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Introduction

The problem of trigonometric interpolation has a long history of decades ([1]). Investiga-
tions in this area have started over 100 years ago by works of Burkhardt [2], Vallée-Poussin
3], Jackson [4-6], Fejér [7], Feldheim [8] and are urgent till now. Numerous authors consider
this problem and rather short list includes [9-20] with references therein.

Let {x}Y_ », N > 1 be some grid on [—1,1). The classical trigonometric interpolation
In(f,x) is completely identified by the following two conditions:

a) interpolation condition

b) exactness condition

Iy (6™, 2) =™, |n| < N, z €[-1,1]. (0.2)
Let
N
IN(f? CL’) = Z ak(x)f(xk)v S [_17 1]7 (03)
k=—N

where ay, are some unknown functions to be determined. The exactness condition b) leads to
ITNX

the following system of linear equations with the Vandermone matrix e

N
e = Z ag(z)e™ ™, |n] < N, z € [-1,1]. (0.4)
k=—N

When ), # x;, k # j, system (0.4) has unique solution and the classical interpolation has the
following representation ([1])
al N sin T — )
In(f,2) = Y fla) [ =—2— (0.5)

= =7 sin 5o — )
ik

which also holds the interpolation condition a).
In general, the geometric structure of the set z; is of great importance for convergence

properties of Iy to f as N — co. Mostly investigated and important in applications is the case



of equidistant nodal points when e |k| < N are equally spaced over the circumference of
the unit circle. Further, in this work, we assume that the classical trigonometric interpolation

is realized for the equidistant set of points

2k
2N +1°

k=—N,... N. (0.6)

T =

In this case, system (0.4) can be solved also by application of discrete Fourier transform ([21])

(o) = 5 N1+ 1 _i gimn(a=i) (0.7)
and consequently N
In(f,x) = 2N1+ 1 k:z:Nf(g;k)DN(m — ), (0.8)
where Dy is the Dirichlet kernel
Dy (x) = sin (N + 3) T (0.9)

sin ¢
Representation (0.7) allows to rewrite the classical interpolation in the form which has

far-going importance for applications

N

[N(fax) = Z fvneiﬂnx7 (010)

n=—N

where {f,} is the discrete Fourier transform of {f(z))}

fo = ! D> flap)e ™o, (0.11)

The classical Cooley-Tukey algorithm ([22, 23]) computes the discrete Fourier transform for n
given complex coefficients in nlogn operations instead of n? operations and is known as the
fast Fourier transform (FFT) algorithm.

Let

Rn(f,x) = f(z) — IN(f, ). (0.12)

It is well known ([1, 15]) that convergence Ry — 0 highly depends on the smoothness of
2-periodic extension of f onto the real line. Kress ([9]) showed that for 2-periodic analytic
function the order of convergence is O(e™“"), N — oo with some ¢ > 0 constant. When

2-periodic extension of f is discontinuous then regardless of the smoothness of f on [—1,1] (it
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means that f(1) # f(—1)) the classical interpolation has slow L, and pointwise convergence
on (—1,1) and the Gibbs phenomenon at the points = +1. Next theorems describe this in
more exact terms.

Let
Ae(f) = fB 1) = fP(-1). (0.13)

The following theorems provide estimates for pointwise convergence.

Theorem 0.1 (A. Poghosyan, [24]) Let ¢ > 0 be even, f9) € AC[-1,1] and
Au(f) =0, k=0,...,q— 1. (0.14)
Then, Rn(f,z) = O(N~7 Y for |z| <1 as N — cc.
Theorem 0.2 (A. Poghosyan, [24]) Let ¢ > 1 be odd, f%%% ¢ AC[-1,1] and
A(f) =0, k=0,...,q—1. (0.15)
Then, Ry(f,z) = O(N972) for |z| <1 as N — oo.
Now, we provide estimate in the Lo-norm. Let

1 lzarer = ( / \f(x)|2dr>% . (0.16)

Theorem 0.3 (A. Nersessian and N. Hovhannisyan, [25]) Let 9 € AC[—1,1] for some q¢ > 1

and Ag(f) =0, k=0,...,q— 1. Then, the following estimate holds
Tim N2 Ry (f, ) | a1 = 1A (F) e (0.17)

where
1/2

(- |
> FEEHE (0.18)

Estimate (0.17) is valid also for ¢ = 0 if f" € Ly[—1,1].

1 1 N 1/1
Cq = =
q e+l 29+ 1 2/, i

Next theorem characterizes behavior of the classical interpolation at the points x = +1 in
terms of the limit functions. Similar technique was utilized by series of authors for investigation

of convergence of the classical interpolation ([3, 11, 12]).
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Theorem 0.4 (A. Nersessian and N. Hovhannisyan, [26]) Let f9 € AC[~1,1] for some ¢ > 1

and Ap(f) =0, k=0,...,q— 1. Then, the following estimate holds

N—oo

lim NRy (f, + (1 - %)) = Ay(N)losssrg(h), h >0, (0.19)

where
1 1 ) (_1)5 e:Fiwht
l, h) = —— Fimht N © Lt — / —dt | . ,
—x1,q(R) I ( /_ Kk ; EEAE o (0.20)
Estimate of (0.19) is valid also for ¢ = 0 if f’ € Ly[—1, 1] and h > 0. Direct calculations show
that gxﬁilyo(()) = :l:%

Taking into account that |[l;_1 4(h)| = [lzms—14(h)|, we put
£ = max | (1), (0.21)

which characterizes the asymptotic (N — oo) uniform error of the classical interpolation.

Presented results show that when f is smooth on [—1,1], but its 2-periodic extension is
discontinuous (f(1) # f(—1)), the classical interpolation has convergence rate O(N~2) in the
Ly-norm, O(N~') pointwise convergence and O(1) uniform error.

Different methods for convergence acceleration of trigonometric interpolation are known in
the literature. We are interested in two approaches: application of rational and polynomial
corrections to the errors of interpolations.

The classical idea of interpolation by rational functions is in interpolation of f by the
following quotient

Pr(z)

Spm(z) = Om(@) (0.22)

where Pp, and )y, are trigonometric polynomials of degrees at most L and M, respectively.
The coefficients of nominator and denominator must be determined from the interpolation

condition
f(x;) = Sp.m(x) (0.23)

for some grid xj, where the number of nodes equals the number of unknown coefficients. Ra-
tional interpolation can encounter standard problems: the problem is not always solvable as in

some cases, the interpolation condition (0.23) cannot be satisfied and the interpolating function
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Sr.a(z) can have poles in the interval of interpolation, which make the interpolation useless
unless f is singular at the same points, too. Different authors studied rational interpolations
trying construct well-conditioned, reliable and stable interpolations. Rather short list includes
[27-38] with references therein.

Application of polynomial corrections is an efficient approach for convergence acceleration
of the classical trigonometric interpolations and approximations (see [24, 39-53] with references
therein).

In this work, we study trigonometric interpolations and approximations of smooth on [—1, 1]
functions which have discontinuous or low-smooth 2-periodic extensions on the real line. When
the basis functions have periods equal to the length of interval, we call such interpolations
and approximations as classical. We achieve better accuracy by considering trigonometric
interpolations with basis functions which periods are greater than the length of the interval
but tending to it as the number of nodes tends to infinity. Such interpolations are known as
Quasi-Periodic (QP) interpolations ([54]).

First, we derive an explicit formula for realization of the QP interpolation and then study
its convergence in different frameworks: pointwise, Ly and uniform convergence. The essence
of our approach is derivation of the exact constants of asymptotic errors and their comparison
with the classical analogues. When theoretical conclusions are impossible, we use the methods
of numerical analysis.

Second, we apply rational and polynomial corrections for convergence acceleration of the
QP interpolation and investigate the convergence of the resultant QP Polynomial interpolation
and QP Rational, QP Rational Polynomial approximations. We consider rational functions as
corrections of the error of corresponding interpolations. In case of the classical interpolation
this approach is considered in [35, 36, 55] (see also references therein) which leads to the
classical rational trigonometric (RT) interpolation. There, the pointwise and L, convergence
were investigated. Here, we explore the behavior of the classical RT interpolation in terms
of the limit functions. Then, we apply this approach for convergence acceleration of the QP
interpolation and derive QP Rational (QPR) approximation. Actually, in this case, the rational

corrections distort the condition of interpolation although the latest is also written via discrete



Fourier coefficients of f.
The main results of this work are published in [56-60] and presented in conferences and
workshops [61-64].

Let us consider trigonometric interpolation of f with basis functions
imnoz \ NV
{e by, 0<o <1, (0.24)

which have period 2/0 > 2. Similar idea considered in [65] named as sub-periodic trigonometric
interpolation. Similar to (0.4) the exactness condition leads to the following system of linear

equations with Vandermonde matrix for determination of the unknowns ay ()
N
e = Z ag(z)e™7 |n| < N, x € [-1,1]. (0.25)
k=—N

If parameter ¢ and grid z;, are chosen such that the system has unique solution then the
sub-periodic interpolation can be realized.

Following the idea introduced in [54], we assume that parameter ¢ depends on N and
consider interpolation which is exact for the following system of quasi-periodic exponents

{ iﬂ'nax}N o 2N
‘ =N T ONym+1 "

e[-1L,1], meZ m>0 (0.26)
with the periods 2/0 — 2 as N — oo. Such interpolations are known as QP interpolations.
We denote it by Iy..(f,z). In papers [25, 26, 54] such interpolations were investigated only
by the methods of numerical analysis.

Let {1} », N > 1 be some grid on [—1,1]. The QP interpolation can be completely

characterized by the following two conditions:

a) interpolation condition
Inm(fy ) = f(xx), [kl <N, feC=11], (0.27)
b) exactness condition
Ing (€77, 2) = ™% |n| < N, z € [-1,1]. (0.28)
Throughout this work, we assume the following grid for the QP interpolation

. k=—N,...,N, (0.29)

T =

k
N



which includes also the endpoints © = +1 of the interval. Such interpolations are known as
the ”full-interpolations”. It is easy to verify that system (0.25) has unique solution for such
choices of o and zy.

Let us establish the connection between the classical trigonometric and the QP interpola-

tions. Consider a new function f*(t) defined on [—o, o] by the following change of variable

t
=1 (;) — f(@), ze[-11), 1€ [0,0], t= 0w (0.30)
This implies €™ = €™ and transformation of the grid
2k
ty = =—— |kl < N. .31
=0 = o S (0:31)

Hence, we derived the classical trigonometric interpolation (which is exact for ™) of f*(t)
on grid t;,. When m = 0, the grid t; is equidistant on [—1, 1] and we readily derive the explicit
formula for Iy o(f,z)

IN,O(f71') :]N(f*,t) — Z v;:ezﬁmt — Z v:zeimwz’ (032)

n=—N n=—N

where

]; (0.33)
_ 1 E:fk imn 2
N1 & T\N)°
In the case of m > 0, the grid ¢, is non-equidistant as
bty = k= —N+1,..., N (0.34)
k k71*2N+m+17 - [ ) .
while
1—ty+t (=1)=(m+1) 2 (0.35)
— Nv—(=1)=(m e a—— .
NTEeN ON +m+1

It is also worth noting that f* depends on N, and although f* — f as N — oo, but this
dependence essentially changes interpolation properties.

Chapter 1 studies the convergence of the QP interpolation in different frameworks. Ac-
tually it establishes the convergence theory of the QP interpolation. Comparison with similar

results of the classical interpolation confirms observations derived in [54] by the methods of
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numerical analysis: better accuracy of the QP interpolation compared to the classical one in
the Ly and uniform norms and higher pointwise convergence rate.

Section 1.1 presents some results for the classical trigonometric interpolation.

Section 1.2 presents the process of solution of system (0.25) with grid (0.29) and o defined
by (0.26). As we mentioned above, grid (0.31) is non-equidistant on [—1, 1] when |k| < N,
but it becomes equidistant when index k changes from £ = —N to &k = N + m. Hence, by
adding some additional terms in the sum on the right-hand side of (0.31) with some additional
unknowns and also by adding some new equations, we enlarge the matrix of system (0.25) into

unitary matrix of the discrete Fourier transform
eiﬂ'nO’Ik; — eiwn2N+nL+1 k‘ n = N . 7]\f +m. (036)

Additional added unknowns can be found via inversion of some Vandermonde matrix of size

m X m. Finally, the QP interpolation has the following representation

INm fa Z Fn mezﬂ'na:p (037)
where
F, m = fn,m - Zen,ﬂféJrN,ma (038)
=1
N
r 1 k 2imnk
nm T oA T — | e 2N+m+1 0.39
In. 2N+m+1zf(N)e o (0:39)
k=—N
and
One=c¢ e TN Zv el (0.40)

By v, !, we denoted the elements of the matrix which is the inverse of the following Vander-

monde matrix

a1 2im(0+N)
Vg =0 o, apg=eNtmil s (=1 .. m. (0.41)

When m = 0, (0.37) coincides with (0.32).
Section 1.3 studies pointwise convergence of the QP interpolation and derives exact con-
stant of the main term of asymptotic error. The main results of this section are the following

theorems.
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Let
Aps(f) = FO (1) = (1) fO(=1) (0.42)

and
o (_1)r(m+1)

i\ _ T (m—1)z
Dy (e7™) = €2 TZ_:OO Ty (0.43)
Theorem 0.5 [60] Let f9%2™ ¢ AC[-1,1] for some ¢ >0, m > 1 and
fB(=1)=f®a)y=0 k=0,...,q— 1. (0.44)

Then, the following estimate holds for |x| <1 as N — oo

Yy 5], o
RN,m<f733)_ ( 1) Sin(W(N—l—l)ax) ( k) ( 1)

Na+m+1 — k 22k+1 g2k+2 %

-1

ﬁ
|3
—

—sin (mNox)

(m k- 2) (—1)* (0.45)

k 92k+3 C0S2k+4 %

o

=0

q _
Apg(f)(m +1)77* (m) vl
X Z QQ—k+1:k—1ﬂ.k—m+1(q _ k)!q)k,m(_l) +o(N™1 ).
k=0

Theorem 0.6 [60] Let f*Y € AC[-1,1] for some q > 0 and
O =f®ay=0, k=0,...,q—1. (0.46)

Then, the following estimate holds for |x| <1 as N — oo

Bol o) = U SN SN A2 S (1
7x = T y
N,0 20+ N+ cos IE (¢ — k)libmktl 2= (o 4 1)

+o(N797H.  (0.47)

Assume that f is infinitely differentiable on [—1, 1], but f(1) # f(—1). Hence, estimates
of Theorems 0.1, 0.5 and 0.6 are valid with ¢ = 0. The QP and the classical interpolations
have the same convergence rate O(N~!) for m = 0. When m > 0, the QP interpolation has
convergence rate O(N~""!) against rate O(N~!) of the classical interpolation. Improvement
is by factor O(N—™) .

Section 1.4 studies the QP interpolation in the framework of the Ls-norm. The main

results are:

12



Theorem 0.7 [56, 57] Let fl+™ ¢ AC[—1,1] for some ¢, m >0, ¢ +m # 0 and
fO(=1)=f®1)=0, k=0,..,¢— 1. (0.48)
Then, the following estimate holds

A NP3 | R ()| 2 11) = Cam(F), (0.49)

1Yt o o 2
i f):——m;— / / Vg (f, )™ 2 Tl — / fam(f, R)ET T AR dx
—1 —1 |h‘>1 (050)

1 [t 1
W1 / Vg (f2) 2+ 2 / o ()2 da,
2/, 2 Jiz>1

and
~ Agg(f)(m + 1)
:uq m<f7 ) - ;0 29— (q ) (ZWZE)IH'I
g Ak m 1)1~ k
I/q,m(f7 ) - ;0 2q Elf))(k—o—l—i(_q 1 ]{Z)' (051)
-1 r(m+1) - 1 T iTT T
(S m o S e o)

Estimate (0.49) is valid also for ¢ =m = 0 if f’ € Ly[—1,1].

Comparison with Theorem 0.3 shows the same convergence rate if other conditions are
satisfied. More detailed comparison of the classical and the QP interpolations is possible
to perform via analysis of ratio |A,(f)|c,/cqm(f). In general, this ratio depends on f and
comparison of both interpolations is possible only for a specified function. However, in Section
1.6, we show that in important special case ¢ = 0, the ratio is independent of f and comparison
of both interpolations can be performed independently of interpolated function. The values
of the ratio for different values of m show that the QP interpolation is much more precise in
the Lo-norm than the classical interpolation when ¢ = 0. For example, when m = 7, the QP
interpolation is more than 3000 times more accurate than the classical interpolation.

Section 1.5 explores the behavior of the QP interpolation at the endpoints of the interval

in terms of limit functions. The main result is:
Theorem 0.8 [57] Let f*™) € AC[—1,1] for some ¢,m >0, ¢+m # 0 and

fB(=1)=f®1)=0, k=0,...,q— 1. (0.52)

13



Then, the following estimates hold

h
lim NRy ., ( £+ (1 - N)) = lysirgm(fih), h >0, (0.53)

N—o0

where

1 [t im 1 .
Cosirgm(fih) = 5 / lyq,m( fo)eFm ()t 5 /| | 1Mq,m< foo)eF(F )t (0.54)
— t|>

and functions g m and vy, are defined in Theorem 0.7.

Estimate (0.53) is valid also for ¢ = m = 0 if f’ € Ly[—1,1]. Note that Ry,(f, £1) =0 as
x = %1 (h = 0) are the nodes of interpolation.
We put

Ly () = mas{amax £ s qon(F, )], X[ Cors 1 (£ 1)} (0.55)

which characterizes the uniform error of the QP interpolation. Theorems 0.4 and 0.8 show the
same convergence rate for both interpolations and more detailed comparison of accuracies is
possible via analysis of ratio [A,(f)|€;/€ym(f). In general, such analysis is possible to perform
only by specifying f. However, in important special case ¢ = 0, we perform such analysis
independently of f (see Section 1.6). The values of the ratio for different m show that the
QP interpolation is more precise than the classical interpolation and as bigger is m as more
bigger is difference in accuracies. For example, when m = 7, the QP interpolation is more than
4500 times more accurate than the classical interpolation in the uniform norm.

Chapter 2 considers rational trigonometric interpolations and approximations.

Section 2.1 considers convergence acceleration of the classical trigonometric interpolation
by rational corrections and investigate the convergence of the resultant interpolation.

The classical RT interpolation I%,(f, z) and its error RY(f, z) are defined by (2.3) and (2.4),
respectively. It is represented as a sum of the classical trigonometric interpolation I (f, z) and
rational functions (in terms of ™) as corrections of the error Ry/(f,z). Rational corrections
contain some parameters A, (in general, complex numbers) which determination is a crucial
problem. Different approaches are known for determination of these parameters. An approach,
which is applicable for cases when interpolated function is smooth on [—1,1] is

.
/\k:)\_kzl—ﬁk,kzl,...,p, (0.56)

14



where new parameters 7, are independent of N and f ([35]). Below, we present some conver-
gence theorems that outline behavior of interpolations with such choice of parameters.

Another approach is determination of Ay from the following system of equations (see (2.1))

Such interpolations are known as the Fourier-Pade (FP) interpolation ([36]). Section 2.5
considers some numerical results that outline behavior of such interpolations.
Next theorems which we need for further comparisons provide estimates for the pointwise

convergence. In these theorems parameters 7, are undefined.

Theorem 0.9 (A. Poghosyan, [35]) Let ¢ > 0 be even and fU+?+) ¢ AC[—1,1] for some
p > 1. Let A,(f) =0, k =0,...,q — 1 and parameters X\, be chosen as in (0.56). Then,

RY(f,z) = O(N~%=971) for |z| <1 as N — o0.

Theorem 0.10 (A. Poghosyan, [35]) Let ¢ > 1 be odd and f9t?+2) ¢ AC[-1,1] for some
p>1. Let Ap(f) =0, k =0,...,q— 1 and parameters \; be chosen as in (2.36). Then,

RY(f,x) = O(N~27972) for |z| < 1 as N — oo.

As parameters 73, are undefined, we have additional freedom for getting better accuracy by
vanishing the main terms of the asymptotic errors. Paper [35] presents these optimal values

for different p and ¢. As a result, we get more accurate interpolations with
Ry (f, ) = o(N"#771), RR(f,x) = o(N72747%) (0.58)

for even and odd values of ¢, respectively.

Comparison with Theorems 0.1 and 0.2 shows that for enough smooth functions the clas-
sical RT interpolations are asymptotically more precise than the classical interpolation and
improvement is by the factor O(N~%) as N — oo.

The main result of this section is the next theorem (not published) which characterizes the

behavior of the RT interpolation at the points x = £1 in terms of the limit functions.
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Theorem 0.11 Let f@+20) ¢ AC[—1,1] for somep >1,q¢>1 and Ax(f) =0,k=0,...,q—1

Let Ny, be chosen as in (0.56). Then, the following estimate holds

. h
dm N0 (£ (1= 1) ) = A B), 120 (0.59)
where
p p

b D 1 N o

Covstal) = e g T (72 o) 2D ) 2 )@ k= s )
oFimht 1 (—1)" (0.60)

: (A‘/bl g2ps—htqt /16 ; (2r + ¢)2p-hostatl )

Estimate (0.59) is valid also for ¢ = 0 and h > 0. Case h = 0 must be considered separately.

It can be verified that

i RE, (/1) = A(£),11,(0). (0.61)
where
loi10(0) = i%- (0.62)
Taking into account that
o g (W) = 1614 (R)], (0.63)
we put
& = max |, ()] (0.64)

which characterizes the asymptotic (N — oo) uniform error of the classical RT interpolation.
Estimate (0.59) outlines another approach for determination of parameters 7, by minimization
of constant ¢£*. In Section 2.1, we show the corresponding values of 7, for p =1 and p = 2.
Analysis of ratio £ /(2 shows that, when ¢ > 0, the classical RT interpolation is asymptotically
more accurate with optimal parameters than the classical interpolation in the uniform norm.
However, when ¢ = 0, both interpolations provide the same asymptotic accuracy in the uniform
norm, independently of the choice of parameters 7.

