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Abstract. We consider the problem of the construction of
the backward stochastic differential equation in the Markovian
case. We suppose that the forward equation has a diffusion coef-
ficient depending on some unknown parameter. We propose an
estimator of this parameter constructed by the discrete time ob-
servations of the forward equation and then we use this estimator
for approximation of the solution of the backward equation. The
question of asymptotic optimality of this approximation is also
discussed.
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1 Introduction

We consider the following problem. Suppose that we have a stochastic dif-
ferential equation (called forward)

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T

and we are given two functions f (t, x, y, z) and Φ (x). We have to find a
couple of stochastic processes (Yt, Zt) such that it satisfies the stochastic
differential equation (called backward)

dYt = −f (t,Xt, Yt, Zt) dt+ ZtdWt, 0 ≤ t ≤ T

with the final value YT = Φ (XT ).
The solution of this problem is well-known. We have to solve a special

partial differential equation, to find its solution u (t, x, ϑ) and to put Yt =
u (t,Xt, ϑ) and Zt = σ (ϑ, t,Xt)u

′
x (t,Xt, ϑ).
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We are interested by the problem of approximation of the solution (Yt, Zt)
in the situation where the parameter ϑ is unknown. Therefore we first
estimate this parameter with the help of some good estimator ϑ?t,n, 0 <

t ≤ T and then we propose the approximations Y ?
t = u

(
t,Xt, ϑ

?
t,n

)
and

Z?
t = σ

(
ϑ?t,n, t, Xt

)
u′x
(
t,Xt, ϑ

?
t,n

)
. Moreover we show that the proposed

approximations are in some sense asymptotically optimal.
The main difficulty in the construction of this approximation is to find

an estimator-process ϑ?t,n, 0 < t ≤ T which can be easily calculated for
all t ∈ (0, T ] and at the same time has asymptotically optimal properties.
Unfortunately we can not use the well-studied pseudo-MLE based on the
pseudo-maximum likelihood function because its calculation is related to
the solution of nonlinear equations and numerically is sufficiently difficult
problem.

We propose here a one-step MLE-process, which was recently introduced
in the case of ergodic diffusion [10] and in the case of diffusion process with
small noise [11], [12]. The review of statistical problems for the BSDE model
of observations can be found in [9].

Note that the problem of volatility parameter estimation by discrete time
observations is actually a well developed branch of statistics (see [19] and
references therein). The particularity of our approach is due to the need of
updated on-line estimator ϑ?t,n which depends on the first observations up
to time t.

Recall that the BSDE was first introduced in the linear case by Bismuth
[2] and in general case this equation was studied by Pardoux and Peng
[16]. Since that time the BSDE attracts attention of probabilists working in
financial mathematics and obtained an intensive development (see, e.g. El
Karoui et al. [7], Ma and Yong [15] and the references therein). The detailed
exposition of the current state of this theory can be found in Pardoux and
Rascanu [18].

Note that the approach developed in the present paper is carried out for
the following three models of observations (forward equations).

Diffusion process with small noise (ε→ 0)

dXt = S (ϑ, t,Xt) dt+ εσ (t,Xt) dWt, x0, 0 ≤ t ≤ T,

(see [11], [12]).
Ergodic diffusion process (large samples, T →∞)

dXt = S (ϑ,Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T,

(see [1]).
High frequency observations Xn = (Xt0 , Xt1 , . . . Xtn), ti = iT

n
, (n→∞)

of diffusion process with volatility depending on the unknown parameter

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T,
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see present work.
We propose for these three models of observations three MLE-processes

ϑ∗t = ϑ∗t (Xs, 0 ≤ s ≤ t) such that the corresponding approximations Ŷt =

u(t,Xt, ϑ
∗
t ) → Yt and the error of approximation Eϑ

(
Ŷt − Yt

)2

for each

model of observations is asymptotically (ε→ 0, T →∞, n→∞) minimal.

2 Auxiliary results

Let us recall what is the BSDE in the Markovian case. Suppose that we

are given a filtered probability space
(

Ω, (Ft)t∈[0,T ] ,P
)

with the filtration

(Ft)t∈[0,T ] satisfying the usual conditions. Define the stochastic differential
equation (called forward)

dXt = S(t,Xt) dt+ σ(t,Xt) dWt, X0, 0 ≤ t ≤ T,

where (Wt,Ft, 0 ≤ t ≤ T ) is the standard Wiener process and X0 is F0 mea-
surable initial value. The trend coefficient S (t, x) and diffusion coefficient
σ (t, x)2 satisfy the Lipschitz and linear growth conditions

|S (t, x)− S (t, y)|+ |σ (t, x)− σ (t, y)| ≤ L |x− y| , (1)

|S (t, x)|+ |σ (t, x)| ≤ C (1 + |x|) , (2)

for all x, y ∈ R and for all t ∈ [0, T ]. Here L > 0 and C > 0 are some
constants. By these conditions the stochastic differential equation has a
unique strong solution (see Liptser and Shiryaev [14]).

