphism (like ”interval exchange”). It is possible to
give a graph interpretation of a representation our model which is similar to
the adic model of the automorphism with finite invariant measure.

For this we need to consider Z-graded (not N=graded) graphs, but of
the special type on ”minus infinity”: the space of double infinite paths must
have stabilization on minus infinity, which means that there is a path t such
that each path coincides with it at −∞. We hope that this σ-finite adic
model will be useful for infinite ergodic theory.

Problem To define the analog of Bratteli-Vershik model for σ-finite
measure preserving transformation.

Actuality of this problem lies in necessity of the simple models of ergodic
automorphisms with σ-finite measure.

4 σ-finite theory of the random walk on the

groups.

It was mentioned in the paper [3] (see p. 458, item 5.) the following im-
portant point: the natural theory of the random walks on the groups must
be developed in the framework of the ergodic theory with infinite invariant
measure. The reason is the possibility to consider a two-sided process and
the shift of the trajectories as measure preserving transformation. Unfortu-
nately, we are still far from the serious achievements in this direction. The
analysis of the new situation must take into account the fact that the global
measure is infinite and the space of trajectory of a random walk is not com-
pact. The last facts demand a serious revision of the many ordinary notions
like ergodicity, regularity, notion of boundary, entropy, new look on the role
of functional spaces (l2, L∞), etc.

Of course the situation seems to be very clear: σ-finite measure in the
space of trajectories of random walk is a direct product of Bernoulli measure
with σ-finite (Haar) measure on the group, and the automorphism is simply
skew-product with Bernoulli automorphism as the base and translations on
the group as the fibers. But this does not mean that all analysis is reduced
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to the ordinary ergodic theory.
We give here only evident example of the preference of the ”σ-finite”

point of view, more exactly — preference of the consideration of two-sided
processes (the time is Z but not Z+) with necessarily σ finite measures.

How to define exit and entrance (Dynkin) as well as Poisson-Furstenberg
boundaries of the random walk using the shift in the space of trajectories
with σ-finite measure?

Let G be a countable (infinite) finitely generated group and S be the set
of generators. We assume that the group G is the semigroup generated by
S). Denote as ν̄ the measure on S−1: (ν̄)(g) = ν(g−1).

Consider the random walk on the countable group G with a probability
measure µ on S. The set of trajectories of generalized Markov chain is the
subspace M of GZ:

M = {{yn}n∈Z : yn
−1 · yn+1 ∈ S, n ∈ Z}.

We can represent the space M as the direct product

M = SZ ×G : {yn} = ({sn}n∈Z, y0),

where sn = yn
−1 · yn+1, n ∈ Z. We will not define a Markov measure on M,

but define only transition and co-transition probabilities:

P{yn ≡ yn−1s|yn−1} = ν(s) P{yn ≡ yn+1s|yn+1} = ν̄(s) = ν(s−1), n ∈ Z.

The dynamics on the space M is defined by the shift T which is linear
automorphism of the space M: {T ({yn})}n = yn−1.

We the stationary (shift-invariant) Markov measures on M7.

Definition 2 Exit boundary of a random walk corresponding to the pair
(G, ν) where G is countable group, and ν is measure with the finite support S
which generate G as a semigroup is the set of all ergodic shift-invariant two-
sided σ-finite Markov measures µ on the space M with given co-transition
probabilities defined above;

Entrance boundary of random walk corresponding to the pair (G, µ) is
the set of all ergodic shift-invariant two sided σ-finite Markov measures µ
on the space M with transition probabilities defined above.

Here we call the Markov measure on the space of double infinite sequences
ergodic if it is regular (terms of Kolmogorov) or Kolmogorovian (modern
term). This means that filtration of the past and filtration of the future
have trivial intersections. In other words -no nontrivial events on plus and

7Definition of Markov property of the σ-finite measures is the same as
usual:independence of past and future for fixed value of the present.
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minus infinity. Remark that the initial distribution does not mentioned in
the definition. It is clear that both boundaries are topological spaces (with
weak topology on the space of measures). It is very important to understand
the topological properties of these spaces.

Of course, the exit (correspondingly, entrance) boundary in this defini-
tion is the same as exit (entrance) boundary for one-sided system of co-
transition (correspondingly, transition) probabilities in the sense of old pa-
pers of Dynkin or in the new paper [14]. But two-sided invariance gives more
possibilities to study these objects.

In the case of symmetric measure ν = ν̄ both boundaries are tautologi-
cally coincided.

Measure ν (correspondingly ν̄) defines a Laplace operators in l2(G) (these
two Laplace operators are mutually conjugate) in the space l2.

The Laplace operators Lν , Lν̄ are convex combinations of the isometries
of the shifts Us, s ∈ S, or s ∈ S−1 in the space l2(G) (or in the spaces
L∞µ (M)).

The PF-boundary of random walk in this case is a measure space with
harmonic measure which is the ”part” of the exit boundary which is a topo-
logical space. Remark that the exit boundary could be nontrivial even if
the PF-boundary is trivial. Both boundaries could be identifying with the
spectrum of Laplace operator in the space L∞, and more exactly — with the
space of minimal non-negative harmonic functions with so called harmonic
measure.

One of the most intriguing and (as I know) open questions on σ-finite
theory of random walks (even for a simple walk on Z), is how to describe
weakly wandering sets for them.
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