Section 2.2 considers convergence acceleration of the QP interpolation by rational (in
terms of e'™%) correction functions. The resultant QP Rational (QPR) approximation I3, (f,z)
and its error Ry (f, ) are defined by (2.34) and (2.35), respectively. The QPR approximation

is represented as a sum of the QP interpolation and correction functions. Rational corrections,

16



as in case of the classical RT, contain some parameters \;. One approach for their determi-
nation is (0.56). Another approach is determination of parameters A\ similar to (0.57) with

some modification as follows

Y+t N [ (0.65)

which we call as QP FP approximation. Section 2.5 presents some numerical results for these
approximations and compares the results with the classical FP interpolations.

Section 2.3 studies the pointwise convergence of the QPR approximation. Let
p p
H (14 72) = Z (1), (0.66)
s=1 k=0
where 7 = {7,...,7,}. The main results are:
Theorem 0.12 [59] Let fla+?+m) ¢ AC[—1,1] for some ¢ >0, p,m > 1 and
fB(=1)=f®a)y=0 k=0,...,q— 1. (0.67)

Let parameters A, be chosen as in (0.56). Then, the following estimate holds for |x| < 1

Dy (S )

R?V,m(fv .Z’) = N7q+2p+_1 + O(Niqizinil), N — oo. (068)
where
DY (fox) = (—=1)N sin (mo(N 4 §)z — B2) N Agg(f)(m + 1)27k2F
Nm\J &) = 2g+2p+1 C082p+1% P q — k)lik—mph+1
1) " - (0.69)
(-1, 20 (1) (1Y o
X Il e (T) — Z n Z ( hy,(2u—m+1,7) |,
! ! 1
t=0 ©n=0
N P . p & r(m+1)
() :;(_” () (w4 ) _Z Ml S (o)
2p P 9 k+t
ho(B,7) ( ) >t DI )(m) . 0.71)
k=0

Estimate (0.68) is valid also for m = 0 if f@*2+1) € AC[-1,1]. Comparison with Theorems
0.5 and 0.6 shows that if 2p > m then the QPR approximation has better convergence rate
than the QP interpolation and improvement is by factor O(N*~™). Note that estimate (0.68)

is valid independently of parameters 7y.
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In estimate (0.68), function DY, (f,7) has an interesting property. When m is odd and
q = 0 then Df\,m( f,x) =0 for all p > 1 independently of f and parameters 7. We summarize

this property in the next theorem (not yet published):
Theorem 0.13 Let f*+™ ¢ AC[—1,1] for some p > 1, odd m and
f(=1) # f(Q1). (0.72)
Let parameters Ny be chosen as in (0.56). Then, the following estimate holds for |z| < 1
Ry ,.(f.z) = o(N"71), N = oo. (0.73)

If f has additional smoothness then estimate (0.73) can be improved to RY , (f, z) = O(N~*7?%).
Again, estimate (0.73) is valid without determination of parameters 7.
Section 2.4 performs analysis of the limit functions of the QPR approximation. Main

result is (not yet published):
Theorem 0.14 Let f@+20¥™) ¢ AC[—1,1] for some ¢,m >0, p > 1 and
fO(=1)=f®a)y=0, k=0,...,q— 1. (0.74)

Let parameters A\, be chosen as in (0.56). Then, the following estimate holds

h
lim NYR, (f, + (1 - N)) =0 m(fh), >0, (0.75)

(2 + (1)

o i (0.76)
x ( / A /| Mo x)eﬁ”(%h)xdx)
and
p _ - Agg(f)(m + 1) - —1)ptt -
,uq,m(fa -’17) ; 2q+175(2’ﬂ')£+1(q — €)| ;( ) ")/t(T) kZ:O ’}/k(T) (077)
X(€+2p—k—t)! 1

Yl x2p7k7t+f+1 ’
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» - Aa()m 1)
Vo (f, %) = Z 211 (i )+ (q — 0)!

=0
p
229 k—t+10)! (—=1)rm+D)

" S el 0.78
(; Z VAl TZ#O (2r + $>2p7k7t+£+1 ( )
m—1 (t t

(I)fm(_m t\ ir@up-—mil)z

a TZ (M)e 2 hQCu-m+1,7) ).

t=0 u=0

In this section, we perform analysis of the QPR approximation with the classical and
the QP interpolations and discuss approaches for determination of parameters 7, based on
the asymptotic estimates presented above. The main recommendation, for the case ¢ = 0, is
realization of the QPR approximation for m = 1 and utilization of parameters 7, that minimize
the uniform error.

Numerical results of Section 2.5 show comparison of the corresponding interpolations and
approximations for such choice of parameters.

Chapter 3 considers convergence acceleration of the QP interpolation and the QPR ap-
proximation by polynomial corrections.

Section 3.1 introduces polynomial corrections. The idea is to construct two families of

polynomials & ,(x) and n 4(z), k =0,...,¢q — 1 with the following properties

E0(1) = €70(-1) = b, ED) +ED(-1) =0, k,5=0,...,q—1 (0.79)
and

() (1 (1) =4 () (] (1) =0 k.s=0 1 0.80

qu( )+77k,q( ) k,ss 77k,q< ) qu( ) y FyS yeond ( : )

and write the following representation of f

f@) =G@) + > Ap (Néraglx) + > AL () rg(2), (0.81)
where
A (f) = fPQ) = fB(=1), AL = FP) + P (=), (0.82)

Function G has the same smoothness as f, but the following important property for our

approaches

GM(1)=G®(-1)=0, k=0,...,q— 1. (0.83)
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Section 3.2 defines the QP Polynomial (QPP) interpolation and the QPR Polynomial
(QPRP) approxiamtion based on representation (0.81). Application of the QP interpolation

and the QPR approximation to G leads to the following QPP interpolation and QPRP ap-

proximation
qg—1 q—1
[N,m,q(fa l’) = [N,m(G7 .Z') + Al;(f)fk#(x) + A;r(f)nk,q<x>7 (084)
k=0 k=0
q—1 q—1
D (f:2) = Ien(Go2) + Y0 AL (@) + Y AL (Fig (@), (0.85)
k=0 k=0

respectively. We assumed that the exact values of A, (f) and A} (f) are known. Discrete
Fourier coefficients of G can be easily calculated from (0.81).

All theorems concerning the convergence of the QP interpolation and the QPR approxi-
mation can be reformulated for the QPP interpolation and the QPRP approximation without
condition f®) (1) = f*®(~1) =0, k =0,...,q — 1. For example, the theorem concerning the

pointwise convergence of the QPP interpolation can be reformulated as follows:

Theorem 0.15 [58] Let fl+?™) ¢ AC[—1,1] for some q,m > 1. Then, the following estimate

holds for |x] <1 as N — oo

DymoG,x v
F(2) ~ Dyng(fo2) = D2l )y ooy, (0.56)
where
G0y = L0 S0 (10 4 3)o = %) 5 (@)l + 12
Nm 4 2q+2p+1 cos2p+1 % — (q _ k)!z'k—mﬂ-k—i-l

(0.87)

m— t

[0 B (i
t=0 =0

Section 3.3 shows the procedure of approximation of A, (f) and Af(f), k=1,...,¢—1

by the discrete Fourier coefficients of f. Procedure that we applied was introduced by Eckhoff

before in a series of papers [66—68]. We repeat it with some modifications and derive systems of

linear equations for determining approximate values A, (f, N) and A} (f, N). Then, we define

the corresponding interpolations and approximations:

—_

q—1
Inamg(f.7) = Ingn(GL2) + > Ap (f N)&rg(@) + D AL (f, N)peg ()
k=1

1

s}

(0.88)

b
Il

Ag ()So0.q(x) + A (f)moq()
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and

qu(f’ )_Ijzi/,m(é’x)—i_ ( Skq +ZA+ f7 nkq )
1 (0.89)

Ag (F)oa(®) + A (£)moq(),

where

5
-
Q
L

Gla) = f(2) = > AL (f, N)érgla) — A;?(f, N g (%)
| (0.90)

e
Il
—
£
Il

— AG (f)o.q(x) — AT (f)n0,q(x).

We are not considering the convergence of the latest approaches theoretically and present only

some results of numerical experiments in Section 3.4.
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CHAPTER 1

Quasi-periodic interpolation

In this chapter, we study convergence of the Quasi-Periodic (QP) interpolation in different
frameworks: pointwise convergence, Lo-convergence and in terms of the limit functions.

Section 1.1 recounts some well-known results concerning the convergence of the classical
trigonometric interpolation which are needed for further comparisons. Section 1.2 presents the
statement of the QP interpolation and derives explicit formula for it. Sections 1.3, 1.4 and
1.5 study the QP interpolation in terms of pointwise convergence, Ls-convergence and limit
functions, respectively. Section 1.6 discusses some results of numerical experiments.

We recap details from [56, 57, 60]. Topics discussed here are presented also in [61, 62].

1.1 The Classical Trigonometric Interpolation

Let In(f,x) be the classical trigonometric interpolation on equidistant grid

2k
2N+ 1’

T k| < N. (1.1)

As we mentioned above (see Introduction), the classical interpolation with equidistant nodes

can be rewritten via discrete Fourier coefficients

N
[N(fag") = Z fvnemnxa (12)
n=—N
where
3 1 N ,
fn= SN > flag)e ™. (1.3)
k=—N
Let
RN(f?‘T):f(I)_IN(fvx) (14)

Next theorems address the convergence of the classical trigonometric interpolation.
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Let f € C97'[—1,1] and
Ap(f) = 1) - fB(=1), k=0,...,q— 1.
The following theorems study the pointwise convergence.
Theorem 1.1 [24] Let ¢ > 0 be even, f91) € AC[-1,1] and
fBA) = fP(-1), k=0,....q— L

Then, the following estimate holds for |x| <1 as N — oo

(_1)N+2 SlIl—<2N+ 1) > (_1)8

Rn(f, ) :Aq(f)%qHNqH cos = :ZOOWJFO(N[”)-
Theorem 1.2 [2/] Let ¢ > 1 be odd, f*? € AC[~1,1] and
fBA) = fP(-1), k=0,....q— 1L
Then, the following estimate holds for |x| <1 as N — oo
RMﬁszAﬂ(?$;;£+”wls$;£N+ ﬁizk+ﬂﬂ
+ Aga(f) ;qu 2: ;,qi i _C(f:Jr D Sioo (23(;11))8%2 +o(N"7?%),

Remark 1.1 Theorem 1.1 shows that for ¢ =0, the error is O(N™') for fived x # +1.

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

Next theorem shows the exact constant of the asymptotic error in the Lo-norm (see (0.16)).

Theorem 1.3 [25] Let f9 ¢ AC[—1,1] for some ¢ > 1 and
F9(1) = f9(-1), k=0,....q— 1.
Then, the following estimate holds
: 1
Jim N2 Ry (f, 2)| Lai-1,1 = [Ag(f) g,

where
1/2

2
1 1 1t (1)
A 2q+1+§/1 S#ZO(LE—I—ZS)‘]'H
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Remark 1.2 FEstimate of Theorem 1.3 is valid also for ¢ = 0 when f(1) # f(—1). In this
case condition f € AC[—1,1] should be f' € Ly|—1,1]. The classical interpolation has slow

convergence of order O(N_%) for q =0 even if f is infinitely differentiable on [—1,1].

Table 1.1 shows numerical values of ¢, for some q.

¢, 0.33 0.084 0.019 0.0055 0.0015 4.4-107* 1.3-107* 4.0-107°

Table 1.1: Numerical values of c,.

The behavior of the classical interpolation at the points x = +1 can be characterized in
terms of the limit function ([3]). Helmberg utilized this technique ([11, 12]) for investigation

of the Gibbs phenomenon for the classical interpolation with equidistant nodes.
Theorem 1.4 [26] Let f9 € AC[—1,1] for some ¢ > 1 and
fO(=1)=f®1), k=0,...,q—1. (1.13)

Then, the following estimate holds

N—oo N

lim NYRy ( fit (1 - ﬁ)) = Ay()lossira(h), h >0, (1.14)

where

/ (h) _ 1 /1 pFimht Z (_1)8 dt _/ ejFiTrhtdt 115
T 2w \ o Jyp e ) 1)

s#£0
Remark 1.3 Estimate of Theorem 1.4 is valid also for ¢ =0 when f(1) # f(—1) and h > 0.
In this case condition f € AC[—1,1] should be f' € Ly[—1,1]. The case h = 0 must be

considered separately. It is easy to verify that

: 1
Jim Ry (f; £1) = Ag(f)lasz10(0), Losss10(0) = ig- (1.16)

Taking into account that

[lemrg(R)] = [ams1,4(R)], (1.17)
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we put

£ = a1 ()| (L18)

which characterizes the asymptotic (N — oo) uniform error of the classical interpolation.

Table 1.2 shows numerical values of £} for different g.

¢ 05 016 0.011 0.0066 7.2-107* 4.1-107* 51-1075 3.0-107°

Table 1.2: Numerical values of ;.
From Table 1.2 and Remark 1.3, we see that for ¢ =0

max |Ry(f,z)| -0, N — cc. (1.19)

ze[—1,1]

1.2 QP Interpolation

The previous section showed that the classical trigonometric interpolation had poor con-
vergence when 2-periodic extension of the interpolated function was discontinuous or had low
smoothness on the real line.

Improved convergence, compared to the classical interpolation, has the Quasi-Periodic in-
terpolation considered in [54]. There, and in [25, 26|, the interpolation was studied only by
numerical experiments. In the current work, we establish (see [56-60]) theoretical background
of such interpolations.

Let f € C[—1,1] and {zx}Y_ 5 C [=1,1], N > 1 be some grid on [—1,1]. We consider
interpolation of f on grid x; which is exact for the following quasi-periodic exponents

2N

imnoxz \ IV o
{eme) ST ONtm+1 "

n=—N" € [_171]7 mGZ, mZO (120)

with the periods 2/0 — 2 as N — oo. Such interpolations are known as Quasi-Periodic (QP)
interpolations which we denote by Iy (f,x).

Throughout the paper, we assume that

. k=—N,...,N. (1.21)



We seek the QP interpolation in the form

Inm(f,x) = Z f( ) (2), xe[-1,1] (1.22)

with unknowns a;. Condition of exactness for quasi-periodic exponents implies the following

system of linear equations for determination of the unknowns

N
2imlk

eiwﬁa:c — e2N+m+1ak(ZU), |€‘ S N. (123)
k=—N

In order to apply the discrete Fourier transform, we add some new unknowns and equations

getting the following enlarged system of equations

N+m
eiﬂﬁaaz — em@fﬁfﬁla ( )_ng( ) /= —N, ,N +m, (124)
k=—N

where
ap(x) = ax(z), [k| <N,
ap(r) =0, k=N+1,..,N+m, (1.25)

e(x) =0, 6| < N.

We multiply the both sides of equation (1.24) by e~ 2v+nr1 and sum over /

N+m N+m N-+m N+m
2iml(Nax—s) 2iml(k—s) __ 2imds
e 2N+m+1 E E € 2N+m+1 ak ) —+ e 2N+m+1 g£<x)7
(=N —N k=—N (=N+1 (1.26)

s=—N,...,N+m.
Taking into account that

N+m
iml(k—s)
eaNtmit = (2N +m + 1)0y,, ks = —N,...,N+m, (1.27)

{=—N

we get

N+m N+m

* 1 2iml(Nxz—s) _ 2imds

) = N Tmr1 (Z D R <x>> (1.28)
{=—N {=N+1

Conditions (1.25) deduce to the following system with Vandermonde matrix for determination

of g¢(x)
N+m N
__ 2imls 2iméNx 2imt(Nax—s)
E e INTmiT (ge(x) - €2N+m+1> = E e2Ntmit s =N+1,....N +m. (1.29)
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After some transformations, we obtain

N
2igtNa  2imt(s—N—-m—1)

m
gvsg&g g exN+tmile 2N +mil s =1,..,m, (1.30)

(=1 t=—N
where
~ _ 2im(+N)(N+m) 2imr(l+N)Nzx
E(x) = e 2Ntmil (54+N(x) — e 2NFmil > (1.31)
and
2im(L4+N)
Veg = Qi o = e2NFme, (1.32)

Following [69] (see also [51, 70-72]), where the explicit form of the inverse of Vandermonde

matrix was constructed, we write

-1
Vpy = — B:od, 0,s=1,.. (1.33)
‘ a€Hz 11;&6 Z o

where 3 are the coefficients of the polynomial

H(x — ;) = Z B (1.34)

Now, the solution of (1.29) can be written explicitly in the form

N
2inlNa 2iml(N+m) 2intNx 2imt(s—N—m—1)
54@) = @2N+m+1 4 @ 2N+m+1 E v, Ns E e2N+mtie  2N+m+l

(1.35)
(=N+1,.. N+m.
Substituting €,(z) into (1.28), we get the unique solution of (1.23)
1 al 2ineNa 2intk T imevim) 2intk
ap(z) = INTmal (ZZNWNWH e 2N+mil — Z; e 2N+m+1 g 2N+m+1
- - (1.36)

2itt Nz 2imt(s—N—m—1)
X E v, Ns e2N+m+le  2N+m+1 , |]§‘ < N.
t=—N

Substitution of (1.36) into (1.22) leads to the following explicit formula for the QP interpolation

(see [56, 57])
Inm(f Z Frme™, (1.37)
where
Foon = foum = Y Onsfrenm. (1.38)
(=1
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1 N e )
i 2iTn
T ON+m+1 — | e 2N+m+l
fn,m 2N+m+12f<N)e
k=—N
and
Opp = v > v 1 R
s=1
When m =0
N
j 2N
] frg n ’L7Tna';1;7 _ ’
~nol(f, o) n;Nf o€ . T
where

N
~ _ 2imnk
fm() 2N + _E_ ( ) e 2N+1

We see that (1.41), (1.42) coincide with (0.32), (0.33).

Let us check that Iy,,(f,z) interpolates f on grid z = k/N, |k| < N.

(1.39)

(1.40)

(1.41)

(1.42)

Theorem 1.5 [50, 57] Let f € C|—1,1]. Then Ix.(f,x) interpolates f on grid (1.21).

Proof. We will proof straightforwardly. Let z = k/N
N

k _2imnk
i (f’ N) Z <fnm ZQanHN m> TN AT

n=—N

From (1.40), we have

N
k m 'L7r(l+N)(N+m 27,71'77,(5 N—m—1) « 2itnk
[N,m f, N = § E 2NFm 1 E Ué Lo aNTm+1 f£+N,m €2N+m+1

n=—N =1
N
2itnk
= E € 2N+m+T
n=—N
m
2im (L+N)( N+m) v 217‘rn(5 N—m+k—1)
E e 2N+'m+1 €+Nm /UES E e 2N+m+1 .
(=1 s=1

Taking into account that (see (1.32))

m N m m
_1 2itn(s—N—m+k—1) _1 2it(t+N)(s—N—m+k—1)
2N = — 2N 1
D Vi D€ TR =) upl)y e e
s=1 n=—N s=1 t=1
m m
1 2im(t+N)(k+s+N)
= — 2N 1
=D vy e e
s=1 t=1
m

2im(t+N)(k+N+1) 217r(t+N)(571)
—_ — E e 2N+m+1 E ’U 2N+m+1

2im(64+N)(k+N+1)
= —¢ IN+m+1
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we obtain the required result
 2imnk . 2im(64+N)k
[N,m ( ) ) Z -fn m€2N+m+1 + Z f€+N7m€ 2N+m+1
=1
]_ t 2irn(k—t) 2im (L4 N)(k—t)
= — 62N+m+1 + e~ 2Ntm+1
v 30 () (3 s 4 3

N+m

N
1 t 2imn(k—t) 1 46)
e — E f(_) E e 2N+m+1 ( :
2N +m+1 Pt N

n=—N

We frequently use the following estimates. First, (1.32) implies
as —a; = O(1/N). (1.47)
Second, (1.33) and (1.47) provide
1)8}1 =O(N™1"), N = oo. (1.48)
Third, from (1.40) and (1.48), we obtain
One =0 (N™"), N — oco. (1.49)

Then, from (1.32) and (1.40), it follows that

2iw (L+N)(N+m) m 71 2iw(N+k)(s—N—m—1)
9N+k ¢ =€ 2N+mfl E Vg€ 2N+fm+1
2im(£—k)(N+m) 2im (N+k)(s—1)
- 2N+m+1m E U@ Lo - 2N+m+sl (1'50)
= (5k’g, E, k= 1, NS

Finally, taking into account (1.50) and the periodicity of F,, ,,, from (1.38), it follows that

Fnitm =0, Fon_pm =0, k=1,...,m. (1.51)
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1.3 Pointwise Convergence

In this section, we investigate the pointwise convergence of the QP interpolations and
derive exact constants for the main terms of asymptotic errors ([60]). Comparison with the
corresponding results for the classical trigonometric interpolation shows extra accuracy of the

QP interpolation for enough smooth functions.