Further, we are given two functions f (t, x, y, z) and Φ (x) and we have to
construct a couple of processes (Yt, Zt) such that the solution of the stochas-
tic differential equation

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T,

(called backward) has the terminal value YT = Φ (XT ).
This equation is often written as follows

Yt = Φ (XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, 0 ≤ t ≤ T.

We suppose that the functions f (t, x, y, z) and Φ (x) satisfy the conditions

|f (t, x, y1, z1)− f (t, x, y2, z2)| ≤ L (|y1 − y2|+ |z1 − z2|) ,
|f (t, x, y, z)|+ |Φ (x)| ≤ C (1 + |x|p) ,

for all x, y, z, yi, zi ∈ R, i = 1, 2 and for all t ∈ [0, T ]. Here p ≥ 1/2.
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This is the so-called Markovian case. For the existence and uniqueness
of the solution see Pardoux and Peng [17].

The solution (Yt, Zt) can be constructed as follows. Suppose that u (t, x)
satisfies the equation

∂u

∂t
+ S (t, x)

∂u

∂x
+
σ (t, x)2

2

∂2u

∂x2
= −f

(
t, x, u, σ (t, x)

∂u

∂x

)
,

with the terminal condition u (T, x) = Φ (x).
Let us put Yt = u (t,Xt) , then we obtain by Itô’s formula

dYt =

[
∂u

∂t
+ S (t,Xt)

∂u

∂x
+
σ (t,Xt)

2

2

∂2u

∂x2

]
dt+ σ (t,Xt)

∂u

∂x
dWt.

Hence if we denote Zt = σ (t,Xt)u
′
x (t,Xt) then this equation become

dYt = −f (t,Xt, Yt, Zt) dt+ Zt dWt, Y0 = u (0, X0) .

The terminal value YT = u (T,XT ) = Φ (XT ).
We consider the problem of the approximation of the solution (Yt, Zt) of

BSDE in the situations, where the forward equation contains an unknown
finite-dimensional parameter ϑ:

dXt = S(t,Xt) dt+ σ(ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T. (3)

Then the solution u of the corresponding partial differential equation

∂u

∂t
+ S (t, x)

∂u

∂x
+
σ (ϑ, t, x)2

2

∂2u

∂x2
= −f

(
t, x, u, σ (ϑ, t, x)

∂u

∂x

)
,

depends on ϑ, i.e., u = u (t, x, ϑ). The backward equation

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T,

we obtain if we put Yt = u (t,Xt, ϑ) and Zt = u′x (t,Xt, ϑ)σ (ϑ, t,Xt). But
as ϑ is unknown we propose the “natural” approximations

Ŷt = u(t,Xt, ϑ
∗
t ), Ẑt = u′x(t,Xt, ϑ

∗
t )σ(ϑ∗t , t, Xt).

Here ϑ∗t , 0 ≤ t ≤ T is some good estimator-process of ϑ with small error. In
this problem the good estimator means the following

• ϑ?t = ϑ?t (X t), i.e., it depends on observations X t = (Xs, 0 ≤ s ≤ t) up
to time t.

• Easy to calculate for each t ∈ (0, T ].
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• Provides an asymptotically efficient estimator of Yt, i.e., we have in
some sense

Eϑ

(
Ŷt − Yt

)2

→ min
Ȳt

Eϑ

(
Ȳt − Yt

)2
.

As we have already fixed the approximation Yt as Ŷt = u(t,Xt, ϑ
∗
t ) the

main problem is how to find a good estimator-process ϑ∗t , 0 ≤ t ≤ T?
Observe that the problem of estimation of ϑ is singular, i.e., the param-

eter ϑ can be estimated by continuous time observations without error.

3 Continuous time observations

Let us remind the situation which we have in the case of continuous time
observations of the solution of the stochastic differential equation (3) (see,
e.g., [20]).

By Itô’s formula

X2
t = X2

0 + 2

∫ t

0

Xs dXs +

∫ t

0

σ (ϑ0, s,Xs)
2 ds,

where ϑ0 is the true value.
The trajectory fitting estimator (TFE) ϑ∗ of the parameter ϑ can be

defined as follows

inf
ϑ∈Θ

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

Xs dXs −
∫ t

0

σ (ϑ, s,Xs)
2 ds

]2

dt

=

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

Xs dXs −
∫ t

0

σ (ϑ∗, s,Xs)
2 ds

]2

dt

Of course, ϑ∗ = ϑ0 under the following mild identifiability condition: for any
ν > 0 with probability 1 we have

inf
|ϑ−ϑ0|>ν

∫ T

0

[∫ t

0

σ (ϑ, s,Xs)
2 ds−

∫ t

0

σ (ϑ0, s,Xs)
2 ds

]2

dt > 0.

If this condition is not fulfilled, then on an event of positive probability, for
some ϑ1 6= ϑ0 we have∫ t

0

σ (ϑ1, s,Xs)
2 ds =

∫ t

0

σ (ϑ0, s,Xs)
2 ds, ∀t ∈ [0, T ],

which implies that for all t ∈ [0, T ]

σ (ϑ1, t, Xt)
2 = σ (ϑ0, t, Xt)

2 .
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In such a situation no estimation method can provide us a consistent esti-
mator.

Let us illustrate this situation by several examples.
Example 1. Suppose that σt (ϑ, x) =

√
ϑht (x) , ϑ ∈ (α, β) , α > 0, and the

observed process is

dXt = St (X) dt+
√
ϑht (X) dWt, X0, 0 ≤ t ≤ T,

where St (X) and ht (X) are some functionals of the past, say,

St (X) = M (t,Xt) +

∫ t

0

N (s,Xs) ds, ht (X) = P (t,Xt) +

∫ t

0

q (s,Xs) ds,

where M (·) , N (·) , P (·) , q (·) are smooth functions. This is an example of
so-called diffusion type process [14].

To estimate ϑ without error we use two approaches. The first one is the
TFE

ϑ∗ = arg inf
ϑ∈Θ

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

XsdXs − ϑ
∫ t

0

hs (X)2 ds

]2

dt

= DT (h)−1

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

XsdXs

] ∫ t

0

hs (X)2 ds dt = ϑ0,

where

DT (h) =

∫ T

0

(∫ t

0

hs (X)2 ds

)2

dt

The second possibility is the following. Let G (x) be a two-times con-
tinuously differentiable function. By the Itô’s formula for G (Xt) we can
write

G (Xt) = G (X0) +

∫ t

0

G′ (Xs) dXs +
ϑ0

2

∫ t

0

G′′ (Xs)hs (X)2 ds.

We solve this equation w.r.t. ϑ0 and obtain for all t ∈ (0, T ] with probability
1 the equality

ϑ̄t =
2G (Xt)− 2G (X0)− 2

∫ t
0
G′ (Xs) dXs∫ t

0
G′′ (Xs)hs (X)2 ds

= ϑ0.

Therefore we have for all t ∈ (0, T ] the estimator ϑ̄t = ϑ0. Note that we need
not know S (·) and the only condition we use is that for all t ∈ (0, T ]∫ t

0

G′′ (Xs)hs (X)2 ds 6= 0.
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Therefore we obtain an “estimator” of unknown the parameter without
error.
Example 2. Suppose that the unknown parameter is ϑ = (ϑ1, . . . , ϑd)∈ Rd

+

and the diffusion coefficient

σ (ϑ, t,Xt)
2 = λ+

d∑
l=1

ϑlhl (t,Xt) ,

where λ > 0 and the functions hl (·) > 0 are known and ϑl > 0, l = 1, . . . , d.
The observed diffusion process is

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T.

If we denote the vector Ht = (Hl,t, . . . , Hl,t)

Hl,t =

∫ t

0

hl (s,Xs) ds, l = 1, . . . , d,

and introduce the d× d matrix Ht and vector X̃t by the relations

Ht =

∫ t

0

HtH
T
t ds, X̃t =

[
X2
t −X2

0 − 2

∫ t

0

XsdXs − λt
]
Ht,

then the TFE is

ϑ∗t = H−1
t

∫ t

0

[
X2
s −X2

0 − 2

∫ s

0

XvdXv − λs
]
Hs ds = ϑ0.

Here we suppose that the matrix Ht for some values of t is non degenerate
and we calculate the estimator for these values of t. We see that once more
we estimate the unknown parameter without error.