1.3.1 Preliminaries

Here, we collect some basic lemmas and formulae that we need for further investigations.

oo

Consider a sequence of complex numbers {y,} Let us define some sequences of finite

differences
62 ({ys :ifoo> = (52 ({ys}) = Yn,
b ({ys}e2 o) = 0 ({ys}) (1.52)
=70 ({ysh) + 200 ({wsh) + 6271 ({wsd), p> 11
and

Ag <{ys}) = Yn,

A ({ys}) (1.53)

AP ({ysh) + AP ({ysd), p> 1

AL ({ys2—s)

AL ({ysh o)

It is easy to verify that

o ({ys}) = ALy ({wsh) (1.54)
AY ({ys}) = i (i) Yn—k (1.55)

and -
2 =3 (2o (156

Let -

e

) 2((@'732)%1’ "o (1.57)
Bo(j) = 0
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Lemma 1.1 [60] The following estimate holds for p,m >0 andn € Z as N — oo

pt—_ R N
5£ ({<_1) e2N+m+1 }S:OO) — (Q(JV—gri—i_)l)QpezNerJﬂ +0 (N 2p 1)’ (158)

where B € R is a constant.
Proof. According to (1.54)
o7 ({(—1)56%» = A% ({(—1)86%” . (1.59)

Utilization of (1.55) implies

AP ({(—1)56#‘%1}) — (—1)PemimsT zp: (Z) (—1)ke~Wimer

 imin — (imB)"(—1)'k"
— (_1) e2N+m+1 kZ:% (Z) (_1)k ; t|((2N)+(m _)|— 1)t (160)

s S (1) (imp)’
= (—=1)"e2N+m+1
(=1)" ;t!(2N+m+1)tw”’t’

where (see [73])

P
Wpt = Z (Z) (—1)kkt ~ pt7 t — 00,

k=0
1.61
wp,t2070§t<p7 (6)
wWpp = (—1)7 pl.
Hence,
s imfs (—1)”(Z7Tﬁ)p iwfBn —p—1
An <{(_1) €2N+m+l}> T oNtmept O(NT), N—oo (1.62)
which completes the proof in view of (1.59). O
Lemma 1.2 The following estimate holds for p,j,m >0 as N — oo
s e (=DM + 2p)!
5§:N { Z Bn+r(2N+m+1)(])} = 2(i7TN)j+1N2p j'
e n=-0o0 1.63
00 (_1)r(m+1) i—apo ( )

Proof. According to (1.54)

O ({ >, Bn+r(2N+m+1)(j)}> = Ay ({ > Bn+r(2N+m+1)(j)}> : (1.64)

r=—00 r=—00
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In view of (1.55)

D S
Al vy ({ Z By irantmr1)( }) = Z( > Z Bono-ktr@N+mt1) (4)- (1.65)
r=—oo k=0 r=—00
Using definition of B,(j) (see (1.57)), we get
00 L (=1)N+e19d > (—1)rim+1)

r=—00

£ 2N+ )
r=o (QT + 2N+m+1>

_ (—1)N++123 St CDLRUF(m 1)
T (im)itI (2N +m + 1)it] ; ( ] > OGN +m+ 1) (1.66)
(e

X —_— .
Z (2Tj:1>t+]+l

r=—00

Substituting the last one into (1.65) and taking into account (1.61), we derive

, 00 . (_1)N+1z+12j
Aj:N-i-E Z Bn+r(2N+m+1)(]) - (i?T)j"'l(ZN +m + 1)j+1

r=—00

(ST ED s e
— ] (2N +m + 1)t S~ (27, + 1)t+j+1
t

XZ 2 wpr (20F (m+ 1))

7=0

(1.67)

(_1)N+P+Z+1 (] +p)' 00 (_1)r(m+1) AP
- ; - O(N—7? N — .
2(2'7TN)J+1NP j' Z (2,’, + l)p+]+1 + ( ) ) 0.9

This concludes the proof in view of (1.64). O

Lemma 1.3 [60] The following estimate holds for p,j,m >0 and |n] < N

{Z Bs+r(2N+m+1)<j)} =0 (N7, N — co. (1.68)

r#0 S§=—00

Proof. According to (1.54)

Oy, ({;BS+T(2N+m+1)(j)}> Aiﬂp ({g Bs+r(2N+m+1)(j)}> . (1.69)

Equations (1.55) and (1.57) deduce

Afz—i—l ({Z Bs+r(2N+m+1)<j)}> = Z (]]Z) Z Bn+£fk+r(2N+m+1)<j)

0 o k=£ r£0 1 (1.70)
IR
= ST j+1 nf—k \J+1’

2(im) 1 L \k) (2N +m + 1T £ ntlok )
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Taking into account (1.61), we can write

AL, ({ZBs+r<zN+m+1><j>}) -G ()

r#£0 r£0 t=0
(— 1)T(m+1)wp,t

(2N + m 1)+ (5 4 okl )T

2N+m+1 (1.71)
B (_1)n+€+p+1 (p+])'
B 2(z'7r)3'+1(2N +m 4 1P+l gl
7" (m+1) o
XZ n+e )p+j+1+O(N_]p2)vN_>OO'
T;é(] 2N+m+1
This completes the proof together with (1.69). O
Lemma 1.4 [2/] The following estimate holds for p,j >0
0 ({Bs()}2_ o) =0 (n777#71), n — . (1.72)
Proof. According to (1.54)
on ({Bs()}) = &%, ({B:()})- (1.73)
Taking into account (1.55), (1.57) and (1.61), we get
: ()" &~ () (=D)F
AP ({B =
n ({ s(])}) 2<Z7Tn)3+1 Z k (1 E)j-ﬁ-l
_(=pnt? Zp: f’: t+j kkt
B 2(imn)itt £
k=0 =0 (1.74)
( 1)n+1 e W,
2(z7r J“ nt
1 n+p+1
( ) (p+]) +O<—p]2)
2(z7r Y+ne gl
which completes the proof. [
Below, we analyze separately the cases m > 1 and m = 0.
1.3.2 Analysis of the case m > 1
Let f € C*[—1,1], « > 0. We put
fleft(x)7 T e [_17 _U) )
fHz)=<f (%), r € [—0,0], (1.75)
\fright<x)7 S (07 1] )
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where

B @ f(])(_l) T j B o f(])(l) T J
fr@) =32 == (5 +1) s frig(a) A G- (1.76)
7=0 7=0
Obviously f* € C*[—1,1].
We denote by f the Fourier coefficient of f*(x)
1! :
_1 / F(2)e-™dg, (1.77)
2,
Let
Aps(f) = (1) = (=) fO(=1). (1.78)
We need some additional lemmas.
Lemma 1.5 [60] Let ) ¢ AC[—1,1] for some q,v,m >0 and
fO(=1)=f®1)y=0, k=0,...,q— 1. (1.79)
Then, the following estimate holds as n, N — oo
g+v j
* 1 Ak] f)(m + 1>] k(2N +m+ ]') —q—v—1
=Y PN 2 T B, (k) + o(n ). (1.80)

J=q =0
Proof. Taking into account the smoothness of f and definition of f* with a« = ¢ + v (see

(1.75)), we write

+v 1
* (_1)n+1 N f*(k)(l) — f*(k)(_]') 1 *(g+v+1) —iTne
fo= 2 kZ:O (imn)k+1 T 2(irn)atetl || f (x)e dz
i1 av p(R) (k) 2
_ (-1) H qz: fright(l) - -’}:left(_]') i 1 /2N+m+1 f*(q+“+1)(x)e_im$dx
) +1 ; +v+1
2 & (imn) 20mn)rtett ] e (1.81)
2N
1 T 2Ntm+1 (g+v+1) B
ZTI"T'Lxd
1 ' (g+v+1) —imnz
+ 2<Z7Tn)(I+”+1 / 2N fright (SL’)@ du
2N+m+1
Then
n +v  p(k)
f* _ (_1) i qz fright( ) fleft( )
n 9 e (Zﬁn)k‘-i-l (1 82)
+ 2N—|—m+ 1 A 1 /1 f(Q-‘rv-‘rl)( ) —i7rn2N-2-N+1de |
ON 2(imn)io | e .
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where

m k g+v | | . ik
z(e]?t(—l) = (WZ—NH) ;(_1)J—kf(3)(_1)(j <_ k;r!(lz)N)J'k (1.83)
and
k ON +m+1\" & m 1)k
fﬁig)htu) = (%) jzkf(])<1)(j (_ k—)'—!(Q)N)J'—k' (1.84)

Substituting these into (1.82), in view of the generalized Riemann-Lebesgue theorem (see[l1]),

we get

N (—1)”+1 q+v 1 ON +m 1 k q+v Ak](f)(m n 1)j—k
; (imn)k+1 ( 2N > ]z:; (j — k)I(2N)i—* (1.85)

+o(n~ ", n, N — co.

Condition (1.79) yields

g CUT <2N+m+1) ( Ay (f)(m + 177

n AY —k (7 )t 1
2 = 2N Jj—k)(2N)i=k(imn) (1.86)
+o(n™ "), n, N — oo
which completes the proof. [
Let
iTx i (m—1)z = (_1)r(m+1)
D (e™) = €2 T;)o Gy #2n, n € Z. (1.87)
This function can be expressed by means of elementary functions.
Let m be odd
, in > 1
imz _ 2 (m—1)z
D (™) = €2 T;oo arroe * #2n, n € Z. (1.88)
Let
= 1 i €™ 4 1
= = —— . 1.89
¢(z) TZOO s 2o 1 (1.89)
Taking into account that
S 1 =D )
= 1.90
£ - S ow
we get
itz (_1>k I (m—1)z (k)
Oy () = ——e2 o\ (z). (1.91)

k!
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It remains to calculate ¢ (z). Let

. 1.92
po| (1.92)
We apply the well known identity ([44])

d* k+1
% ZS k‘ ] mja: ( Mra:)’ (193)
where S(k, j) are the Stirling numbers of the second kind. Taking into account that
() (g) = g LD
g (x) = 2(35 e s>1, (1.94)
we derive
d e AN k+1( 1)k 3 (m—1) : S(k. i 1)7 41 e’
km( ) <7T7/) A € ; ( 7])(_ ) J (em.x _ 1)j+1

' (1.95)
= <1 - 1)} |

; ITT in 2
D (™) = 5e: 2 (m=L)e <1+ , )

ermT 1

In particular,

(1.96)

Similar arguments can be performed for even m. In particular, when m is even and k = 0
we have

; T ir 1
Do (€7) = e M . 1.97
om(€™) = e Sn (1.97)

Lemma 1.6 [60] Let f\9tv+™ ¢ AC[-1,1] for some q¢,v >0, m > 1 and

FO(-1) = f®(1) =0, k=0,...,q— 1. (1.98)

Then, the following estimate holds for In| < N + ¢ (c is a constant)

n+1 q+v+1

f 1 Akg l)j_k

_2N—|—m—|—1 Z NJ < 20k(i k+1 —k)!
_ T(m""l) ir(m—1)n ml (I)(T) -1 inn 4
o Z (—1) . L Z M (em + 1)
(27’ + ) T!
r#0 2N+m+1

+o+
ir(m—1)n EEA m(b(‘r)

_ k.m 2im(N+4) 2imn(s—1)
—e 2N+m+1 E —| E e2N+m+1 4+ 1 E UZ 62N+m+1
T.

(1.99)

T=m (=1

+0o(N79"?), N - oo.
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Proof. First, let us prove the property

=) fronimin — Zene Z Fistir@nimen, 1 € Z. (1.100)

r=—00 r=—00

Equations (1.38) and (1.39) imply

N m
1 k 2imnk 2im(N+0)k
F,p,=—— g — T2N+mH1 — E 0,06~ 2N+m+1 . 1.101
) 2N+m+1k:Nf(N> (6 + v ,Ee +m+ ) ( )

Taking into account definition of f* in (1.75) with a = ¢ + m + v, we write

k * 21\31:211
I (N):f (m) > gt (1.102)

t=—00

Hence

N 0o
1 % 2im(t—n)k 2in(t—N—0)k
Fon = Sy 1 2m 2 Jf <62N+m+1 - E  Onge B ) (1.103)

k=—N t=—00

We get after some transformations

N N
f iﬂ f: f Wi 0 Qlﬂ(t it
= e 2N+m+1 — 6 2N+m+1
,m 2N+m+1 t+r(2N+m+1) E

—Nt=—N r=—o0

(1.104)
]_ Nm s 2im(t—n)k 2in(t—N—-0)k
N T g1 2 2 S| e —Zw e
k=N+1t=—c0
Taking into account that
1 Nim 2im(t—n)k
—_— NFmFT =0y, —N <t,n <N 1.105
2N +m + 1 2.« ' " o (1.105)
k=—N
we obtain
= Z f;+r(2N+m+1 Zené Z fN+€+r(2N+m+1)
= = (1.106)

N+m 0
]. < 2im(t—n)k

_ m Z Z f't* e2NFfm+l — Zen g€2“271(\§+7]i+f)k> |
m

k=N+1t=—0o0
Let us show that the last term in the right-hand side of (1.106) vanishes. According to (1.40)

N+m m m m
2im(t—N—0)k 2im(+N)(N+m) 217rn(s—N—m—1) 2im(t—N—£)(p+N)
E E Qn € 2NFmIL = E 2NFm+1 g U 2N+m+1 E e ONFTm+1
k=N-+1 (=1 = p=1
m
2imtt(p+N) 2itn(s—N—-—m—1) _1 2iw(L+N)(m—p)
— § e 2N+m+1 E e 2N+m+1 E Ug e 2N+m+1 (1'107)
p=1 s=1 (=1
m m N+m
2int(p+N) 2inn(p+N) 2in(t—n)(p+N) 2im(t—n)k
— E e 2N+m+1 ¢~ 2N+m+1 — e 2N+m+1 — E € 2N+m+1
p=1 p=1 k=N+1
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which proves equation (1.100).
Equation (1.100) shows that
O Z f;+r(2N+m+1 Z On.e Z fN+£+r (2N+m+1)"
r#0 r=—00

Estimate (1.80) of Lemma 1.5 concludes

n +ov+m ] i
n+r(2N+m+1) — j j—k(;-\k+1(5 |
g 2N +m+1 = N7 £= 2] (1m)k+1(5 — k)!
r(m+1)

>3

0 (qufvfmfl) ,
T#O 2T+ 2N+ +1

)k+1

S5 (Y T A () (1)
NterN+m+1) = 5N p Ni i 2=k (im)k+1 (5 — k)

r=—00
oy

k+1
92 N+2L)
=T ( + 2N+m+1)

yrim+1)

1o (NTrmeLy

Then, (1.49) leads to

T 1 L Ag(f)(m + 1)
Zene Z fN—i—Z—H" 2N+m+1) Z (2N +m + 1)Ni kzozy k(im )k—i—l( —k)!

r=—o0 i=q
m oo
—1)r(m+1)
% -1 N+Z+19n (
Z:( ) N/ Z 2(N+0) k+1
=1 r=—co | 21 + sx T
Lo (NTe2).

Equations (1.40) and (1.87) imply

()t & 1

Agi (f)(m + 1)/
Z (

Zenf Z fN+e+r(2N+m+1 m : Nj 92j—k m)kﬂ( k)!

r=—00 Jj=q

m m
im(m—1)n 2im(N+£) _1 2irn(s—1)
X e 2N+m+1 E q)k,m (6 2N+m+1> UZ € 2NFml
1

S=

o (N
The Taylor expansion
20 (N +£) vtm 1 (r) 2im(N+E) T 1
Bpom <62N+m+1> =3 o) (1) (ezzv+m+1 + 1) + O(N—v=m
U
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and estimate (1.48) yield

(-t TE

ZGMTZOO INerr@Nfmr) “ AN TmEl 2 N
' : j_k imr(m—1)n
X Z Af]]g(f) (]:21_'__1) 'e_ 21\(1+m421
= Pk (im)k (] — k) (1.114)
v+m m ,m (e
x Z —) Y (B 1) S vy le B
0 (=1 s=1
Fo (N,
Finally, the following relations
3 (63?%{3 + 1)Tzugje?§1(riff _ (ew?ﬂll + 1)7, F=0,. .. m—1, (1.115)
(=1 s=1
imply
n +v+m J ik
(D™ LN~ Ag(Hm 1)
Z anr_zoo INerr@Nsme1) = OIN tm+ 1 ; Ni ; 2k (im)E+1(j — k)|
% o BNt (nil 1 (I)(T) ) (1) (eﬁ + 1)T
7! (1.116)
vtm m T m 21tn(s—1
I Z =y (eixﬂ:f’f n ) S vl 2N+‘m+3>
T=m (=1 s=1
Lo(NTT).
Substitution of (1.109) and (1.116) into (1.108) completes the proof. [J
Lemma 1.7 [60] Let f\9>™) ¢ AC[—1,1] for some ¢ >0, m > 1 and
fO(=1)=f®1)=0, k=0,..,¢— 1. (1.117)
Then, the following estimates hold as N — oo
(=D fm+p e
Fy_pm = Cq,m(f)W m )T (N=m=2) p >0, (1.118)
and
Fonipm=—Fn_pm + O (N7"72), p>0, (1.119)
where
q _
A m+ 1)97F "
Con(f) =3 gttt DM LT g (). (1.120

ATy gy k,
£ 21 Ftlikph—mtl(g — k)l km

39



Proof. Equation (1.100) claims that

FN—pm = Z IN—prr@N+mt1) — ZHN —p,L Z IN+e+r@NEmt1)- (1.121)

r=—o00 r=—o0

In view of Lemma 1.5, for v = 2m, and (1.49), we get

| 0T R g Ay()m £ 1)

Fypm=—— 3 — .
NP = 9N +m+1 £ Ni = 2K (im)HH(j — k)!

o _ 1)\r(m+1) m o _ 1\r(m+1)
x | (=1)P Z =D _Z(—l)ﬁeN—p,é Z (=1) (1.122)

k1 s
= (N—p) (N+£)
r=Te0 <2T + 2N+m]jH> =1 =T (27" + 2N+m+1>

o (NTm2).

Equations (1.40) and (1.87) show that

in(m-1)(N=p) j

B (_1)N+p+1 q+2m€7 SN Itmil Z Ak](f)(m+1>J_k

Fy_ppm=——t) | ‘
N—p, 2N +m+1 4 N 2k (im)+1(j — k)|
J=q k=0
" (q)’“’m (3570 ) = 3 @ (e355) Zv-l 1>) (1123)
=1
+o (N2,

Now, we simplify the expression in the brackets which we denote by S (see also (1.32))

S =P, (a Z(I)’”” oy szl s—1

R msw(m» B2 () B(2)
"I ey T GG 0

(1.124)

where w(z) =[]~ (z — ay). Hence

S = L/w(()‘p) Qeml2) ;. (1.125)

2mi Jr w(z) (2 — a_p)

where I' contains the points {a,},-, and a_,. Then,

_ (™)™ (m+p)! / Ppoym (2) B
S_Nm2m' p r(z+1)m+1dZ+O(N )

(im)" @ (—1) (m + p -
i <WL)HMN ), N = .

(1.126)

Substituting this into (1.123), we get the first statement. The second one can be proved

similarly. [J
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We put

Ry (f,2) = f(2) = Ingn(f, ). (1.127)

Next theorem presents the exact rate of pointwise convergence of the QP interpolation for

m > 1.
Theorem 1.6 [60] Let f9+2™ € AC[-1,1] for some ¢ >0, m > 1 and
fB(=1)=f®a)y=0, k=0,...,q— 1. (1.128)

Then, the following estimate holds for |x| <1 as N — oo

DN,m(fa 37)

Nermrt T o(N—4=m=h), (1.129)

RN,m(f; I) =

where

m m— _1\k
Dym(f,z) = i(—l)NCq,m(f) [sin (m(N + 1)ox) Z ( . k?) 22k+1(00igk+2 -

k=0

m—1
' m—k—2 —1)*
—sin (TNox) Z ( k ) 92k+3 g2k+4 %] )

k=0

(1.130)

h = [2] and Cyum(f) is defined by (1.120).

Proof. According to definition of f* (see (1.75) for v = ¢ + 2m), we have that f*m ¢

AC[—1,1], and consequently

frw)=>_ fre™ we(=1,1). (1.131)
Hence,
fl@)=">_ fre™™, wel-1,1] (1.132)
and
N
Rym(fix) = Y (fi = Fum)e™ "+ > fre™. (1.133)
n=—N |n|>N

The following transformation can be easily verified (see derivation of similar transformations

in [24, 55, 74])
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itNox __ 7(N+1)ox

Nm\J> (1 + e—iﬂ'ax) (]_ + 67,7r0'x)
—irNox __ F_N7m67i7r(N+1)Ux

F—N—l,me
(]_ + e—imrw) (1 + eimrw)

N
: 51 * Fsm iTonx
1+ elﬂ'o’l‘) nz_:N n ({fs ) }) €

> B e

|n|>N

+

(1.134)

. 1

(]_ + efifracc) (
1
)

+ (]_ _l_e—imm; (1 +eiﬂax

Reiteration of this transformation up to 7 + 1 times leads to the following expansion of the

error
N 01 ({Fem})
R . f, ) = ezﬂ’Naa: : N+1 s,m :
N, ( ) kZ:O (1 + 6717T0'x>k‘+1 (1 _'_ e’Lﬂ'O’CC)k+1
o eiTl’(N-‘rl)O’:L‘ in: 65€V ({F&m})
. (1 + e—iﬂaa:)k"'l (1 + eiwaw)k+1
B N (1.135)
+ e—iﬂ'NU:B Z —N-1 ({FS m})
(1 + e~ zwam)k+1 (1 + ewrom)k"'l
u 08 v ({Fsm})
717r (N+1)ox —N s,m
- + rN,m(f? SE),
kZ:O 1 + e~ z7r0'a: k+1 (1 +62ﬂax)k+1
where
1 N
h+1 * iTonx
TN7m(f7 x) - (1 + €_i7l'a'z>m+1 (1 + eiﬂam)m—i_l Z 5” i ({fs - Fs,m}) €
' n=N (1.136)
_ 5m+1 {f }) iTonx
—inoz\M+1 imm: mh+1
(1 + emimow)™ (1 4 eimoe) ™™ EN
First, we show that
rnm(f,z) = o(N"9"™ 1) N — oo, |2| < 1. (1.137)
Application of similar transformation leads to the following expansion for ry ., (f,x)
- (f ) 5TJ—V|—1 . ({Fs,m}) e—imNox __ 5%’4—1 ({Fs,m}) eiﬂ(NJrl)am
mAJo (1 + e*iﬂ'O’fL‘)m+2 (]_ + eing)m+2
T [Fan)) €707 — 575 () e
(1 + e—iwax)m+2 (1 + 17r0'x)m+2
(1.138)

N
1 , .
+ Z 5;71—}—2 ({f: _ Fs,m}) gimonz
N

(1 + e—iﬂUa:)m+2 (1 + eiﬂdl‘)m+2 L

1 , .
D oS e,

+ — :
(1 + e—mraac) + (1 + ezmrx) o
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First, we estimate 6™*2 ({f*}) as |n| > N, N — oco. Taking into account estimate (1.80) of

Lemma 1.5, for v = 2m, we write

02 ({Bs(k)})
J— k) (1.139)

q+2m

1 A (f)(m +1)77F(2N +m + 1)*
m—+2 k]

5 {f } Z 2i N3 Z (

+ o(n_q_gm_l).