Therefore in the case of continuous time observations the approximations
Ŷt = u

(
t,Xt, ϑ̄t

)
and Ẑt = u′x

(
t,Xt, ϑ̄t

)
σ
(
ϑ̄t, t, Xt

)
or Ŷt = u (t,Xt, ϑ

∗
t ) and

Ẑt = u′x (t,Xt, ϑ
∗
t )σ (ϑ∗t , t, Xt) are without errors: Ŷt = Yt, Ẑt = Zt.

4 High frequency asymptotics

The problem becomes more interesting if we consider the discrete time ob-
servations. Suppose that the solution of the equation (4) is observed at
discrete times ti = iT

n
and we have to study the approximations

Ŷtk = u(tk, Xtk , ϑ̂tk), Ẑtk = σ
(
ϑ̂tk , tk, Xtk

)
u′x(tk, Xtk , ϑ̂tk), k = 1, . . . , n,

of the solution Yt, Zt of BSDE (5). Here k satisfies the conditions tk ≤
t < tk+1 and the estimator ϑ̂tk can be constructed by the observations Xk =
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(X0, Xt1 , . . . , Xtk) up to time tk. We study the properties of estimators in the
so-called higher frequency asymptotics: n → ∞. Observe that the problem
of estimation of the parameter ϑ in the case of discrete-time observations of
the processes like (4) was extensively studied last years (see, e.g., [19] and
the references therein).

Suppose that the forward equation is

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T (4)

where ϑ ∈ Θ, the set Θ is an open, convex, bounded subset of Rd. The
BSDE is

dYt = −f (t,Xt, Yt, Zt) dt+ ZtdWt, 0 ≤ t ≤ T (5)

with YT = Φ (XT ). It can be obtained with the help of the of functions

U = {(u(t, x, ϑ), t ∈ [0, T ] , x ∈ R) , ϑ ∈ Θ}

satisfying for all ϑ ∈ Θ the partial differential equation

∂u

∂t
+ S(t, x)

∂u

∂x
+
σ(ϑ, t, x)2

2

∂2u

∂x2
= −f

(
t, x, u, σ(ϑ, t, x)

∂u

∂x

)
and the terminal condition u(T, x, ϑ) = Φ (x). The equation (5) we obtain
by the Itô’s formula for the function Yt = u (t,Xt, ϑ).

As before our goal is to find an estimator ϑ̂t such that the approximation
Ŷt = u(t,Xt, ϑ̂t) has good properties.

Recall that in the case of continuous time observations there is no sta-
tistical problem of estimation of ϑ because the measures

{
P

(T )
ϑ , ϑ ∈ Θ

}
cor-

responding to different values of ϑ are singular.
Then in Example 1 with ht (X) = h (t,Xt) and G (x) = x2 we obtain the

well-known estimator

ϑ̄k,n =
X2
tk
−X2

0 − 2
∑k

j=1Xtj−1

(
Xtj −Xtj−1

)∑k
j=1 h

(
tj−1, Xtj−1

)2
δ

, δ =
T

n
.

It can be easily shown that if n → ∞ then for a fixed t and corresponding
k =

[
nt
T

]
we have these convergences in probability

k∑
j=1

Xtj−1

(
Xtj −Xtj−1

)
−→

∫ t

0

XsdXs,

k∑
j=1

h
(
tj−1, Xtj−1

)2
δ →

∫ t

0

h (s,Xs)
2 ds
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and therefore, in probability,

ϑ̄k,n −→
X2
t −X2

0 − 2
∫ t

0
XsdXs∫ t

0
h (s,Xs)

2 ds
= ϑ0.

Of course we can use it in the approximation of Yt and Zt as follows Ŷtk,n =

u(tk, Xtk , ϑ̄k,n) and Ẑtk,n = ϑ̄k,nu
′(tk, Xtk , ϑ̄k,n)h (tk, Xtk). Note that this

type of approximation is not asymptotically efficient and we will seek other
estimators of ϑ which can provide smaller error of estimation.

Below we study the distribution of the error
√
n
(
Ŷtk,n − Ytk

)
in a more

general situation and with the help of a different estimator of ϑ.
We proceed as follows. The observed forward equation (4) can be written

as

Xtj −Xtj−1
=

∫ tj

tj−1

S (s,Xs) ds+

∫ tj

tj−1

σ (ϑ, s,Xs) dWs. (6)

but we consider a (wrong) model which we obtain if we replace the functions
S (s,Xs) and σ (ϑ, s,Xs) in these integrals by the piecewise constant function
with values S

(
tj−1, Xtj−1

)
and σ

(
ϑ, tj−1, Xtj−1

)
respectively on the interval

[tj−1, tj]. Then we obtain

Xtj −Xtj−1
= S

(
tj−1, Xtj−1

)
δ + σ

(
ϑ, tj−1, Xtj−1

) (
Wtj −Wtj−1

)
. (7)

Note that if (7) is true then the random variables

Xtj −Xtj−1
− S

(
tj−1, Xtj−1

)
δ

σ (ϑ, tj−1, Xj−1)
√
δ

j = 1, . . . , n

are i.i.d. with the standard Gaussian distribution N (0, 1).
Introduce the log pseudo-likelihood for the model (7)

Lt,k
(
ϑ,Xk

)
= −1

2

k∑
j=0

ln
[
2πσ

(
ϑ, tj−1, Xtj−1

)2
δ
]

−
k∑
j=1

[
Xtj −Xtj−1

− S
(
tj−1, Xtj−1

)
δ
]2

2σ
(
ϑ, tj−1, Xtj−1

)2
δ

and define the pseudo-maximum likelihood estimator (PMLE) ϑ̂t,n by the
equation

Lt,k(ϑ̂t,n, X
k) = sup

θ∈Θ
Lt,k

(
θ,Xk

)
.
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As it was already explained such estimator can not be used for the con-
struction of the approximations of BSDE due to the complexity of the calcu-
lations of the solution of this equation for all k in nonlinear case. Below we
will use this estimator as a preliminary one for the construction of a one-step
MLE-process.

Regularity conditions. (R)

R1 The functions S (·) and σ (·) satisfy the conditions of Lipschiz and of
linear growth.

R2 The function σ (ϑ, t, x) is strictly positive and has two continuous deriva-
tives w.r.t. ϑ.

|σ̇ (ϑ, t, x)|+ ‖σ̈ (ϑ, t, x)‖ ≤ C (1 + |x|p) (8)

R3 With probability one, the information matrix

It (ϑ) = 2

∫ t

0

σ̇ (ϑ, s,Xs) σ̇ (ϑ, s,Xs)
T

σ (ϑ, s,Xs)
2 ds

is strictly positive defined for all t ∈ (0, T ].

R4 The function u (t, x, ϑ) is continuously differentiable w.r.t. ϑ and the
derivative satisfies the condition

|u̇(t, x, ϑ)| ≤ C(1 + |x|p).

It will be convenient to replace the likelihood ratio function by the con-
trast function

Ut,k
(
ϑ,Xk

)
=

k∑
j=1

δ ln a
(
ϑ, tj−1, Xtj−1

)
+

k∑
j=1

(
Xtj −Xtj−1

− S
(
tj−1, Xtj−1

)
δ
)2

a
(
ϑ, tj−1, Xtj−1

) ,

where a (ϑ, t, x) = σ (ϑ, t, x)2. The estimator ϑ̂t,n satisfies the equation

Ut,k

(
ϑ̂t,n, X

k
)

= inf
ϑ∈Θ

Ut,k
(
ϑ,Xk

)
. (9)

The contrast function converges to the following limit

Ut,k
(
ϑ,Xk

)
−→ Ut

(
ϑ,X t

)
=

∫ t

0

[
a (ϑ0, s,Xs)

a (ϑ, s,Xs)
− ln

a (ϑ0, s,Xs)

a (ϑ, s,Xs)

]
ds

+

∫ t

0

ln a (ϑ0, s,Xs) ds.

Identifiability condition.
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I1 With probability one the random function Ut (ϑ,X t) , ϑ ∈ Θ, 0 < t ≤ T
has a unique minimum at the point ϑ = ϑ0

inf
ϑ∈Θ

Ut
(
ϑ,X t

)
= Ut

(
ϑ0, X

t
)
, 0 < t ≤ T.

In realty this condition requires only the uniqueness of the solution since the
function x 7→ x − lnx attains its minimum at x = 1 implies that Ut(ϑ,X

t)
is always larger than Ut(ϑ0, X

t). Hence ϑ0 is always a minimum point of the
mapping ϑ 7→ Ut(ϑ,X

t).
Introduce the vector-process

ξt (ϑ0) = It (ϑ0)−1
√

2

∫ t

0

σ̇ (ϑ0, s,Xs)

σ (ϑ0, s,Xs)
dw (s) , 0 < t ≤ T.