According to Lemma 1.4, with p = m + 2, we get
0,2 ({Bs(k)}) = O(n="757%) (1.140)
and hence,
ST (L)) = O(N~In =275 4 o(n™472™" 1) |n| > N, N — oo. (1.141)

Therefore, the last term in the right-hand side of (1.138) is o( N~7"™~1),
Second, we estimate 62 ({f* — Fy,,}) for [n] < N as N — oco. According to estimate

(1.99) of Lemma 1.6, for v = m, we derive

) A
m—+2 k]
o (WFom = fi}) = 2N—i—m—|—1 Z ZZJ k(i) k“ )INJ

—k
m k+1 17T k+1 s
y ((2N+ +2}€) (im)™ i ( {Z wamﬂ)(k)})

r#0
m—1 )
- Z <I>km )5m+2 ({(_1)5+1 (62]@7%1 N 1) [~ iam= )_ (1.142)
T ]+2m 1 () n 2im(N+£) T 1 9 1 wrs(2p—m—1)
> 7‘1’k,m(—1)2(e2N+m+1+1) > vpai ({(-1y e )
r=m =1 p=1
+o(N4m2),

Lemmas 1.3 and 1.1 yield, when p = m + 2, the following estimates

o2 ({Z BS+T(2N+mH)(k)}> = O (N#k5) (1.143)

r#0

iax ({(—1)S+16721\’if::+1 }) = O (N1 (1.144)
and taking into account (1.48), we get
O ({Fum = 1) = o (NT77"72) , [n| < N, N = oo, (1.145)
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Hence, the third term in the right-hand side of (1.138) is o(N79"™"1) as N — oc.

Now, we estimate the first two terms in the right-hand side of (1.138). We have

2m+-2 .
" 21 + 2
e (rah = 3 (7

)FN+m+1k,m. (1.146)
k=0

Taking into account (1.51)

22 g0 o
N ({Fom}) = Z < I )FN+m+1—k,m- (1.147)

k=m+1

In view of Lemma 1.7

O ({Fum}) = Mf)@}ﬁ—if mZ (=1 (%;: 2) (m ' kn_z " 1)

k=m+1

(1.148)
+0 (N*q*m”) )
Taking into account the identity ([73, 75])
242 ) ,
2m+2\ fm+k—-—m-—1
) _ 1.14
> o (T () o (1.149)
k=m+1
we conclude that

ST ({Fom}) = O (N797772). (1.150)
Similarly, we estimate the other terms and see that (1.137) is true.
Now, we return to the first four terms in the right hand-side of (1.135) which we denote by
Iy, Iy, I3 and 14, respectively.
In view of relations (1.51) and Lemma 1.7, for the first term in the right-hand side of
(1.135), we have

2k 2k o
5Jk\7+1 {Fs m} Z ( )FN—I—I—I—k—S,m - Z < s >FN+1+k—s,m

s=0 s=k+1

B k—1 ok .
- — S+k5+1 N—sm:-

S=

(1.151)

Then,

[1 = eierUz Xm: ( 5?\7-‘,-1 ({F&m})

1 + efiﬂ'az k+1 1 + eiﬂ'a:v k+1
0 A ) (1.152)

m k—1

. 1 2k
itNox
= F —S,m:-
€ Z 92k+2 (g2k+2 noz ; (s + k4 1) N=—s,

k=0
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Lemma 1.7 implies

5= E vy 1
1= q,m(f)We l; 92k+2 og2k+2 gz
+O(N"T™72),

k-1

Application of the following identity

k—1
8:0 (s—l—k—i—l)(

_1<m—k—
k
0

deduces

(_1)N+1 m

I = Cq,m(f)Weiﬂ-NUx Z

k=

m—+s

")
)

> (-1

s=0

(i) ()

-

(=D*

m—k—1
k—1

2k+4 . o2k+4 ToT
2 COS 5

+O(N"T2),

Similarly, for the third term in the right-hand side of (1.135), we have

5]iN—l ({Fs,m})

Then,

m

5]iN—1 ({Fs,m}>

[3 — e—wrNU:I: - '
;0 (]_ + e—zwaz‘)k‘H (1 + ezﬂ'asc)kJrl

m—1

. i 1
_ __ —inrNox
=€ ’; 22k+2 g2k+2 %
+O(N—T"2)
(_1)N+1

- _Cq,m(f) Na+m+1

+ O(N—97m3),
Now, we can write

(-

L+ Iy = iCom(f) et

+O(N—2),

sin(tNox

e—iWNUZB E :

k=0

h—1

D3

k=0

k—1

%

("

k

2k

)

)

Fn_s
k+s+1> N

(m—k’—Q

(=D*

22k+4 COSQk+4 Tox
2

(=DF

92k+3 C0S2k+4 Tox
2

(1.153)

(1.154)

(1.155)

(1.156)

(1.157)

(1.158)



For the second term in the right-hand side of (1.135), we figure out that

2k 2%k 2k 2%k
3 (Fnh) =3 () Frracan = 3 () Frosca

S:O s=k (1159)
2k
= (k )FN—S,TI’L‘
s=0 -9
Then,
Iy (Nt Zm: of ({Fym})
— (1 e 7,7ra‘as)k+1 (1 + eiﬂ'ox)k'H
h k
. 1 2k
— _ pin(N+1)oz Z F
€ 2k+2 2k2m2(_)N_s’m
C DA cosP 2 IR L \ K — s (1.160)
h k
(DM e ! o ZF (M
—qum(f)We ; 22k+2 cog2k+2 1O ;(_1) k—s m
+O(N"I7™3),

Application of the identity

zk:(_1>s(k2_k5> (m,;r S) = (—1)k<m; k) (1.161)

s=0
implies
(DY e (M= R (1)
]2 =—-C ,m(f)—me”r( thoz Tox
T N kz:% ko) 22 cos?hE (1.162)
O(N_q m 2)
Similarly
(DM e o (=1)*
Iy = Cq,m(f)—mH N Z 2k+2 2k+2 mox
Nq+ =0 2 COS T (1163)
+ O(N—97m=2),
and, consequently,
' (_1)N+1 M m — k: (_1)k
I+ 1, = _ZCq,m(f)m sin(m(N + 1)ox Z 2h+1 oa2kt2 TOT
Na+m+ prd 2 COos = (1.164)
+ O(N—9m=2),

which completes the proof. [

Remark 1.4 Note that Ry ,,(f,£1) = 0 as In,(f,z) interpolates f on grid k/N, |k|] < N

which includes the endpoints of interval [—1,1].
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Let us compare Theorem 1.6 with its classical counterparts Theorems 1.1 and 1.2.

The first important difference is smoothness requirements on function f. In Theorem 1.6
the condition is f(@*2™ ¢ AC[—1,1], ¢ > 0, m > 1 and as bigger is the value of m as smoother
must be the function. Theorems 1.1 and 1.2 require f+Y € AC[—1,1] and f@*+? € AC[-1,1]
for even and odd ¢, respectively. Therefore, when m = 1 and ¢ is odd, the requirements are
similar, but in all other cases, Theorem 1.6 puts stricter smoothness condition on f.

The second difference is requirement on the values of f and its derivatives at the endpoints
of the interval. In Theorems 1.1 and 1.2 the condition is f*®)(1)— f®)(—1) =0,k =0,...,¢—1
while in Theorem 1.6 the condition is stricter f® (1) = f*¥(~1) =0,k =0,...,¢— 1.

The third difference is extra smoothness requirement in Theorem 1.6 compared with the
convergence rate. In the classical theorems the condition f(4+®) € AC[—1,1], a = 1,2 provides
the convergence rate O(N~7"%), respectively. In case of the QP interpolation the condition
flat2m) ¢ AC[—1, 1] provides the rate of convergence only O(N—9"™~1). So, we have require-
ment for extra m — 1 derivatives which is due to estimate (1.49).

The fourth difference is that in case of the classical interpolation the exact constant of the
main term of asymptotic error depends on A,(f) = f@(1) — f(@(—1) while in case of the QP
interpolation, we have factor Ag,(f) = f@(1) — (=1)k+af@(-1).

However, when f is such that all requirements of Theorems 1.1, 1.2 and 1.6 are valid
then the QP interpolation has better accuracy than the classical trigonometric interpolation.
Theorems 1.1 and 1.2 state convergence rate O(N~97!) for even ¢ and O(N~772) for odd g,
respectively. The QP interpolation has convergence rate O(N~7"™~1) m > 1. Hence, except
the case m = 1 and odd ¢ when both interpolations have similar rate of convergence, in all
other cases, the pointwise convergence rate of the QP interpolation exceeds the one of the
classical interpolation by factor O(N~™) for even ¢ and O(N~™*!) for odd gq.

In particular, when f is infinitely differentiable and f(1) # f(—1) (¢ = 0) then the classi-
cal interpolation has convergence rate O(N~!) while the QP interpolation converges by rate

O(N~™ 1 m > 1. We see accelerated convergence by factor O(N~™) in this important case.
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1.3.3 Analysis of the case m =0

We need estimate for F,, o — f,r.
Lemma 1.8 Let fl+) ¢ AC[-1,1] for some q,v >0, ¢+ v # 0 and
(=1 =f®1)=0, k=0,...,q—1. (1.165)

Then, the following estimate holds for [n| < N + ¢ (c is a constant) as N — oo

q+v J
S LSS AN + 1 g o
Foo=fn = — 2N j (j —k)! 20 By irany (k) +o (N717"71) (1.166)
J1=q = T

Proof. Taking into account the smoothness of f and definition of f* with o = ¢ + v (see

(1.75)) similar to (1.100), we write

Fn,O - f; = Z f;+5(2N+1)- (1167)
s#£0

We apply Lemma 1.5 to (1.167) and get

B N A Ay (f) (~1)°
Foo—fn= 2N+1Zﬁ22j4¢( k Z )k+1

k=0 J = k)t 0 (25 + o3ty (1.168)
+o(N—9vh
which completes the proof. [
Theorem 1.7 [60] Let f*Y) € AC[—1,1] for some ¢ > 0 and
f®(=1)=f®a)y=0, k=0,...,q—1. (1.169)
Then, the following estimate holds for |x| <1 as N — oo
Ryo(f,x) = % +o(N=eYy, (1.170)
where
; q 0 r
Dno(f,z) = (—qlJr)lN Sl;:fr_\ix ; - ilklz;'ji?cikkﬂ T;OO (270(;11))“1. (1.171)



Proof. Similar to (1.133), we have

N

RN70(f, LL') = Z (f* — Fp znnaw+ Z f* ’Lﬂ'naac

n=—N n|>N

We proceed as in the proof of Theorem 1.6 and derive

Ryno(f,7) = Fno

—irtNox __ eiTr(NJrl)cr:v irNoz —im(N+1)ox

T SR
—N,0 (1 + e—iﬂax) (]_ + eiﬂaac)

e
(]_ + e—iwaaz) (1 + eimrac)

+ (1 +e—iWU$ (1 +ei7r01‘

+

. 251 {f - 30}) e

n<N

)
1
)

: 61 ITNoT
(1 + e—imox (1 + emrax Z {f }

|n|>N

Lemma 1.5, with v = 1, implies

1

0n ({Bs(k)})

U = 5

+

" Ag(f)(2N + 1)
Z (¢ —k)!

1 Z Ak(Q+1)(f)(2N + 1)k5711 {Bs(k)}) + O(n—q—2)‘

29+

In view of Lemma 1.4

and, consequently,

1 1 _ |
Nt £ (g 11— k).

on ({Bs(k)}) = O(n™"7)

S =o0n ) +ON"?), |n| >N, N — oo.

Hence, the last term in

the right-hand side of (1.173) is o(N7971) as N — oo.

Lemma 1.8, with v = 1, leads to the following relation

5 ({Fo— 1 =Y A’;"f{ )(ZN;W ({Z Berramlk }>

k=0

q+1

3

In view of Lemma 1.3

Then,

r#0

Apg+1)(f)(2N + 1) e
2q+1q (] + 1 |Nq+1 n Z Bs+r(2N+1 + O(N 1 2).

r#0

5711 <{Z Bs+r(2N+1)<k) }) = O(N_k_3)'
r#0

0 ({Foo = f2}) = o(N7%7%), In| <N, N — o0
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(1.175)
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and therefore, the fourth term in the right-hand side of (1.173) is also o( N7971) as N — oo.
Now, we have

e~ mNox _ 6i7r(N+1)o'z L F eimNow _ efiﬂ'(NJrl)cr:):
(]_ + e—imrx) (1 + eimrz) _N’O(

Ruo(f,2) = Fuo +o(N~71). (1.180)

1+ 6—i7raa:) (1 + eiwaaz)

Using relation (see (1.167))

Fino= Z FiNtreN+1) (1.181)

r=—00

together with estimate of Lemma 1.5, we get

q [o8)
Apq(f) L
Fano =) (¢ — k‘)!;q—qu—k > Benirenan (k) + O(N12). (1.182)

k=0 r=—00

Lemma 1.2, for p = 0, concludes

-1 N+1 ¢4 QkA ” f 0 —1) g2
Feno = 2(q+13vq+1 2 (¢ — k)T(Ew))’““ :Z (27’(i 1))’“+1 rowTY (1.183)

k=0 —00

which completes the proof together with (1.180). O

Comparison with Theorems 1.1 and 1.2 shows the same smoothness requirement and rate
of convergence for even ¢q. For odd ¢, the rate of convergence of the classical interpolation is

higher by factor O(N~!) if function has extra smoothness f2 € AC[-1,1].

1.4 L,-Convergence

In this section, we study Lo-convergence of the QP interpolation and derive exact constants

of the asymptotic errors in this framework ([56, 57]).

1.4.1 Asymptotic Estimates

We reformulate Lemmas 1.5 and 1.6 for our convenience.
Lemma 1.9 /56, 57] Let fl4t™ ¢ AC[-1,1] for some ¢,m >0, ¢ +m # 0 and
fE(=1)=fP1)=0, k=0,...,¢— 1. (1.184)

Then, the following estimates hold as N — oo

f* B (_1)n+1 f n
" eN+m+ N\ aN Tl

) +o(n™1 ), n — oo, (1.185)
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and

Fom—fr= (=) v f __ +o(N""Y, In|<N (1.186)
wmeAr 2N 4+ m+ )N P\ 2N 4+ m o+ 1 T '
where
q _
B Agg(f)(m + 17"
,uq,m(fa x) - Z 2q k(q . k) (ZWI)k—’_l, (1187)
and
q _
- Akq(f)(m + 1>q i
Vq,m(f7 27) - kz; 2q_k(i7'l')k+1 (q — k)l
, 1 (1.188)
« Z (_1)r(m+l) . e*'iﬂmTfl:L“ Z lq)(T) (_1> (eiﬂ*:p + 1)7
r#0 <2T + x)k+1 7=0 7! s .
Remark 1.5 When m =0, the second term in the réght—hand side of (1.188) wvanishes and
q Awo(f
q
Vq,O(fa l’) kz: 2q k('l'ﬂ— k+1 ' Z 2’]" + x k‘+1 (1189)
Theorem 1.8 [56, 57] Let ™ € AC[—1,1] for some ¢,m >0, ¢ +m # 0 and
fO(=1)=f®1)=0, k=0,..,¢— 1. (1.190)
Then, the following estimate holds
T N2 Ry (f, @) a-11) = Cam (), (1.191)
where
m+1 [ [* ; ; ’
Ct21m¢<f) = _T/ / Vq,m(f7 h)em(m—i-l)zh/th _/ Mq,m(f, h)em(m+1)xh/2dh dr
B [Al>1 (1.192)
1! 1
5 [ Wan(Fa)Pde 5 [l (10 e
|z|>1
Proof. We divide ||Rnm(f, a:)HL _,.1) into three parts as follows
s (5 Eacrny = | R0
2N 2
2N +m+1 [2N+mid 2N +m+1
S L L d
IN / RN,m (fv IN fL’) L
2N+m+1
2N 1! 2N 1\
_ ﬂ/ Ry <f7 ﬂx) i
2N -1 2N (1.193)
ON4+m+1 [! . f2N+m+1 2d
oN o [N\ DTN )|
2N+m+1
__ 2N 2
ON +m+1 2N+m+1 2N +m+1
- IN /_1 RN,m <f7 IN .CI?) dx
- ]1 - -[2 - I37

o1



where

OIN+m+1 [! 2N +m+1
= — - - -
1 ON /_1 RN,m (f, oON 517)

m—+1 1 IN+m+1 m+1
Iy = —— Rnm | £ —
TN S, T (f 2N 2N

and

m+1 IR fm+1 OIN+m+1
e — m ) T —
ST 9N Sy TV 2N 2N

)

)

2

dx,

2

2

dx,

dz.

(1.194)

(1.195)

(1.196)

First is estimation of /;. According to definition of f* (see (1.75) with o = ¢+m), we write

Z f* Zﬂ'n.’ﬂ E (_1’ 1)
and
Z fre ™, ¢ € [-1,1],
From here
Y 2N
RN,m(f,I) = Z (f — nm) ”m21v+m+1 + Z f* mnmx'
n=-N In|>N
Therefore
N
h="—r— > =Pl +=——5— D Ifil".
n=-N In|>N
In view of Lemma 1.9, we obtain
N 2
1 2n
I = N R —
' (2N+m+1)N2‘1+1 n:ZN Yq, (f 2N+m—|—1)
1 2n 2
+ (2N +m + 1) N2a+1 Z Hq,m (f; m)

[n|>N

+o(N472) | N co,

Tending N to infinity and replacing the sums by the corresponding integrals, we get

lim N2+ =
N—oo

Second is estimation of I,. From (1.199)

N

2N+m+1 m+1 n
o (1,250 T - Y o
n=—N
+ Z * —zwr 2(]:?_:_;):1 )
[n|>N
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1! 1
5 | WGzt 5 [l () d
-1 |z[>1

(

f* o me) e_iW121(7n+m+1

(1.197)

(1.198)

(1.199)

(1.200)

(1.201)

(1.202)

(1.203)



According to Lemma 1.9

2N+m+1 m+1
Bixim (f’ ON 2N x) -
N
1 2n i (mADn
- 2N+m—+1
(2N+m+1>Nq Z Vgm (f; 2N—|—m—|—1) €
n=—N (1.204)
]. 2n —itx (m+1)n
- 2N+m—+1
(2N +m + 1)N¢ ||Z:N”qm (f’ 2N+m+1) ‘

+O(N™ 71, N = <.
Tending N to infinity and replacing the sums by the corresponding integrals, we write

2N 1 1 1! .
(f +m + _ m + .T) _ _/ Vq,m(f; h)e—zn(m—i-l)zh/Zdh

lim NYRy

N—o0 2N 2N 9 .
1 (1.205)
_ _/ qu(f; ) —im(m+1) xh/th
2 |h|>1
Hence,
1 [t .
lim N2q+1[2 = u Vq m(f> h)e—wr(m—i-l)xh/th
N—oo 8 0 1 )
2 (1.206)
|h|>1
Similarly, we estimate I3. From (1.199)
m+1  2N+m+1 al -
RNm (f, r — > — Z (_1)” (f* - Fn m) 6i7‘r12N+m+1
’ 2N 2N n ,
h (1.207)
+ Z * 'erm 2(1:?;%)111 '

[n|>N

By the same steps

1 2N 1 1
lim NqRN f m+ +m+ —— qu f h im(m+1) zh/Zdh
] (1.208)
— _/ ,Uq,m(fa h)eiﬂ(m+1)xh/2dh
2 |h|>1
and
m+1 [ [t .
R e A T R
N—oo 8 0 1 )
(1.209)

2
dx

i / Mq,m(f; h)eiw(m+1)xh/2dh
|h|>1

which completes the proof. [
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The case ¢ = m = 0 needs special attention. Estimate (1.185) of Lemma 1.9 is valid for

this choice. Additional smoothness requirement is needed for estimate (1.186).

Lemma 1.10 /56, 57] Let f' € Ly|—1,1]. Then, the following estimate holds for |n| < N

Fno—f*:(_DnHVoo f2—n +o(N"), N— oo (1.210)
S 2N +1 T \U"2N +1 ’ ’

where vy is defined by (1.189).

Proof. As we mentioned, estimate (1.185) of Lemma 1.9 is valid for ¢ = m =0

Aoo(f) 1
* _1 n+14100 bn 12].1
fa=(=1) 2imTn +22'7Tn AV ( )
where
1
by = / ' (z)e™ ™ g, (1.212)
—1

According to Parseval’s identity and definition of f* (see (1.75)), we have

> sl = [ [t ae = 2 [ e (1.213)

which completes the proof in view of (1.167) and (1.211). O

Theorem 1.9 /56, 57] Let f' € Ly[—1,1]. Then the following estimate holds

Jim N2 || Ruo(f, )l a1y = coolf), (1.214)
where

2

1 1 1 ' '
al) =g | otr e an— [ (g mean]
- - >

1 [t 1
1 / voo (f,a)[Fda + - / oo ()2 da.
2/ 2 ) a1

(1.215)

Let us compare Theorems 1.8 and 1.9 with their classical counterpart Theorem 1.3. As in
the case of pointwise convergence, the first difference concerns the values and derivatives of f
at the endpoints of interval. In Theorems 1.8 and 1.9 it is required f®)(1) = f®(—1) = 0,
k=0,...,q— 1instead of f®)(1) = f®(~1), k=0,...,¢— 1 as in Theorem 1.3. The second

difference is smoothness requirements on function f. Theorem 1.8 requires f(4+™ € AC[—1,1]

o4



when ¢+m # 0 while Theorem 1.3 requires only f@ € AC[~1,1] when ¢ # 0. The smoothness
requirements are the same f’ € Ly[—1,1] when ¢ = m = 0.

However, on the contrary to the estimates for the pointwise convergence, these additional
conditions do not lead to faster convergence rates. In both cases the convergence rate is
O(N—271/2). Comparison of asymptotic accuracies of both interpolations is possible by com-
parison of constants ¢, ,,(f) of Theorems 1.8 and 1.9 with constant A,(f)c, of Theorem 1.3.
In general, it is possible only for specific f as constant ¢, ,,(f) depends on f. In Section 1.6 we
perform such comparisons for different m and ¢ by numerical experiments. In an important
case, when ¢ = 0, such comparison is possible independently of f.

Let ¢ = 0. In this case

MO,m(fv CL’) = AO(f)MS,m<x)7 (1216)
Vom(f; ) = Ao(f)1gm(@), (1.217)

where

1
Hom() = —, (1.218)
and
1 -1 r(m+1) S m—1 1 T ' i

Yom() = — <Z ((27?—+x) —e T > ;CDE)M(—l) (e™ +1) ) . (1.219)

0
Hence, constant c,,,(f) can be rewritten as follows

com(f) = [Ao(f)|chm: (1.220)

2

1
[ vttmermiean - [y ey s

[h|>1

i (1.221)
. 2 2
IUO,m (33)’ dl’)

. 2 1

Note that cf,, is independent of f and the ratio co/cf,, (see Theorem 1.3) will show the
differences in asymptotic Lg-accuracies of both interpolations independently of f.
Table 1.3 presents the values of ¢f ,,, and ¢o/cj ,, for different m, where m = —1 corresponds

to the classical case. We see that by increasing m we increase (asymptotically) the accuracy
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of the QP interpolation compared to the classical one. For example, when ¢ = 0 and m =7
the QP interpolation is 3367 times asymptotically more accurate in the Lo-norm compared to
the classical interpolation. Section 1.6 gives similar comparisons for moderate values of N for

specific functions.

m=—-1 m=0 m=1 m=2 m=3 m=4 m=5 m=6 m =71
Com 0.33 0.19 0.036  0.011 0.0037 0.0014 0.00056 0.00023 0.000098
o/t m 1 1.7 9 30 89 236 589 1435 3367
Table 1.3: Numerical values of ¢4.m and ratio co/cj ,, where m = —1 corresponds to the classical case.

1.5 Limit Function Analysis

In this section, we study behavior of the QP interpolation at the points x = +1 in terms

of the limit functions ([57]).
Theorem 1.10 [57] Let ™ ¢ AC[—1,1] for some ¢,m >0, ¢ +m # 0 and
fO(=1) = f®1)=0, k=0,..,q— 1. (1.222)

Then, the following estimates hold

N—oo

h
lim NYRy (f, + (1 - N)) — lysirgm(fo ), h >0, (1.223)

where

e .
losgrgm(f, h) = 5/1I/q,m(f, t)quZ”( FHHh)t gy
. (1.224)

1 m—+1

2 Ji>1

and functions pg ., and vy, are defined in Lemma 1.9.

Proof. In view of (1.199), we write

N
h iTtn
Ry m <f7 + (1 - N)) = Z (=)™ (fr — Fnﬁm)e:’:m(m+l+2h)
- (1.225)
b S (o e,

n|>N
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Estimates of Lemma 1.9 imply

q h —
v (14 (1- 1)) -

- - - 2N +m—+1
2N +m+1) ENV‘”” <2N+m+ 1) ‘
=T (1.226)

oD 2 e ()

In|>N

1
Ol=|, N— .
+ ( N> , 00
Tending N to infinity and replacing the sums by corresponding integrals, we get the required

estimates. O

Similarly can be proved the next one based on estimate of Lemma 1.10.

Theorem 1.11 [57] Let f' € Lo[—1,1]. Then the following estimates hold

h
lim RN70 (f, + (1 — —)) = €$—>:t1,0,0(f7 h), h > 0, (1227)
N—oo N
where
1 ! qiiﬂ(l-‘rh)t 1 :Fi7r(l+h)t
losir00(f, h) = 5/ voo(f,t)eT ™\ 2Tt — 5/ oo f,t)e ™M 2T L, (1.228)
-1 It|>1
and
Ao(f)
. 1.229
voo(f, ) Z 5 Hoo (f,z) = it ( )

0
Remark 1.6 In Theorems 1.10 and 1.11, in case of h =0, obviously Ry ,,(f,£1) = 0.

Compared with Theorem 1.4, Theorems 1.10 and 1.11 require additional smoothness from
f and also put stricter conditions on the values of f and its derivatives at the endpoints of the
interval but provide the same rate of convergence O(N~9). To understand which interpolation

has better asymptotic uniform error we need comparison of

Ly () =m0 L1 g (1)) 1025 €y 1 ()]} (1.230)

with its classical analogue |A,(f)[¢; (see (1.18)). In general, such comparison is possible only
for specific functions as ¢,,,(f) depends on f. We show some numerical results in Section 1.6

for specific functions. Function independent comparisons are possible when ¢ = 0.
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Let ¢ = 0. Taking into account equations (1.216)-(1.219), we can rewrite ¢,,,(f) as

Con(f) = 140 ()15 0m5 (1.231)
where
lom = maX{I}Llféi |Gt 0.m (P, plax o1 0.m (M)} (1.232)
and (see (1.218), (1.219))
* 1 ! * im (L %« i (L
Fosnon(® =5 [ a0 - /| e (1
- t|>

Hence, ratio £;/(; ,,, which is independent of f, will show which interpolation has better
asymptotic uniform accuracy. Table 1.4 shows the values of (5, and £;/(; ,,. We see that for
g = 0 and m = 7 the QP interpolation is 4545.5 times more accurate in the uniform-norm

compared to the classical interpolation. This is more than the number 3367 which we had in

the framework of the Ly-norm (see Table 1.3).

m=-1 m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7
om 0.5 0.14  0.033 0.010 0.0038 0.0015 0.00059 0.00025 0.00011
€510 m 1 3.6 15 50 132 333 848 2000 4546
Table 1.4: Numerical values of €5, and L5 /05 ., where m = —1 corresponds to the classical interpolation.

1.6 Numerical Analysis

In this section, we compare the QP and the classical interpolations by series of numerical
experiments.
Let

f(z) = (2* — 1)%sin(x — 1), ¢ > 0. (1.234)

We start with analysis of the pointwise convergence. Figures 1.1 and 1.2 show the behaviors
of |[Rn(f,x)| and |Ry,(f,z)| on [—0.6,0.6] for different values of ¢, m and N = 256.
As we observed above, the classical trigonometric interpolation has pointwise convergence

rates O(N~771) or O(N7972) for even and odd ¢, respectively. The QP interpolation has
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Figure 1.1: The graphs of |Ras6(f, )| on [—0.6,0.6] for ¢ = 0,1,2 (from left to right) while interpolating

(1.234) by the classical trigonometric interpolation.
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Figure 1.2: The graphs of |Rase m(f, )| on [-0.6,0.6] for ¢ = 0,1,2 (from left to right) and m = 0,1,2,3

(from top to bottom) while interpolating (1.234) by the QP interpolation.
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pointwise convergence rate O(N"9"™"1) m > 0. Hence, the classical interpolation for odd ¢
has asymptotically (N >> 1) better accuracy than the QP interpolation for m = 0 and the
same rate of convergence for m = 1. For other cases the QP interpolation has better accuracy
than the classical interpolation when ¢ is fixed. Figures 1.1 and 1.2 confirm these observations
for N = 256.

Comparison of the figures shows that for ¢ = 1 the classical interpolation has better ac-
curacy than the QP interpolation for m = 0. The classical interpolation for ¢ = 1 is more
accurate than the QP interpolation for ¢ = 1 and m = 1. For ¢ = 0 the classical interpolation
has the same accuracy as the QP interpolation for ¢ = 0 and m = 0. In all other cases, the
QP interpolation is much more precise than the classical interpolation.

Now, we consider convergence in the Lo-norm. As we mentioned above, theoretical com-
parison of the classical and the QP interpolations is impossible independently of f when ¢ > 0.
Here, we perform such comparison for (1.234). The last column of Table 1.5 shows numerical

values of ¢, (f). Let

Cqmn(f) = N2 | By (fs )| 2o (-1,1)- (1.235)

Table 1.5 presents the values of ¢, n(f) for N = 16,32,64 and N = 128 which are rather
close to their limits ¢, (f) starting from N = 16 (however for this specific function).

Comparison of the QP and the classical interpolations can be performed by calculating
the values of ratio % (see Theorem 1.3). When the ratio is greater than 1 then the
QP interpolation has better asymptotic accuracy in the Lo-norm compared to the classical
one. As bigger is the ratio as more accurate is the QP interpolation compared to the classical
interpolation. Table 1.6 shows the values of |A,(f)|c, and Table 1.7 shows the values of the
ratio for (1.234). The values of the ratio become smaller when ¢ becomes bigger but when ¢ is
fixed, by increasing m, we can increase the value of the ratio.

The numbers in the first row of Table 1.7 slightly differ from the numbers in the second
row of Table 1.3 due to different order of rounding in calculations.

Finally, we analyze the behaviors of the limit functions. For comparison of accuracies, we

need to compare the maximum values of |A,(f)ls—x1,4(h)| (Theorem 1.4) and [€;—11.4m(f, 1)

for h > 0. In case of the classical interpolation the limit functions at the points £1 are identical
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g=0 N=16 N=32 N=64 N=128 con(f)

m=0 0.17455 0.17295 0.17212  0.17170  0.17127
m=1 0.03408 0.03315 0.03275  0.03257  0.03240
m=2 0.01044 0.01002 0.00984  0.00975  0.00968
m=3 0.00376 0.00355 0.00346  0.00342  0.00339
m=4 0.00148 0.00136 0.00132  0.00130  0.00128
m 0.00062 0.00055 0.00053  0.00052  0.00051
m =06 0.00027 0.00023 0.00022  0.00022  0.00021
m =7 0.00012 0.00010 0.000094 0.000091 0.000089

g=1 N=16 N=32 N=64 N=128 com(f)

m=0 017819 0.17798 0.17785  0.17778  0.17771
m=1 0.06981 0.06798 0.06721  0.06687  0.06656
m=2 0.03228 0.03076  0.03012  0.02983  0.02956
m =3 0.01568 0.01455 0.01409  0.01388  0.01369
m=4 0.00781 0.00703 0.00672  0.00658  0.00646
m=>5 0.00396 0.00344 0.00324  0.00316  0.00309
m =06 0.00203 0.00170 0.00158  0.00153  0.00148
m =7 0.00106 0.00085 0.00077  0.00074  0.00072

g=2 N=16 N=32 N=64 N=128 com(f)

m=0 0.1042  0.1052 0.1059 0.1063 0.1067
m=1 0.1014 0.1019 0.1022 0.1024 0.1026
m=2 0.0766  0.0749 0.0739 0.0736 0.0733
m=3 0.0523  0.0492 0.0479 0.0474 0.0469
m=4 0.0339 0.0307 0.0294 0.0288 0.0283
m=>5 0.0213  0.0185 0.0174 0.0169 0.0165
m=6 0.0132  0.0109 0.0100 0.0097 0.0094
m=7 0.0080 0.0063 0.0057 0.0054 0.0052

g=3 N=16 N=32 N=64 N=128 com(f)

m=0 0.2372  0.2359 0.2348 0.2341 0.2333
m=1 0.1176  0.1102 0.1076 0.1065 0.1056
m=2 0.1193  0.1209 0.1222 0.1230 0.1239
m=3 0.1216  0.1209 0.1209 0.1209 0.1211
m=4 0.1087  0.1033 0.1011 0.1002 0.0994
m=>5 0.0885  0.0798 0.0763 0.0748 0.0735
0.0678  0.0577 0.0538 0.0521 0.0507
m=7 0.0497  0.0398 0.0361 0.0346 0.0334

3

Table 1.5: Numerical values of ¢y m q(f) and cqm(f) for (1.234).
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q 0 1 2 3
4,(Ple, 030 0.15 0.4 0.24

Table 1.6: Numerical values of |A4(f)|c, for (1.234).

qg=0 1.8 9.3 31 89 235 590 1427 3371
qg=1 0.8 2.3 5.1 11 23 49 101 208
q=2 1.3 1.4 1.9 3.0 4.9 8.5 15 27
qg=3 1.0 2.3 1.9 2.0 24 3.3 4.7 7.2

Table 1.7: Numerical values of ratio % for (1.234).

Cq,m

while for the QP interpolation they have, in general, different behavior. Figure 1.3 shows the

graphs of |A,(f)ly—114(h)| for (1.234).

0.08

04 0.25 025

03 0.20 0.06 0.20

02 0.15 004 015

0.10 0.10

01 0.05 0.02 0.05
05 2 Y 2 Y 2 Y 2

Figure 1.3: The graphs of |A4(f)ls—s+1,4(h)| on [0,2.5] for ¢ = 0,1,2,3 (from left to right) for (1.234).

Figures 1.4 and 1.5 show the graphs of |(;_11 4m(f, h)| for m =5 and ¢ = 0,1,2,3 (from
left to right) for (1.234). Ratio |Ay(f)[€;/lqm(f) compares accuracies of the classical and the
QP interpolations. As bigger is the value of the ratio as more accurate is the QP interpolation
compared to the classical one. Table 1.8 presents the values of the ratio for different ¢ and
m. We see that for ¢ = 2 and m = 0, 1,2 the classical interpolation is more precise than the
QP interpolation for this specific example. We also see that as bigger is the value of g as less
impressive is the QP interpolation even for big values of m. The numbers in the first column
of Table 1.8 differ from the numbers in the second row of Table 1.4 due to different order of

rounding in the calculations.
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Figure 1.4: The graphs of [(z—1.4.m(f, h)| for ¢ =0,1,2,3 (from left to right), m = 5 and (1.234).

0.0035 0.020
0.0030
0.0025 0.015
0.0020
0.0015 0.010
0.0010
0.0005 0.005
L £ I am—
2 2

qg=0 g=1 g=2 qg=3
m=0 3.5 1.7 0.6 2.2
m=1 15 3.9 0.6 2.9
m=2 47 8.5 0.8 1.6
m=3 132 18 1.3 1.6
m=4 346 39 2.2 2.1
m=25 833 81 3.8 2.9

Table 1.8: Ratio |Ag(f)|€;/€gm(f).
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CHAPTER 2

Convergence acceleration by rational corrections

In this chapter, we consider convergence acceleration of the QP interpolation by rational
corrections in terms of €. This approach leads to QP Rational (QPR) approximation. We
analyze its pointwise convergence and limit functions behavior deriving exact constants of the
main terms of asymptotic errors.

Section 2.1 recounts some results concerning the classical rational trigonometric interpola-
tion. In Section 2.2, we derive the QPR approximation where rational functions are utilized as
corrections of the error of the QP interpolation. Section 2.3 studies pointwise convergence and
Section 2.4 explores the behavior of the limit functions of the QPR approximation. Section

2.5 presents some numerical results. We recap details from [59, 63].

2.1 The Classical Rational Trigonometric Interpolation

Different approaches are known for convergence acceleration of the classical interpolation
when 2-periodic extension of the interpolated function is discontinuous or has low smoothness
on the real line. A broadly studied approach is error correction by rational functions (in terms
of €™®) which is applicable both for the truncated Fourier series and interpolation.

We recap details from [35, 36]. Consider a finite sequence of complex numbers A = {Ap}, ;.
By oF ()\7 {ys} ), we denote modified finite differences defined by the following recurrent

S§=—00

relations

G (M {ys} 2 oo) = 00 (A {ws}) = Yn,
O (N A2 o) = 68 (N {usd) = 057 (A {ws ) + Acwdi Tt (A {ws}) (2.1)

+ X (05 O {ys )+ A (N {ws)) s k> 1
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for some sequence {y;}2° . For A =1, from (1.52), we see that

S=—00"

O (A {ysh) = 05 ({ys}) - (2.2)
Following [35], we write the Rational Trigonometric (RT) interpolation as follows

IN(f,x) = In(f, )

+ (efiTl'Nib . eiw(N+1):p) i A—kéjli[_l()\’ {fs})
ot Hi:l(l + )\,562'7@)(1 + )\Sefiwz) (23)
+ (eiﬂ'Nm . e*’L’TI‘(N+1):B) Zp: )\kéﬁy\]l()V {fs})

k=1 H]Z:l(l + A7) (1 4+ \emim®)
with the error

- 1 Y B nher

P ITT —imT
(14 Agei™) (14 Age Wi

) Z 5£(A7 {fs - fs})emnz'

(2.4)

1

+ - -
P (T4 Agem™) (1 4 Asemim

Rational corrections contain unknown parameters A\; which determination is a crucial issue
for realization of the rational interpolations. An approach which is applicable for cases when

interpolated function is smooth on [—1,1] is

M=Ap=1——= k=

2.
N 7 7p7 ( 5)

where new parameters 7, are independent of N and f ([35]). Below, we present some conver-
gence theorems that outline behavior of interpolations with such choice of parameters. Another

approach is determination of Ay from the following system of equations
EAA{f3) =0, n=N-p+1,--- ,N+p. (2.6)

Such interpolations are known as the Fourier-Pade (FP) interpolations ([36]).
Next theorems describe asymptotic behavior of the classical RT interpolation when param-

eters A\, are chosen as in (2.5). Let

where 7 = {7,...,7,}.
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Theorem 2.1 [35] Let ¢ > 0 be even and f92P+1) ¢ AC[—1,1] for some p > 1. Let
Af)=0, k=0,...,q—1 (2.8)

and parameters \, be chosen as in (2.36). Then, the following estimate holds for |z| < 1

(—1)N+pr+3 sin TF (2N + 1)

P —
RN(fa .T) - Aq(f) 22p+1ﬂ_q+1q!N2p+q+l COS2p+1 % wq,p

+o(N~2#77 1 N =00, (2.9)

where
p p

Yip = (=1%(1) Y (1) 2p — k — 5+ ) pop_p—stjr (2.10)

s=0 k=0
and

) _1)°
b= ﬁ (2.11)

S§=—00

Theorem 2.2 [35] Let ¢ > 1 be odd and f+*+2 € AC[—1,1] for some p > 1. Let
Af) =0, k=0,...,q—1 (2.12)

and parameters \, be chosen as in (2.36). Then, the following estimate holds for |z| < 1

atl 3 T o3 T
RE () = Ay (f) DT sin G sin N + 1)
NS 47 92p+20q+1 q! N2p+a+2 cog2p+2 7r2_ac q+1lp

(DN sinFRN 4 1) (2.13)

+ Aq+1 (f) T q+1,p
2+1pa+2(q 4 1)IN?PHat2 cog?rtl =

+o(N~#7172) N — cc.

Comparison with Theorems 1.1 and 1.2 shows that for enough smooth functions the RT
interpolations are asymptotically more precise than the classical interpolation and improvement
is by the factor O(N™?F) as N — oo.

Estimates of Theorems 2.1 and 2.2 outline an approach for determination of parameters 7.

Determination of theses parameters ([35]) from the following equations

Ygtwp =0, w=0,....,p—1 (2.14)
for even values of ¢, and
wq+w+1,p = O, w = 0, N 1 (215)
for odd ¢, leads to more accurate interpolations with the rates of convergence
R (f,x) = o(N7#7171) (2.16)
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and

Ry (f,x) = o(N~#7172)

(2.17)

for even and odd g, respectively. Table 2.1 shows the optimal values of parameters 7, derived

from (2.14) when ¢ = 0. Optimal values for 7 are known also when ¢ > 0 (see [35]).

p Tk

p=1 7 = 1570796

p=2 1 =1.290966, 1o = 5.733849

p=3 11 =1.164993, 1o =4.712389, 73 = 10.58977

p=4 7 =1.088781, 1o =4.208368, 13 = 8.857598, 74 = 15.750661

p=>5 7 =1.035985, T = 3.893407, 13 = 7.937983, 14 = 13.381556, 15 = 21.092649

Table 2.1: Optimal values of 73 derived from (2.14) when g = 0.

Next theorem studies the behavior of the RT interpolation at the endpoints of the interval

in terms of the limit functions.
Theorem 2.3 Let f9%%) ¢ AC[—1,1] for some p > 1, ¢ > 1 and

f®(=1) = f®1), k=0,...,¢— 1.

Let A\ be chosen as in (2.5). Then, the following estimate holds

i, NG (£ (12 7)) = A 520,

N—oo

where
, (—1! : ¢
goc—)ilq(h) = 2(i7r)‘7+1q! Hg T2+7T2h2 Z ;7k(7)<2p_k_5+Q)!

s=0
e:F'L'Wht /1 A (_1)7’
X —  dt - eitht a)
(AIM t2pmsmhtat -1 ; (2r + t)2p—k—stq+l

Proof. We use representation of error as in (2.4). First, we observe that

p p

lim N2 [T (14 60_.e™) (14 .e7™) = [[ (72 + =°1%).

N—oo
s=1 s=1
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Then, we use asymptotic expansion of the Fourier coefficients

q+2p

- Z Am(f)Bn(m) -+ O(n—QP—q—l)

and consequently

q+2p

(NS ZA )P0, {By(m)}) + o(n~ 7971, n — 0.

Taking into account that

(=t 75(1) <~ (1)
0P(0,{Bs = )8 o —k — !
n( 7{ (m)}) 2(27Tn)m+1n2pm' Nsn—s e Nkn_k( D S+m>
+ _N2p0( n~™2) |n| >N, N — o0,
we get
n+p+l p

D o ,s /yS ’Yk(/r) _ _ |
o5 (0, {fs})—Aq(f) ) anqu'Z NSn 3 Nkn_k(Qp k—s+q)

1 —q—2

+ 20

+o(n 1) |n| > N, N = oo,

and similarly

( 1)n+p+1 p

0.0 = 1) = A g v vang Z (7))@ = k= 5+ 0)!

—1)r
X Z ()2p)k5+q+1

7 (2r+ %

+o(N~2P79" 1 |n| < N, N — oo,

which complete the proof. [

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Remark 2.1 FEstimate of Theorem 2.3 is valid also for ¢ =0 and h > 0. Case h = 0 must be

considered separately. It can be verified that

]\}1_1)1;0 Ry (f, 1) = Ao( )l 110(0),

where

gf:—hl:l,[)(o) =*;.
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Taking into account that

|6 (W] = 16y 4 (R, (2.29)
we put
0 = max |6, (h)] (2.30)

which characterizes the asymptotic (N — oo) uniform error of the classical RT interpolation.

Estimate of Theorem 2.3 outlines another approach for determination of parameters 7, by
minimization of constant E{:*. Tables 2.2 and 2.3 shows the values of 7, that minimize E{;’* for
p = 1 and p = 2, respectively. The last columns of the tables present the values of £; /0
which show how much the classical RT interpolation is asymptotically accurate with optimal

parameters compared to the classical interpolation.

q T o E;/f{l”*

g=1 7 =1.6970 0.023 6.96
q=2 7 =2.2274 0.0020 5.5
g=3 7 =3.688 0.00062 10.65

g=4 7 =4.2055 0.000061 11.80

Table 2.2: Values of 7 that minimize £2* for p = 1.

q T e

g=1 71 =0.6072, 7, =3.7356 0.0075 21.33
qg=2 7 =11716, 7 =4.3508  0.00045 24.44
qg=3 7 =21719, o =6.3818 0.000098  67.35

g=4 71 =25793, 75 =6.8302 1.0-107° 72.0

Table 2.3: Values of 7, that minimize ¢2* for p = 2.

Equation (2.28) shows that for ¢ = 0 the minimal value for ¢* can’t be smaller than 0.5

which equals to £;. Hence, for ¢ = 0 the RT interpolation has better accuracy compared to
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the classical interpolation away from the endpoints of the interval and the same bad accuracy

at the points x = +1.

2.2 QPR Approximation

In this section, we introduce convergence acceleration of the QP interpolation by rational

corrections (in terms of e™%) proceeding as in case of the classical rational trigonometric

interpolation.
We recap details from [59].
Assume f € C*[—1,1], « > 1. We take into account definition of f* (see (1.75)) and use

the representation of the error of the QP interpolation derived in (1.133)

N

Ryalf2) = Y (fi = Fupn)e™ + > freim™oe, (2.31)

n=—N [n|>N

The following transformation is easy to verify (see [55, 76] for similar transformations)

F_N_Lme—imrNgc _ FN,meiﬂg(N+1)m

(1 + )\_161'71'0'90) (1 + /\16—i7ra:rf)
itoNz __ F_N7m6—i7ra(N+1)z

RN,m(fa ZE) =

FN+1,m€
(1 + A_leiﬂax) (]_ + /\1€—i7rax)

1

N
: : E 51 )\’ * F,.. imnox
+ (1 + )\_1€Zﬂ-a‘r) (1 + )\16717703;) S~ n ( {fs ) }) €

+ | —— > S (N {f e,

(1+)\_161WUI) (1+)\1€ maz ‘ m

+ A\
(2.32)

Reiteration of it up to p times leads to the following expansion of the error

)\ Fsm —iroNx _519—1 )\’ Fsm ino(N+1)z
R () — ZA— (FunD) e = 57 O (Fun)
H. ( + Aije'nrcr:v) (1 + )\jefzmr:p)
p 5]12[_:1 ()\ {Fs m}) ircNz 5k—1 ()\7 {Fs,m}) efiwcr(N#»l)w

+ A ,
kz; H (1 + A ema:p) (1 _|_)\j€717roz>

(2.33)

N
1 ,
+ , = > BAAST = Fn}) ™

5:1 (1 + )\_jewracc) (1 + /\je szx) S~

- = e S0 ()

5:1 (1 + )\_jewracc) (]_ + /\je uraac ‘n‘>N

where the first two terms can be assumed as corrections of the error.

This observation leads to the following QP Rational (QPR) approximation
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Iﬁ,m(f, z) = Inn(f,2)
+ i Lkéﬁ?vl_l (A, {F;:,m}) e moNT — §RH (N { Fym }) €m0 VD
k=1 szl (14 A_jeimo) (1 + \je~imow) (2.34)
N Zp: 2 (O {Fom) N = N A {Fun ) e oD
[Tj—y (1 + A jeimoe) (1 4 Ajeinow)

k=1

with the error

R]]OV,m(fa $) =

N
1 .
: - OP (\ * Fi. iTonx
§:1 (1 + Aijemraz> (1 + )\je—lﬂ'a':lt) _ZN n ( ) {fs , }) (&
n: (2.35)

! SO (D) e

+ ‘ ,
?:1 (1 + /\7j€z7rcrx) (1 + )\je—szrp) st

In [59] we called Iy, as QPR interpolation but taking into account that Iy ..(f, zx) # f(zx)
we changed its name to avoid confusion.

The QPR approximation is undefined until parameters Ay are unknown. Hence, determi-
nation of these parameters is a crucial problem for realization of the QPR approximation.

We assume two approaches for determination of those parameters. First, we assume that
)\,k:)\kzl——,kzl,...,p, (236)

where 7, are some new parameters independent of N and f. In the next sections, we study the
behavior of the QPR approximation for this choice of parameters A\, and discuss the problem
of determination of 75, based on asymptotic estimates.

Second, we determine parameters A\ from the following system of equations.

FNA{Fm}) =0, n=N—p+ [%] +1,--- ,N+p+ [%} (2.37)

In Section 2.5, we consider some results of numerical experiments that realize this approach.

We will call it as QP Fourier-Pade (FP) interpolation.

2.3 Pointwise Convergence

In this section, we study pointwise convergence of the QPR approximation and derive

exact constants of the main term of asymptotic error. Throughout the section, we assume
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that parameters \; are determined by (2.36). Let v (7) be the coefficients of the following

polynomial

[T +7e) =3 )k, (2.38)

s=1

where 7 = {7,...,7,}.

2.3.1 Preliminaries

Consider a vector p = {u}y_, of complex numbers. By AF (u,{y,}32_.), we denote

generalized finite differences defined by the following recurrent relations

A (M {ys 57—00) A?L (:uv {ys}) = Yn,

(2.39)
A (A2 o) = A5 (e {wed) = A7 (o {wad) + 73 (e {wd) s B> 1
for some sequence {ys}2°_ . When p =1 (see (1.53))
AL (s {ysd) = AL ({ys}). (2.40)
It is easy to verify that
AL (1 Ays}) = Yn + 1191, (2.41)

A2, ysh) = A (1 {ys}) + 120y (1, {ys}) = Yo + (01 + f2)Yn1 + papiayn—2  (242)
and

A3 (1, {ys}) = Y + (1 + fro + 13)Yn1 + (aia + papis + frofia)yYn—2 + i piofizyn—s.  (2:43)

In general, we can prove by the mathematical induction that

P (1 {ys}) Z Vel ) Yt (2.44)

where (1) are the coefficients of the following polynomial

p p
D nwat = T[0+ ma). (2.45)
t=0 t=1

Consider vectors A = {Ae}y_;, AT = {Aetpoy and A7 = {A_4};_;. Similar to (2.44), we

can show that

n (A {ys}) Z’Yk Z Ve(AT )Ykt (2.46)

72



where

(14 M) = Z Ye(A )z (2.47)

== 1~

(1+ A_yx) Z% )k (2.48)
k=

1
Let us modify (2.44) in view of (2.36). For p =1

AL O A}) = v+ (1 ) w1 = B4 ({nh) = A% (). (2.49)

For p =2

AL (N {wd) = AL (V) + (1= ) Al (W {w)

= A, ({ysh) - %yn—l + (1 - N> (A S {wsh) %%—2) (2.50)
= A2 ({gh) - T RALL (e h) + S2AL, ().

In general, we can prove by the mathematical induction the following expansion ([74])

p
T) o
AL (O {02)) Z% e = S0 MDA (g (251)
t=0
Now, let us modify (2.46) in view of (2.36). According to (2.44) and (2.51), we get (note that
AT =A7)
p p p '}/t(T) p .
On N {wed) = D) DO ok = (=15 D wOWHAT ({us}) - (2:52)
k=0 =0 =0 k=0
Similar to (2.51), we can show that
- lﬂkz( ) Ap—k
Z% VWi = ) _(—DF == AN ({9:)) - (2.53)
k=0
Then, (2.52) implies
» - () ( ) Ap—k
dp (A A{yst) = Z(_l) Nt <_1) An+p ({A ({y })}) (2.54)
t=0 k=0
This leads to the following needed expansion
p - (1) ‘ k(7) 2p—k—t
=0 k=0
as
AT (AT () = AT (). (2.56)
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Then

p p
w Ve\T VE\T) A 2w —k—
5 Oy = -0 M Sy Dz (A p))). ey
t=0 k=0
Taking into account that
Az, ({AZ5 Quh ) = A2 (s, (2.58)
we work out that
w (5P - +7:(7) - kV(T) \ 2w2p—k—t
571 ({52 ()\7 {yS})}) = Z(_l) Nt (_1) Nk An—&-w-‘,—p—t ({yS}) . (259)
=0 k=0
We will frequently use the latest formula.
Let
N p . p » 0 (_1)r(m+1)
Upng(T) = D (=1 0(1) D w(r) @0 =k —t+)! Y (2r £ 1)2r—h—t+i+1” (2.60)
t=0 k=0 r=—o00

Now, we prove some lemmas.

Lemma 2.1 [59] Let A\, be chosen as in (2.36), and 5 € R be a constant. Then, the following
estimate holds forn € Z, p,w >0

w P s 21\;1684-1 > > _ WB 2w (-1)”6%
(fo ool Y ) - (2)

l=—00
+ O(N"2v=2#"1 N — oo,

where

hy(B,7) = (%)%2%(7) Zp:(—l)’%(f) <.i>k+t. (2.62)
Proof. From (2.59), we have

w ([ s {)semiin Ny e (T S e e(T)
¢ forammph ot

2w—+2p—k—t s infSs
XA wrtpt ({(_1) e2NHmEL o )

Then, in view of (1.62)

P vl C R A W Gt i Gl A
n+w-+p—t ¢ - (2N+m+ 1)2w+2p—k—t €

+ O (N—2e-2orkst=1) (2.64)
) . 2w+-2p—k—t
_ (_1\ntwtptt sxbn ﬂ O( N ~—2w—2p+k+t-1
(et (20 el )
which completes the proof together with (2.63). O
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Lemma 2.2 [59] Let A, be chosen as in (2.36). Then, the following estimate holds for p,w,j >

0as N = o0

e}

: i * (—1)N+pru+l
0N 5 | A Bsir@ntm+1)(4) = 50 +1 N 2w+2p
w !
= S 2(im N )I+1 N2w+2p 41 (2.65)
X ¢;t,m,j+2w(7') + O(N_Qw_ZP_j_2)7
where ;'fmJJFQw(T) is defined by (2.60)
Proof. Equation (2.59) claims that
w P S : 5 1 7(7) - 1 (T)
6iN 5(5 )\7 Z Bs+r(2N+m+1)(]) = (—1) Nt (—1) NF
r=—00 N t=0 k=0 (266)
X Aiﬁfiﬁ;ﬁ ({ Z Bs+r(2N+m+1)(j)}> .
Then in view of (1.67)
2wt2p—k—t o - (=)Mot (9 4+ 2p — k — t + j)!
A:I:N—l—w—f—p—t Z BS+T’(2N+m+1)(]> = Q(Z'WN)]'-l—lNQw-‘er—k—tj!
- 1yt (2.67)
—1)"" —j—2w—2p+k+t—2
X Z (27° + 1)2w+2p—k—t+j+1 + O (N ! P ) :

Finally, substitution of (2.67) into (2.66) completes the proof. [J

Lemma 2.3 [59] Let A\ be chosen as in (2.36) and p,w,j > 0. Then, the following estimate

holds for In| < N as N — oo

oo

) N (—1yrtotet
0, d | A Bstron+m+n(J = - . .
n ¢ ’ T#ZO +r(2N+m+1) (]) L N 2(Z7TN)]+1N2w+2pj!
D p _1\r(m+1) _ !
(=1)r (2w + 2p — k — t + j)! (2.68)
X Z(_l)t'Vt(T) Z Vi(7) Z on )\ 2w+2p—k—t+j+1
=0 k=0 70 (2r+ 2N+m+1)

4 O (N72w72p7j72) )

Proof. Equation (2.59) implies

On <{6§ <)" {Z Bs+T(2N+m+1)(j)}> }) ﬂf]\(;) (—1)’“%
r#0 t=0 =0

A2 ({zBsWMmm}) |

r#£0

Il
—~
|
—
~—

(2.69)
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In view of (1.71)

_1\ntw k+1 1 A\ |
Qu+2p—k—t : (et (9w 4 2p — k — ¢+ j)!
An+w+p—t ({ %,5 Bs+r(2N+m+1)(J)}) - 2<i7TN)j+1N2w+2p7k7tj!
r#0

(~1y s S 210
— i —2w—2p+k+t—
Amtwtp)\ 2T +0O (N ’ )
r0 <27” + m)
which completes the proof together with (2.69). O
Lemma 2.4 [59] Let A, be chosen as in (2.36). Then, the following estimate holds
w e )1 R AN . () o~ ()
671 ({65 ()\7 {Bs(j)}s:—OO) }E:—oo) - Q(iwn)j+ln2w+2pj! Z(_1> Nip—t Nkn—k
t=0 k=0 (2.71)
X Qu+2p—k—t+j)!+0 (N’Qpn’Qw’j’Q) , |n| >N, p,w,j >0, N — 0.
Proof. Equation (2.59) implies
w P . - t Mt (T) - kVk (T) 2w+2p—k—t .
o ({67 A AB(HHN = D _(-1) e 2D T At ({Bs(9)}) - (2.72)
=0 k=0
According to (1.74)
A2+t {B.()}) = (—1)ntwtpthtl (9 4+ 2p — k — t + j)!
wetr WU = o 7 (273)
+ 19) (n—2w—2p+k+t—j—2)
which completes the proof together with (2.72). O
2.3.2 Asymptotic Estimates
Lemma 2.5 [59] Let fat2+m) ¢ AC[-1,1] for some ¢ >0, p,m > 1 and
fO(=1)=f®1)=0, k=0,...,q— 1. (2.74)

Let parameters Ay be chosen as in (2.36). Then, the following estimates hold as N — oo

o DY A ()t 1R
oy ()\, {Fn,m}n:_oo) = 9q+L Nat2p+l kz (¢ — k)!(im)k+1

+ m—1 x(¢t) t

m T @ m —1 t i N (2pu—m+1

X (_]_)pp’Tk() _ E % g < >6i ];]J(Vibm-i-f )hp(Qlu —m + 1’ 7') (275)
! ! L

t=0 ©=0

+O (N,
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(2.76)

iy M A Fwmbor ) = =08y (M AFambis ) + O (N7

and
—12) (2.77)

Py MNAFumbs ) = (D)™ (A {Fumtor ) +O (N

Proof. We proceed as in the proof of Lemma 1.6 and derive

q+2p+m J
B 1 A (f)(2N +m + 1)k
Fm = Z 21 N Z (j —k)! (m 4 1)k—i T_ZOO Busr(an-+me+1) (k)

J=q
+ (_ e l;J:fzJ(rn;erll) Q+§m 1 Ak] TTL + 1)
2N +m+1 NJ 27 k }H’l /{:)!
(2.78)

m—1
@ - iTn t
X [Z M (62]\72+7n+1 + 1)

|
P t!
2 t
mt2p (I)() m 2im (N+0) t 1 Zimn(s—1) 9p—9
+ E E <@2N+m+1 —+ 1) E Ug_862N+m+1 +o0 (N—q— D— )
=m /=1 s=1

Then,
q+2p+m 1 J Ak;y(f)(QN +m+ 1)k

Sy O ABmd) = D 21 N (j — k)!(m+ 1)k

i=q k=0
x 0%y </\= { Z Bn+r(2N+m+1)(k)}>
ﬁiﬂn 1 Apj f) + 1)
K _
2N+m+ 1 Ni £ 2J (im)F+1(j — k)! (2.79)
m—1 () t
(b —1 imn —m+1
[EAES (e o
t=0 ’ u=0
m+2p (t) . m m L
S B () S, (1 {1 })]
t=m ¢ /=1 s=1
Lo (N2
Lemmas 2.1 and 2.2 provide estimates
itN(2p—m+1)
irn(2u—m41) (—1)Nei IN+Fm+1
ok <)\,{ —1)"e 2N+mi1 }) = h,(2u —m+ 1,7
Ly (A=) el ) s
+O(N"7),
and
© (_1)N+p+1
Y (A, { Z Bn+r(2N+m+1)(k:)}> = 2(i7rN)k+1N2pk:!¢p’m’k(T> s

+O(N—2F2),
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Substitution of (2.80) and (2.81) into (2.79) completes the proof.

Estimates (2.76) and (2.77) can be proved similarly. [J
Theorem 2.4 [59] Let fa+2r+m) ¢ AC[—1,1] for some ¢ >0, p,m > 1 and
fO(=1)=f®a)y=0, k=0,...,q— 1. (2.82)

Let parameters N be chosen as in (2.36). Then, the following estimate holds for |z| <1

D% (f,x
R?V,m(fa .’L') = % + O<N_q_2p_1), N — 0. (283)

where

(= D)V sin (ro(N + Da = T2) I Ay, (F)(m + 1)9 k2
(q—k

p
DN,m(f’ x) T 9g+2p+1 cog2p+1 % )!Z'k:—mﬂ-k-‘rl
( 1)]2 m—1 q)(t) ( 1];:015 ¢ (284)
- Em\ ™ 2—m
X (T ;:m,k(T) - Z T Z (M) ZQM +1hp(21u/ —m+1, T)) )
t= u=0
and . is defined by (2.60), ®p. by (1.87), and hy, by (2.62).
Proof. Application of the Abel transformation to (2.35) concludes
Rp (f ZL') —7,7raN:c 511]\7 1 <>\7 {FS,m}) o 67271'0(N+1)z 517\/ ()\7 {F&m})
NymAl c(x) c(x)
+ iroNz 5%+1 ()\’ {Fs,m}) —iro(N+1)z ()\ {FS m})
e —e
c() c(x)
| (2.85)
+ - Z 51 {5}9 )\ {f s,m})}) ewranm
| |<N
+ (_ Z 51 {5}0 )\ {f })}) 171'0'nx
|n|>N
where
p
c(x) = 4 cos? < ) H (14 A_;€™) (1 + N\je ™) (2.86)
7=1
and
. _ o2pt2 . 2p+2 (X
]\}1_1};0 c(x) = 2772 cos < 5 > . (2.87)
According to estimate (1.80) of Lemma 1.5, we figure out that
q+2p+m i
1 A (f)(m +1)77F(2N +m + 1)*
5L ({07 (N {fF i :

x 53L ({07 (A ABs(k)})}) + o(n~ 277 7).
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Lemma 2.4 shows that
on ({07 (A {Bu(k)})}) = O (N2 k79)

and consequently

S ({87 DY) = O(N™9n73) 4+ o(n™ 972~ |n| > N, N — oo.

Hence, the last term in the right-hand side of (2.85) is o (N—472P71).

Similarly, according to estimate (1.99) of Lemma 1.6

q+2p+m J
) o A (f)(m 4+ 1)7752N +m + 1)k
Sp ({87 N AFsm — i)} = j;q 2]]\[3 ZO A (j—Fk)!
x O} <{5§ ()\, {Z Boirentme1) (K }) })
r#0
q+2p+m 1 Akj f) +1 —k

+2N+m+1 Z NJ — 2R (im)M () - k:)!

% 1@;&&(—1) 'f S
St T

t=0 pn=0

q—j+m+2p (I)(t) ( 1) m ( N )t

—+ Z TZ 62N+m+1 -+

s ({o (1 {ioesis ) )

Then, in view of Lemma 2.3

Oy ({55 <>\, {Z Bs+r(2N+m+1)(k’)}> }) = O (N~#7+9).
0

According to Lemma 2.1

st (Lo (W e ) ) =0 ().

i ( £)
Finally, taking into account that Vet + 1 = O(1/N), we get

4o (NTT2)

6711 <{55 (/\7 {Fs,m - fs*})}) =0 (N—q—2p—2) ) |n| < N, N — .

Therefore, the fifth term of (2.85) is also o (N~972P71).
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As a result, we have

() Ry (frx) = €N o (N A Fm})) — €D (N {F})
(2.95)

iﬂ0N15P ()\7 {Fs,m}) — e_iwo'(N-i-l)fE(;I_)N ()\, {Fs,m})

te N+1

Lo (N,

Estimates (2.76) and (2.77) provide

)R, 7) = 5 O [ d) (1) (¢ 4 ey
(2.96)
_ <6i7ran + 6i7rcr(N—|—1)ac)) +o (N—q—Qp—l)

which concludes the proof in view of Lemma 2.5. [

We have the same estimate for m = 0 with additional smoothness for f in the next theorem.

Theorem 2.5 [59] Let fla+2r+1) ¢ AC[-1,1] for some ¢ >0, p > 1 and

f®(=1)=f®a)y=0, k=0,...,q—1. (2.97)

Let parameters A, be chosen as in (2.36). Then, the following estimate holds for |x| < 1

DY o(f,2) o
szov7o(f, I’) = % +o (N q—2p 1) , N — oQ, (298)
where
(—=1)N*P sin(rNx) < Ao (f)2F
P _ q +
DN,O(f’ z) = 9q+2p+1 (og2p+1 Iz kz_o FhH (g — k)IK p,O,k(T) (2.99)
and 1 (1) is defined by (2.60).
Proof. We use (2.85) for m =0
moneOon—1 (A {Fso}) oy (A {Fs0})
D _ ,—imoNz N-1 ) S, _ iro(N+1)z N ) 5,0
Frall) = @ ()
+ 67L7r0N:c 51%4—1 ()\7 {FS,O}) _ —imo(N+1)x 511N (A7 {F&O})
c(x) c(x)
1 ' (2.100)
+—— Y (NS = Fooh)p ™™
c(x)
n=—N
1 * ITONT
+——= D & {F ALY e
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Periodicity of Fn,O (Fn+r(2N+1),0 = Fn’07 r e Z) ylelds

5Ii]v_1 ()" {FS,O}) = 5?{ ()‘7 {FS,O}) )

(2.101)
On 1 (A {Fao}) = %y (A, {Fio}) -
Hence
e—imoNz _ eiTra(N-H)a:
RIIDV,O(fv SL‘) = (5];/ <)‘7 {FS,O}) C(fL’)
eimoNz _ e—imT(N-‘rl)z
pN ()\7 {F&O}) c(q:)
. | (2.102)
el Z ({07 (A2 = Fap)})
g X U O
Estimate (1.80) of Lemma 1.5, with v = 2p + 1, figure out that
LU OALIN = Y o Z Al DT (52 0 B0
i=q 0 J (2.103)
o ()
Then, from Lemma 2.4
0, ({67 (A ABs(K)}}) = O(N~Pn=*7) (2.104)
and from (2.103)
5 ({67 M {fiDY) = O(N~9n73) + 0o(n™9%72), |n| > N, N — o0, (2.105)

which shows that the last term in the right-hand side of (2.102) is o (N"97%71) as N — oo.

Similarly, estimate (1.166) of Lemma 1.8, with v = 2p + 1, implies

q+2p+1 1 A 2N 1
op ({6 M AFso— 1)} = ; 2i Ni Z ! + .

S
r#0

o (NTT2)

In view of Lemma 2.3

({2 (T e} ) }) oy 21m)
r#£0
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and

o ({67 M AFso— f2H}) =0o(N"77%) | |n| < N, N = (2.108)

which shows that the third term is also o (N~97%71) as N — oo.

Therefore,

—itoNz __ eiﬂ'a(NJrl)z

c(x)
eimoNz _ e—in(N—i—l):c
5 v (0 {F.o}) o (2.109)

e

R;?V,O(»ﬁ 37) = 61% ()‘7 {Fs,O})

o (N

Equation (1.100) shows that

Fio= ) fiwenin nE€L. (2.110)

Applying Lemma 1.5, with v = 2p + 1, we get (n, N — 00)

q+2p+1 i
1 A 2N+1
- % sy S Busaen 0 (NI, (2111

r=—00

and

q+2p+1

1 s Ay (f)(2N + 1)k
P (s o) = Z PN 2 ({y)'(—k;)

N (2.112)
X 5§:N ()\, { Z Bn+r(2N+1)(k>}> —|— 0 (N*Q*2p72) .
Then, Lemma 2.2 with w = 0 implies
( 1)N+p+1 q Ak‘q(f) ok N oy
On s Fno) = 20HINataptl L (i) tl(g — k)R] pok(T) + O (NTI27%) (2.113)
which completes the proof in view of (2.109) as 1/1;07,6(7') = ;0 L(7). O

Comparison with Theorems 1.6 and 1.7 asserts that if interpolated function has enough
smoothness then the QPR approximation, with 2p > m, is more accurate (asymptotically)
than the QP interpolation and improvement is by factor O(N~2+m),

When ¢ = 0 then DY (f, ) can be rewritten in the form

Dy (f,2) = Ao(f) DN, (), (2.114)
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where DY (z) is independent of f and

(=1)N sin (mo (N + 1)z — =)

DY () = i"

w22+l cos2prtl %
o 1 (2.115)
X (( 1Pt o(7) Z > <M>z2ﬂ-m+1h,,(2u —m+1, T)> :
=0 ’ n=0

Let us show that the expression in the brackets vanishes for odd m independently of the choice

of parameters 7, which lead to more accurate approximation as in the next theorem.
Theorem 2.6 Let fP™™) ¢ AC[-1,1] for some p > 1, odd m > 1 and

fF(=1) # f(1). (2.116)

Let parameters A, be chosen as in (2.36). Then, the following estimate holds for |x| < 1

R (f.x) =o(N"71), N — cc. (2.117)

Proof. Let m be odd and n = (m —1)/2. We apply Theorem 2.4 with ¢ = 0 and get estimate
(2.83) with DY written as in (2.114). We show that the expression in the brackets vanishes
for odd m.

Let us show that v, o(7) = 0 for odd m. Observing that

_Z 27‘+ ety (2.118)
we get
& 1
pm o(T Z (T Z 7)(2p — k= 2t)! Z (2r + 1)2p—k—2t+1
[%] p
1
= 2 () Z WO k=211 o
i [Lﬂ]— (2.119)
2 2 1
=2_(r) Z (M@ =2 =A=' o
23] [%] .
- Z Yorg1 (T 2 Yor(7)(2p — 2k — 2t — 1)! ZT: (2r 1 1)2—2k—2t =0.

Then, we have (2n =m—1)

m—1 @(t ) t +
S = Z o ( )iz“_m+1hp(2u—m+1,7)

) \M
H=0 (2.120)
p 1 2n
— o2 Z e k'}/k<7_)m SO (=1 (- ) h,,
k=0 pn=0



where

We will prove that

c, =10
and
Cn—l—é = _Cn—£7 g 1, 7’[’1,
In that case
p p 1 n—1
S =72 Z ¥s(T) Z<—1)k’yk<7) LS Z<_1)u+n(u — n)k=sc,
s=0 k=0 —0
p p 1 2n
+ 7% Z’YS(T) (—1)k’yk( )(zw)k+s Z (_1)u+n<u _ n)2pfk—sc'u
s=0 k=0 u=n+1
p D 1 n
= %P Z( 1), (7) Z e (T) (i) Z(_l)uu%—k—scn_u
s=0 k=0 u=1
p p 1 n—1
+ 7% Z vs(T) Z —1)Fy,(7) LS Z(_DMMZP—IC—SCTH_M _0
5=0 k=0 p=1

which will complete the proof.

Now, we prove properties (2.122) and (2.123). We use (1.96) and get

) 2
Do () = %x" (1 + >

rz—1
K/ "
= —a" 4+ m
r—1
) ) " /n
— _15—1
5 +x_1+m (€>(:)3 )

and

t=n
_m'n t n(l)nt Tie (1) 1
2 n)\t 2 n) 2t
t=n t=n
=0,
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where we used the identities ([77])

and

()

k=m

For the remaining, we need some identities. First, we use ([78])

5 (0) ()= (0o

1

Taking ©z = —3,

we get

Second, we use ([78])

Integration over the interval (0, 1) leads to the next identity

ERE00 -5

e (L))

Now, let us prove that

We have o
(1yee ;:H<—1>f(n ! M) (gﬁ 1) — (—1) i+ 1>€%<[Tl>f (n .
)0
— (—1)H(n + 1)% 0
= 1.

Third, we use ([78])

> ()= (g () e

(2.129)

(2.130)

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)



Taking = 1/2, we work out that

n

2

t=0
Then,
and
-+ e
+ 7
Therefore
Cn+e +'Cn ¢
)

Taking into account that

t 1 _ 1
r) ot+l +

>
*Q%J :

n 1
r 2n+1

M(

t!

n

T

1
72

t=0

t
+/

1

2n

n+¢

t=|
n—~_

t=0

>

_-22n

E

(4)

(

2n
t

)]+

1
9t+1

>

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)



we conclude

2n 2n
Cnae+ Cpny 2n 1 2n
s L S
i (n—i—ﬁ) g2+l T ”;( ) Z (t

t n+0+1

on 1 2n " on
n — é 22n+1 22n t t
t=0 t n— f—i—l

2n
1 2n 1 _ i Z 2n B 2n 1
n+ ()22l 22 t n— () 92n+1

t=n+{+1

_2% i (2:) (2.143)

t=n—~0(+1

(1 1 ”‘fl 2n on \ 1
- n+¢ 92n+1 92n — t n — ¢ ) 22n+1
2n

1 2n
T 920 Z ( t )
t=n—~0+1

B 2n 1 2n 1 n 1 2n _0
a n 4 ) 22ntl n—{()2m+l " 9\ _y¢)

which completes the proof of property (2.123). O
Remark 2.2 Estimate of Theorem 2.6 can be improved to

Ry gyt (f;2) = O(N"#72), m >0, N — oo (2.144)
if f has additional smoothness.

When ¢ = 0 but m is even or ¢ > 0, then additional accuracy can be achieved by appropriate
selection of parameters 7, by vanishing the constant in the brackets of (2.115) (if possible).
We seek solution of the following system of non-linear equations

+ m—1 F(t) t
,m,k;(T) (I)k,m(_l) T\ 9u—m
Dy B S (L)1) =0

t=0 om0 (2.145)
k=0,...,q, 2p>m
with unknowns 7, £ = 1,...,p. Then, Theorems 2.4 and 2.5 will provide with improved
estimate
Ry (fra) = o(N717271) (2.146)
or
Ry, (f x) = O(N~4272) (2.147)
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if f has additional smoothness.

Tables (2.4)-(2.7) present some solutions of system (2.145) for different values of ¢, p, m.

71 = —1.57080 7 =1.51095 7 = 1.63829

7o = 11.5976 73 = 5.37030 £ 4.90193:

Table 2.4: Optimal 73, derived from system (2.145) for ¢ = m = 0.

71 = 0.28300 71 = 5.49110 71 = —0.02878, 7 = 1.17797

To = —2.20334 T3 = —0.10654 £0.90375¢ 713 = 7.11678, 74 = 20.18171

Table 2.5: Optimal 75, derived from system (2.145) for ¢ = 0 and m = 2.

p=2 p=3

71 = 0.4659439 7 = 6.34640

To = —4.418383 723 = —0.0813412 4 0.9085957¢

Table 2.6: Optimal 73 derived from system (2.145) for ¢ = 2 and m = 1.

p=3 p=4

T = 7.74184 71 = 0.97037, 72 = —0.30496

To,3 = 1.44363 £ 1.099817 73 = —6.66081, 74 = —13.85632

Table 2.7: Optimal 73 derived from system (2.145) for ¢ = 2 and m = 2.

Comparison with the results of Section 2.1 leads to the following observations. When ¢ is
odd then the classical RT interpolation with optimal 7, has better pointwise convergence rate
(for |x| < 1) than the optimal QPR approximation (75 derived from (2.145)) and improvement

is by factor O(N~!). When g is even, the convergence rates are identical.
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However, as we will show in the next section, the QPR approximation has much better ac-

curacy on the entire interval compared to the classical one due to more accurate approximation

at the endpoints.

2.4 Limit Function Analysis

In this section, we study behavior of the QPR approximation at the points x = %1 in terms

of the limit functions.
Theorem 2.7 Let fl4+2+m) ¢ AC[—1,1] for some ¢, m >0, p > 1 and

fEE=D) =M1y =0, k=0,...,q— L

Let parameters Ay be chosen as in (2.36). Then, the following estimate holds

N—oo

h
lim NYRYy . (f + (1 — N)) =l i1 gm(fiR), h>0,

1
128 Jh) =
x—>:i:1,q,m(f ) 5:1(7—52 + 7T2(mT + h) )

1
) i7r(u )a: . P zw( )a:
([ Aatrae N s )

and
q — p p
Agy(f)(m + 1)
:ug,m(f7 l’) = Z 2q+1q—€(iﬂ—)é+1(q N 6)' Z(‘l)ertVt(T) Z ’7k<7—>
£=0 T t=0 k=0
(0+2p—k—1t)! 1
X gl pr—k—t-i—f-‘rl’
q _
Agg(f)(m + 1)1
Vg,m(fa l’) 2q+1 l(lﬂ')g"'l(q f)
p
2p k—t+0)! (—1)r(m+D)
+t
( > p Z’Yk /1 TZ;AO (2r + x)2p7k7t+€+l
m 1 t - ) t it(2p—m+1)x
' Z e 2 hy(2u—m+1,7) .
t: ©n=0 K

Proof. We use representation (2.35) and notice that for z = +1 (1 — £)
p p

lim N2 [T (14 60_.e™) (14 0,e7™") = [[(72 + 7°(m + 1 + 2h)*/4).

N—oo
s=1 s=1
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Lemmas 1.5 and 2.4 imply

q+2p+m J i—
. i (—1)ntpl A (f)(m +1)742N 4+ m + 1)
on (A4S = Z 2+ Ni+2p ; . (imn)HL(5 — 1)
J=q =

D R . 2150

+O (N~7%Pn72) + o(n 2071,

Then, Lemmas 1.6, 1.8, 2.1 and 2.3 yield

O AP = 1)) = s - ot

Na+2p+1 £ 2q—e+1(m)e+1<q —0)!

X(zp: )P+ Z% (2p — k!—t‘F@

t=0
(_Ur(mzl)k _ (2.155)
r#0 (QT + 2N+m+1) e
m—1 t
@ t ir(2p—m—+41)n
ST (1) 0.0
pu=0 H
Lo (N,
These estimates complete the proof. [
Let
gg,m(f) ma’X{HlaX ‘£$—>1 24, m(f: )’ I}llaX wx—> 1,q, m(f7 )|} (2156)
The ratio
| Ag (NI /g () (2.157)

compares the uniform errors of the classical RT interpolation and the QPR approximation for
specific f and 7. Such comparison, independently of f, is possible to perform when ¢ = 0. In

this important case

where
% 1
gﬁ—):ﬁ:l 4, m(h> =

w1 (T2 + w2 (P 4 h)?)

- (2.159)
% </ Vfr;,* (x)eqiiﬂ(m+1+2h)m/2dz . / M‘fr’L* (x)eq:iw(m+1+2h)z/2dx)
-1 |z|>1

90



and

) T P 1
pi (x) = %in Z(—l)p+t7t(7) Z%(T)(QP —k— t)!ma (2.160)
t=0 k=0
1 (S iy
V(@) = 5= [ DD () D () @p—k =)y G —
2im \ = P "z (2r+2)
(2.161)
m-! (P(()t’),rn(_l) ‘ t it(2p—m+1)x
— TZ y e 2 hy,(2u—m+1,7) | .
t=0 n=0
Let
637, = macfmax |2, ()] max |27, (1) (2,162

Minimization of ég:*m by appropriate selection of 73 leads to the QPR approximation with min-
imal uniform error on [—1,1] for ¢ = 0. Tables 2.8 and 2.9 show the corresponding optimal
values of 7, for p = 1 and p = 2, respectively. Recall that for ¢ = 0 the classical RT in-
terpolation has uniform error 0.5 and the results in the tables show higher accuracy of the
QPR approximation compared to the classical RT interpolation. The QPR approximation has

higher accuracy also compared to the QP interpolation (see Table 1.4).

1,%
Tk fo,m

m=0 7 =11964 0.0025

m=1 7 =18212 0.00028

Table 2.8: Optimal values of 75, that minimize Eéfn

2,%
Tk EO,m

m=0 7 =0.8116, » = 3.3885 0.0001
m=1 7 =1.3083, 2 =4.8660 0.00002
m=2 7 =0.6602, 5 =1.4190 0.00007

m=3 711=0, =0 0.0003

Table 2.9: Optimal values of 75, that minimize Eg:n
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2.5 Numerical Analysis

Let

f(z) =sin(x — 1) (2.163)

for which f(1) # f(—1). Above observations outline the choice of parameters that lead to more
efficient QPR approximation. First, we use odd values of m as in this case we have additional
accuracy inside the interval of interpolation. Second, this additional accuracy we get for any
choice of parameters 7. Thus, we select them such (see Tables 2.8 and 2.9) to minimize the

uniform error. The corresponding graphs we show in Figure 2.1.

b 35x10710 F
0.00025 ; 3.x10710 7
0.00020 | 25x 10710 3
0.00015 | 2.x107%0 3
[ —10 F
0.00010 F 15x10 :
g 1.x 10710 3
0.00005 |- 2
L ) ‘ F
-1 -0.995 06
-14
0.00005 £ 2107 ¢ F
0.00004 ; 15 - 107].4 E
0.00003 £ E
[ 1.-10% r
0.00002 | r
0.0000L [ 5.- 1071 | .
-1 -0.995 08

Figure 2.1: The graphs of the absolute errors |Rbsq 1 (f,2)| on [-0.6,0.6] and at the points z = +1 for p = 1,2

(from top to bottom) while approximating (2.163). Parameters 7, are selected according to Tables 2.8 and 2.9.

For comparison, Figure 2.2 shows the corresponding (with the same N and p = 1, 2) results
for the classical RT interpolation. As we observed above it is impossible to minimize the
uniform error in case of the classical RT interpolation more than the value of the classical
interpolation by appropriate choice of parameters 7. Thus, we select these parameters such
to minimize the pointwise error inside the interval of interpolation (see Table 2.1).

Comparison of these figures show (however for this specific f) similar behavior inside the
interval of interpolation and much better accuracy for the QPR approximation at the endpoints

of the interval which is in accordance to theoretical observations.
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3.6x1071°
04t

03¢ 2.3x10°10

0.2

0.1 ' "

-1 —-0.995 -0.6 0.6 0.995

041

0.3

0.2

01r

-1 —-0.995 0.995

Figure 2.2: The graphs of the absolute errors |Rb.s(f, )| on [—0.6,0.6] and at the points z = +1 for p = 1,2

(from top to bottom) while approximating (2.163). Parameters 73, are selected according to Table 2.1.

Now, let us discuss results that correspond to A\; determined from system (2.37). Theory
of this approach will be considered elsewhere. We present only some results of numerical
experiments and bring comparison with the classical RT interpolation with the similar selection
of parameters (see system (2.6)).

Figure 2.3 shows the graphs of |Rbss ,,(f, )| where parameters A are determined from
system (2.37) for m =1 and p = 1,2, 3.

Figure 2.4 shows the graphs of |Rb-4( f, x)| where parameters \; are determined from system
(2.6) for p=1,2,3.

Comparison of the figures shows that the QP FP approximation has higher accuracy both
inside and at the endpoints of the interval than the classical FP interpolation. Comparison
with Figure 2.1 shows that the QP FP approximation has better accuracy away from the

endpoints compared to the QPR approximation and worse accuracy at the endpoints.
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Figure 2.3: The graphs of the absolute errors while approximating (2.163) by the QP FP interpolation with
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Figure 2.4: The graphs of the absolute errors while

with N = 256 and p = 1, 2,3 (from top to bottom)
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CHAPTER 3

Convergence acceleration by polynomial corrections

In this section, we investigate convergence acceleration of the QP interpolation and QPR
approximation by polynomial corrections. Polynomial correction is a linear combination of
some standard polynomials with derivatives of f in the coefficients. Subtraction of this poly-
nomial from f reduces a new function with better convergence properties. Section 3.1 deals
with construction of correction polynomial. Section 3.2 introduces the QP Polynomial (QPP)
interpolation and QPR Polynomial (QPRP) approximation and studies their convergence. Sec-
tion 3.3 discusses the problem of derivatives approximation via discrete Fourier coefficients. In

Section 3.4, we consider some numerical results.

We recap details from [58, 63, 64].

3.1 Construction of Correction Polynomials

As previous chapters showed, the convergence rates of the QP interpolation and the QPR

approximation essentially depended on the property
fP(=1)=f®)=0, k=0,...,q— 1. (3.1)

We will show how the same rates of convergence can be achieved for functions without this
property by application of polynomial corrections.
In this section, we construct two different sets of polynomials & ,(z) and ny4(x), k =

0,...,q — 1 with the following properties

E0(1) = E0(-1) = G, (D) +E(-1) =0, kys=0,...,q—1 (3.2)
and

() (1 (1) =4 D) —p(—1) =0, k.s=0 1 3.3

nk,q( )+77k,q( ) k,s» nk,q( ) T]k,q( ) y Iy S yeerq : ( : )
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We put

2?(x? — 1)1

qul,q@j) = 2q<q _ 1)' )
z(x? —1)971
Tral) = et
if ¢ is even, and
(2 -1t
Som1al®) = ST
2?(2? —1)77!
Ng-1,4(%) = W

if ¢ is odd.

Then, we consider the following recurrence relations
— _ (¢-1) 1 (g—1) —1
8ka(7) = Ekg-1(2) = (Erg1 (1) + &1 (1) ) Ng-1.4(),
Mha(®) = mhg1(@) = (040 = 18 -1) €14()
if ¢ — k is even, and
_ _ (¢—1) 1) — (g—1) -1
Erq(T) = Epg-1(T) £k,q—1( ) fk,q—1( ) ) €4-1,4(2),

M) = g1 () = (0020 + 82 (1)) gy (@)
if ¢ — k is odd.

Let us show some of these polynomials. When ¢ =1

2
T T
50,1(35) = 9 770,1(95) = 9
When g = 2
1 2
50’2( ) = —Z—lflf (-3"‘1’ ) y
E12() = —z? (—1 + :EQ)
and
2 1
No2(r) = 5~ §$2 (-1+42?%),
1
ma(x) = Zx (—1 +$2)

96

(3.5)

(3.10)

(3.11)

(3.12)



When ¢ =3

1
§o3(x) = —x (15 — 102* 4 32")

16
1
&3(x) = 6 (—92° + 142" — 52°) , (3.13)
1
&s(z) = 1—6x (—1 + 332)2 ,

and
1, 2, 4
no,3(x) = 3% (3 — 3z 4z ),

1 :
ma(z) = T (=7z + 102° — 32°) , (3.14)

i2_ 2\ 2
16:1:( 1+a:).

Now, let us consider the main representation of f:

M23(T) =

q—1 q—1

fl@) = G@)+ > AL (Néra(@) + Y AL (Fneq(2), (3.15)

k=0 k=0

where

A () = FO) = F9 (=),

(3.16)
AL = P + P (1)
Taking into account the properties of functions ¢, and 7 4, we see that
GM(1) =G®(-1)=0, k=0,...,q— 1. (3.17)

3.2 QPP Interpolation and QPRP Approximation

In this section, we assume that the exact values of A, (f) and A} (f) are known.
Approximation of G, in (3.15), by the QP interpolation, leads to the following QP Polyno-

mial (QPP) interpolation

INgnig(f, %) = Ingn (Gw) + Y~ A (N)Ea(2) + D AL (f)ng(2) (3.18)
k=0 k=0
with the error
RN’m»CI(f? $) = f(l') - IN,m,q(fa l’), (319)

where the discrete Fourier coefficients of G can be calculated from (3.15).
Now, all theorems of Chapter 1 concerning the convergence of the QP interpolation can be
reformulated for the QPP interpolation. For example, the next theorem presents the behavior

of the error of the QPP interpolation in terms of the pointwise convergence.
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Theorem 3.1 [58] Let fl4+2™ ¢ AC[-1,1] for some q,m > 1. Then, the following estimate

holds for |x| <1 as N — oo

DN,m,q(G7 ZE)

Nt d +o(N—T ), (3.20)

RNJ?%Q(fa I) =
where

Dyng(G, @) = i(=1)" Cym(G)

. " m—k (—1)
sin (m(N + 1)ox) Z ( i ) DT o272 22
k

, = (3.21)
_ K m—k—2 (—1)F
— sin (WNUI) Z ( L ) 22k+3 COS2k+4 % )
k=0
h = [2] and Cy,n(G) is defined by (1.120).
It is easy to verify that
q—1 qg—1
AZ,q<G) = Af,q(f) - A/; (f)AZ,q (gk,q) - Az<f)A€,q (nk,q> (3‘22)

i

0

i

0
and, in general, A ,(G) # Aoq(f).
Approximation of G, in (3.15), by the QPR approximation, leads to the following QPR

Polynomial (QPRP) approximation

B g(fr ) = T (Gow) + 3 Ap (Héka(@) + Y AL (Fieg() (3.23)
with the error
qu(f7 r) = f(r) - qu(f ), (3.24)

where again the discrete Fourier coefficients of G can be calculated based on (3.15).
All theorems of Chapter 2 concerning the convergence of the QPR approximation can be
reformulated for the QPRP approximation by changing f with G. For example, the theorem

concerning the pointwise convergence has the following formulation.

Theorem 3.2 [58] Let flt?+m) ¢ AC[-1,1] for some q,p,m > 1. Let parameters )\ be

chosen as in (2.36). Then, the following estimate holds for |z| < 1

Nm (G [E) —q—2p—
qu(f T) = W—FO(N =21 N - o0, (3.25)
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where

D5, (Gray = ST s (ro N+ 5)z = 5) S A(G)lom + D12
N,m.q 9q-+2p+1 cos2+l T2 s (q — k)lik—mph+1
_ (3.26)
(_1)? + = él(ft)rn(_]') ! t 2u—m-+1
k! p,m,k(T) - 7 fl Une hp(2u —m +1,7)
' t=0 | p=0 H

3.3 Approximation of Derivatives

Let us show how the approximations to A; and A; can be performed if the exact values
are unknown. We need construction of some polynomials.

First, we consider polynomials Bi(z), k =0,...,¢ — 1 with the property
B (1) =B (1) =46 3.27
0(1) = BO(-1) = b (327)

These are well-known ([41]) 2-periodic Bernoulli polynomials defined by the recurrence relations
1

Bo(x) = 2, Bulx) = /Bk_l(a:)dx, vel-1,1), /_ Bu(x)dz = 0. (3.28)

1

Here are some of the Bernoulli polynomials

2 1
Bi(r) = — — —
@) =7 -3
¥
B - _ = 3.29
(o) =T - (3.29)
L R
By(w) =2 -2 4 L
=% " u
Knowledge of these polynomials leads to the Lanczos representation ([45])
q—1
@) = F~ () + ) Ay (F)B(), (3.30)
k=0

where F is a 2-periodic and relatively smooth function on the real line F~ € C7Y(R) if
f € CT1[—1,1]. Approximations to A; (f) can be derived from the Lanczos representation by

calculation of the discrete Fourier coefficients

fn 2N Z f( ) —imny (3.31)

of functions in the both sides of (3.30), we get

fo = A (N)Ba(0) = F7 + Y Ay (f)Ba(k). (3.32)



Taking into account the fast decay of F’n_ ,n~ N as N — oo compared to other coefficients,

we get the following system for determination of approximations Z,;( f,N) to A (f)
fo— Ay ()B(0) =Y A (f,N)B.(k), n=n1,...,14 1. (3.33)

Investigation of the error Av,;( f,N)— A, (f) can be performed as in [44], where similar system
is considered.

Now, we consider polynomials Fy(z), k =0,...,q — 1 with the property
EX (1) + ES (—1) = 6. (3.34)
These polynomials can be constructed by the following recurrence relations

Ey(x) = 3, Bulx) = /Ekl(x)dx, ve[=11], By(1)+ Ex(~1)=0.  (3.35)

Here are some of them

x
El (ZE) = 5)
22 1
Ey(x) = T 1 (3.36)
¥
E = ———.
() =157 1
Similar to the Lanczos representation, we consider the following one
q—1
flx)=F"(z)+ > Al(f)Eu(x). (3.37)
k=0

By multiplication of the both sides of (3.37) by €"™*/? and taking into account that F*(x)e’™®/2
has the same properties as F'~ (x), we calculate the discrete Fourier coefficients of the both sides,

disregard the coefficients of F'* and get the following system for determination of approximate

values Z;(f, N) of Af(f)

J = A DELO) = 3 A NV ELR), n= 1. g, (338)
k=1
where
v 1 — —z7r n+ )ﬁ
= ﬁ f( ) N, (3.39)
=N

Investigation of the error A (f, N) — AZ( f) can be performed as in [44].
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We put

1

Inang(f,2) = Ingu(G ) + 3 A7 (f, N)&g(2) + D AL (f, N (2)
=1 (3.40)

<
|

—
Q
|

b
Il
—
b

Ag ()So0.q(x) + A (f)moq()

with the error

Rymg(fo7) = f(2) = Inng(f 7), (3.41)
and
I o(fo2) = I8 (Gow) + 3 AL (f, N)&g(@) + > AL, N) ()
k=1 k=1 (3.42)

+ A5 (f)éoq(x) + AT (f)mo,q()

with the error

Ry (fon) = fz) = 1% . (f,2). (3.43)
Here
Ga) = 1(a) 3 Ay (F. N)g() = 3 AL (F Niale)
k=1 k=1 (3.44)

— AG (f)o.q(x) — AT (f)n0,q(x).

Theoretical investigation of interpolation I, N.m,q and approximation f%m , Will be carried

out elsewhere. In the next section, we consider these approaches only numerically.

3.4 Numerical Analysis

Let

f(z) =sin(z — 1). (3.45)

Figure 3.1 shows the graph of |Ras6,,|. Figures 3.2 and 3.3 show the graphs of |Ras6.m,4| and
|fi2567m7q], respectively. Comparison of Figures 3.1 and 3.2 shows that polynomial corrections
improve the accuracy of the corresponding interpolations. Comparison of Figures 3.2 and 3.3
shows that approximation of jumps makes the approaches slightly less accurate than in case

of utilization of the exact values.
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Figure 3.1: The graphs of |Rase m(f, )| for m = 0,2,4 (from left to right) while interpolating (3.45) by the

QP interpolation.
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Figure 3.2: The graphs of |Ras6 m q(f, )| for m = 0,2,4 (from left to right) and ¢ = 3 while interpolating

(3.45) by the QPP interpolation with the exact values of A: and A, .
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Figure 3.3: The graphs of |Rasem.¢(f,2)| for m = 0,2,4 (from left to right) and ¢ = 3 while interpolating
(3.45) by the QPP interpolation with the approximate values of A, and A, derived from systems (3.33) and
(338) with ny = —N, Ng = N —1.
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Conclusion

Chapter 1 was devoted to the Quasi-Periodic (QP) interpolation and its comparison with

the classical trigonometric interpolation.

e We sought the QP interpolation in the form

Inm(f,2) = Z_ f( > (z), z € [-1,1], m >0 (3.46)

and found the unique unknowns a; from condition

Iy (7%, 2) = ™ |n| < N, z € [-1,1], o = # (3.47)
As a result, the QP interpolation had the following explicit representation
Inm(f, ) Z Fy ™% (3.48)
where F, ,,, were defined by (1.38).
Theorem 1.5 proves that Iy ,, interpolates f on grid zx = k/N, |k] < N, i.e.
In(f,20) = f(@). (3.49)

e Theorems 1.6 and 1.7 show that the QP interpolation has pointwise convergence rate
O(N—4=™=1) Comparison with Theorems 1.1 and 1.2 shows that the QP interpolation
has better convergence rate than the classical interpolation (if the requirements of the
theorems are satisfied) and improvement is by factor O(N~™) for even q and O(N~"*1)

for odd gq.

In particular, if f is rather smooth (for example, infinitely differentiable) on [—1, 1], but

f(1) # f(—=1) then improvement is by factor O(N~™), m > 0.

e In general, conditions of the theorems concerning the QP interpolation are stricter than
those for the classical interpolation: additional smoothness requirement and more con-

ditions on f and its derivatives at the endpoints of interval.
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e Theorems 1.8 and 1.9 show that the QP interpolation has the same convergence rate
O(N~7"2) in the Ly-norm as the classical interpolation (Theorem 1.3). More detailed
comparison of both interpolations can be performed by exploring constants |A,(f)|c,
and ¢,,(f). In general, such comparison is impossible to perform independently of f.
Numerical results obtained for a specific function (1.234) show (see Table 1.7) that by
increasing m the accuracy of the QP interpolation can be increased tremendously and as

smaller is ¢ as more efficient is the QP interpolation.

Comparison of those constants independently of f can be performed when ¢ =0 (f(1) #
f(=1)). In this case com(f) = |Ao(f)|c5,, (see (1.220) and (1.221)). Hence, quotient
€0/ ¢.m shows which interpolation is asymptotically more precise in the Ly-norm. Ta-
ble 1.3 presents the values of the ratio showing that by increasing m the difference in

accuracies is growing enormously and this observation is independent of f.

e Theorems 1.10 and 1.11 reveal the behavior of the QP interpolation at the endpoints
of interval in terms of the limit functions. Comparison with Theorem 1.4 shows the
same rate of convergence O(N~?) as the classical interpolation has. More complete
comparison can be performed by exploring constants |A,(f)|¢; and £4,,(f) (see (1.230)).
Again, constant ¢,,,(f) depends on f and comparison is possible, in general, for specific
functions which we do it in Table 1.8 for (1.234). As smaller is ¢ and bigger is m than
more accurate is the QP interpolation compared to the classical interpolation in the
uniform norm.

%
0,m

When ¢ = 0, comparison is possible to perform independently of f as ¢y ,,,(f) = |Ao(f)|¢
(see (1.231)-(1.233)). Hence, ratio {5/, shows which interpolation has better asymp-
totic uniform accuracy. Table 1.4 shows the values of the ratio. We see that as big is m

as more accurate is the QP interpolation compared to the classical one.

Chapter 2 was devoted to convergence acceleration of the QP interpolation by rational

correction functions which led to the QP Rational (QPR) approximation.

e The QPR approximation is a sum of the QP interpolation and some rational functions
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(in terms of €™®) as corrections of error

IR o (f, ) = Inm(f, 7) + Rational Functions. (3.50)

Rational corrections contain some unknown parameters g (see (2.34)) which have es-
sential impact on the convergence properties. We consider two approaches for their

determination.

The first approach is

-
/\_k:)\kzl—ﬁk,kzl,...,p, (3.51)

where new parameters 7, are independent of N and f. Theorems 2.4 and 2.5 show that
in this case, the QPR approximation has pointwise convergence rate O(N"97?~!) and
improvement compared to the QP interpolation is by factor O(N—2P*™) if 2p > m, and
it is true independently of determination of parameters 7, (we can take, for example,
Tt = k). Then, Theorem 2.6 proves that for ¢ = 0 (f(1) # f(—1)) and odd m the QPR
approximation has improved convergence rate o( N~=??~1) or O(N~2P72) if f is enough

smooth. This is true independently of parameters 7.

Estimates of Theorems 2.4 and 2.5 provide with the approach for determination of pa-
rameters 7 by vanishing or minimizing (if possible) expression in (2.145). Tables 2.4, 2.5,
2.6 and 2.7 show the values of 75, that vanish that expression for some ¢ and m. For these

values, the convergence rate is o( N=271) or O(N~2P=2) if f has additional smoothness.

Theorem 2.3 explores behavior of the classical RT interpolation at the endpoints x = +1
in terms of the limit functions. Theorem shows convergence rate O(N~?) when x =
+ (1 — %), h > 0 as N — oo, independently of determination of 7,. Maximum value
| Ay (f)[€5* of the exact constant of asymptotic error allows determination of parameters
T by minimization of ¢£*. Corresponding results are presented in Tables 2.2 and 2.3
which show better accuracy of the classical RT interpolation compared to the classical
interpolation in the uniform norm when ¢ > 0 (see Table 1.2). In case of ¢ = 0, both
interpolations provide the same uniform norm as ¢ = (5 = 0.5 independently of the

choice of parameters 7.
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e Theorem 2.7 reveals the behavior of the QPR approximation at the endpoints z = +1
in terms of the limit functions showing the same convergence rate as the classical RT
interpolation has, independently of determination of parameters 7. More complete com-
parison can be performed by analysis of constants [A,(f)|(2* and ¢ (f). In general,

such comparison can be performed only when f and parameters 7, are specified.

When ¢ = 0, such comparison is possible independently of f and 7. In this case

lom(f) = [Ao ()G, (3.52)

where £, is defined by (2.158)-(2.162). Then, ratio £§"/(5,, (where (5" = 0.5) will
perform the comparison of both interpolations independently of f. Determination of
parameters 7, optimal in the sense of the limit functions, can be performed by mini-
mization of Eg::n. Tables 2.8 and 2.9 present optimal values for 7, and the corresponding
values of on;‘n showing better accuracy compared to the classical RT interpolation. Com-

parison with the results of Table 1.4 shows also better accuracy compared to the QP

interpolation in the uniform norm.

As we mentioned above for odd m and ¢ = 0, the QPR approximation provides better
pointwise accuracy independently of the values of parameters 7. It is reasonable to get

additional accuracy on entire interval using optimal 75 in the sense of the limit functions.

e The second approach of determination of parameters A is solution of the following system

BN AFum}) =0, n=N=p+ | 2| +1, N+p+ |[T]. (3.53)

We present some numerical results showing better accuracy of this approach compared

to its classical analog.

Chapter 3 was devoted to convergence acceleration of the QP interpolation and the QPR
approximation by polynomial corrections which led to QP Polynomial (QPP) interpolation

and QPR Polynomial (QPRP) approximation.

e We saw in Chapters 1 and 2 that convergence properties of the QP and QPR methods

were depended essentially on condition
o) =f®O(-1)=0, k=0,...,q— 1. (3.54)

106



In Chapter 3 we introduce polynomial corrections that made this condition redundant.

Assume f is such that f(1) # f(—1). We constructed a families of polynomials & ,(x)

and n 4(z), k =0,...,q— 1 satistying conditions
1) = 6(=1) = Gy, EDN) +ED(-1) =0, k,s=0 —1
gkg( ) £kg( )‘_ k,ss gkg( ) +_§kg< )'_ y Kys=U,...,q
and

N (L) + 00 (1) = Gy (1) =) (~1) =0, ks =0,...,q—1

and wrote the following representation of f (see (3.15))

f@)=G@)+ Y Ap (Néna(@) + D AL (Fig(z),

where
A () =) = fB (=1, AL =P+ fP(-1).

Important property of function G is that

GH1)=GW(-1)=0, k=0,...,q—1

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

and application of the QP interpolation or the QPR approximation to GG provides the

same convergence rate as if f satisfied condition (3.54). Application of the QP interpo-

lation and the QPR approximation to G leads to the following QPP interpolation and

QPRP approximation

q—1 q—1

Inamg(f.2) = Inn(G ) + Y AL (Frg(@) + > AL (Fnpg (),

k=0 k=0

q—1 q—1

D (f:0) = I (Go2) + Y AL (Déia(@) + Y AL (Fmng(2),

k=0 k=0

respectively.

(3.60)

(3.61)

All theorems of Chapters 1 and 2 can be reformulated for the QPP interpolation and the

QPRP approximation (see, for example, Theorems 3.1 and 3.2) by omitting condition

(3.54).
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e It was assumed that in the above representation the exact values of A, (f) and A} (f)
were known exactly. We considered approach of their approximation based only on the

discrete Fourier coefficients of f by solution of systems of linear equations (3.33) and

(3.38) with unknowns A; (f, N) and A (f, N).

e Based on the approximations }[}; (f,N) and Z,j( f,N), we considered another represen-
tation of f
g—1 _
f@) = Gla) + Y AL (F N )ug(x) + Y AL (S N )i gla)
k=1 (3.62)
Ag (f)éo.q(x) + A (f)noq(x)

with the corresponding QPP interpolation and QPRP approximation, with approximated

”jumps”,
Inmg(fr2) = Inn(G ) + D Ap (f, N)&rg(@) + > AL, N g(2)
k=1 k=1 (3.63)
Ag(f)fo,q(llf) + ASF(f)Uo,q(l")’
-1 qg—1 _
I, (f2) = I%,,(G,x) Z (fs N)érg(@) + Y AL (f, Ny ()
-1 k=1 (3.64)

Ag (N)Soa(x) + Ag (£)moq(2),

respectively.

We presented some numerical results without theoretical investigations.
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Notations

AC[—1,1] — Absolutely Continuous functions

Ak(f) — see (1.5)

Ags(f) — see (1.78)

A (f) — Ap (f) = Ax(f), see (3.16)

AF(f) — see (3.16)

Av,; (f,N) — approximation of A, (f) from system (3.33)

g;(f, N) — approximation of A} (f) from system (3.38)

ay — see (1.32)

By (z) — Bernoulli polynomials defined by (3.28)

B,,(j) — Fourier coefficient of Bernoulli polynomial B;(x), see (1.57)
B,(j) — discrete Fourier coefficients of Bernoulli polynomial B;(x)
C[—1,1] — Continuous functions

C*[—1,1] — functions with k-th Continuous Derivative

Cym(f) — see Lemma 1.7

¢q — see Theorem 1.3

cqm(f) — see Theorem 1.8

Com — see (1.221)

Dy m(f, ) — see Theorem 1.6
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DY, (f,x) — see Theorem 2.4

DY (x) — see (2.115)

Dy omq(f,x) — see Theorem 3.1

DY g (o) — see Theorem 3.2

05 — the Kronecker symbol

0 ({ys}2 o) = 0% ({ys}) — finite differences defined by (1.52)

62 (A {ys 122 o) = 08 (X, {ys}) — generalized finite differences defined by (2.1)
AF (1, {ys}2 o) = AF (, {ys}) — generalized finite differences defined by (2.39)
AP ({ys}2 o) = AP ({ys}) — finite differences defined by (1.53)

Ei(x) — see (3.35)

fn — Fourier coefficient of function f, see (1.77)

fn — discrete Fourier coefficient defined by (1.3)

frm — discrete Fourier coefficients defined by (1.39)

f*(x) — see (1.75)

f¥ — Fourier coefficients of f*(x)

F,,.m— coefficients of the QP interpolation, see (1.38)

Dy () — see (1.87)

Ye(T) — see (2.38)

hy(B,T) — see (2.62)

In(f,x) — Classical trigonometric interpolation, see (1.2)

I%(f,x) — Classical RT interpolation, see (2.3)
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Inm(f, ) — QP interpolation, see (1.37)
I3 o (f, ) — QPR approximation, see (2.34)
INmq(f,x) — QPP interpolation, see (3.18)

I% g (fs7) — QPRP approximation, see (3.23)

I, Nmq(f, ) — QPP approximation with approximated jumps, see (3.40)

Nm 4(f;2) — QPRP approximation with approximated jumps, see (3.42)

ly11,4(h) — see Theorem 1.4
ly — see (1.18)
lyrsi1,gm(f, h) — see Theorem 1.10
Lym(f) — see (1.230)

o t10m — see (1.233)
05.m — see (1.232)
0h 41 (h) — see (2.3)
08 i1 4m(fyh) — see Theorem 2.7
07 1 gm(h) — see (2.159)
Com — see (2.162)

fgm(f,x) — see Lemma 1.9
1o.m(f, ) — see (1.218)

pb . (f,x) — see Theorem 2.7
pb(f, x) — see (2.160)

Vgm(f,z) — see Lemma 1.9
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Vom(f, ) — see (1.219)
v . (f, ) — see Theorem 2.7
vPr(f, x) — see (2.161)
wpr — see (1.61)
Rn(f,z) — error of Classical trigonometric interpolation, see (1.4)
R%(f,x) — error of Classical RT interpolation, see (2.4)
RN (f, ) — error of QP interpolation, see (1.127)
Rf\,ym(f, x) — error of QPR approximation, see (2.35)
RN mq(f,x) — error of QPP interpolation, see (3.19)
Ry . o(f; ) — error of QPRP approximation, see (3.24)
§N7m7q( f,x) — error of QPP approximation with approximated jumps, see (3.41)
Ry o[, ) — error of QPRP approximation with approximated jumps, see (3.43)
Ly[—1,1] — Square-Integrable functions
| - | z2j-1,1] — standard Ly-norm, see (0.16)
S(k,j) — the Stirling numbers of the second kind
2N

— 0= 1.20
o—o 2N+m+1’see( )

00 — see (1.40)

T — see (2.5)
vse = o ' — elements of the Vandermonde matrix, see (1.32)

), — grid of interpolation. For the QP interpolation zj, = %, |k| < N. For the classical

interpolations xy = 2N+1, k| < N
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Abbreviations

RT — Rational Trigonometric

QP — Quasi-Periodic

QPR — Quasi-Periodic Rational

QPP — Quasi-Periodic Polynomial

QPRP — Quasi-Periodic Rational Polynomial

FP — Fourier-Pade
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