Note that the Wiener process w (s) , 0 ≤ s ≤ T here is independent of
the diffusion process Xs, 0 ≤ s ≤ T .

For given t ∈ (0, T ] the value tk in the estimator ϑ̂tk,n satisfies the con-
dition tk ≤ t < tk+1.

Theorem 1 Suppose that the Regularity and Identifiability conditions are
fulfilled. Then for all t ∈ (0, T ] the estimator ϑ̂tk,n is consistent and asymp-
totically conditionally normal (stable convergence)√

n

T

(
ϑ̂t,n − ϑ0

)
=⇒ ξt (ϑ0) . (10)

Moreover this estimator is asymptotically efficient.

The proofs of this theorem can be found in [3] (lower bound, d = 1) and in
[4] (properties of estimator, d ≥ 1 ).

Let us give here some lines of the proof. Suppose that the consistency of
the estimator ϑ̂tk,n defined by the equation (9) is already proved.

Introduce the independent random variables

wj = (2δ)−1/2
[(
Wtj −Wtj−1

)2 − δ
]
, Ewj = 0, Ew2

j = δ, Ewjwi = 0

for j 6= i and note that the empirical Fisher information matrix

It,n (ϑ0) = 2
k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)σ̇(ϑ0, tj−1, Xtj−1

)T

σ(ϑ, tj−1, Xtj−1
)2

δ −→ It (ϑ0) (11)

as n → ∞. Then by Taylor expansion of the solution ϑ̂t,n of the system of
d-equations

∂Ut,k
(
ϑ,Xk

)
∂ϑ

= 0
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we can write the representation of the MCE

δ−1/2
(
ϑ̂t,n − ϑ0

)
= It,n (ϑ0)−1

√
2

k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)

σ(ϑ0, tj−1, Xtj−1
)
wj (1 + o (1)) .

Throughout this paper the symbols o,O are understood in the sense of con-
vergence in probability. Now the convergence (10) follows from (11) and
(stable convergence)

k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)

σ(ϑ0, tj−1, Xtj−1
)
wj =⇒

∫ t

0

σ̇(ϑ0, s,Xs)

σ(ϑ, s,Xs)
dw (s) .

Note that the approximation Ŷt,n = u(t,Xtk , ϑ̂t,n) is computationally dif-
ficult to realize because solving equation (9) for all tk, k = 1, . . . , n especially
in non linear case is almost impossible. That is why we propose the one-step
MLE-process as follows.

Let us fix some (small) τ > 0 and denote by ϑ̂τ,n the MCE constructed
by the observations Xτ,n =

(
X0, Xt1,n , . . . , XtN,n

)
, where tN,n ≤ τ < tN+1,n.

By Theorem 1, this estimator is consistent and asymptotically condition-
ally normal√

n

T

(
ϑ̂τ,n − ϑ0

)
= Iτ,n (ϑ0)−1

√
2

N∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)

σ(ϑ0, tj−1, Xtj−1
)
wj + o (1)

=⇒ ξτ (ϑ0) = Iτ (ϑ0)−1
√

2

∫ τ

0

σ̇ (ϑ0, s,Xs)

σ (ϑ0, s,Xs)
dw (s) .

Here the random Fisher information matrix is

Iτ (ϑ0) = 2

∫ τ

0

σ̇ (ϑ0, s,Xs) σ̇ (ϑ0, s,Xs)
T

σ (ϑ0, s,Xs)
2 ds.

Introduce the pseudo score-function (Aj−1 (ϑ) = σ
(
ϑ, tj−1, Xtj−1

)2
)

∆k,n

(
ϑ,Xk

)
=

k∑
j=1

˙̀
(
ϑ,Xtj−1

, Xtj

)

=
k∑
j=1

[(
Xtj −Xtj−1

− Sj−1 δ
)2 − Aj−1 (θ) δ

]
Ȧj−1 (ϑ)

2Aj−1 (ϑ)2
√
δ

.

For any t ∈ [τ, T ] define k by the condition tk ≤ t < tk+1 and the one-step
PMLE-process by the relation

ϑ?k,n = ϑ̂τ,n +
√
δ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X

k), k = N + 1, . . . , n. (12)
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Our goal is to show that the corresponding approximation

Y ?
tk,n

= u
(
tk, Xtk , ϑ

?
k,n

)
, k = N + 1, . . . , n

is asymptotically efficient. To do this we need to present the lower bound on
the risks of all estimators and then to show that for the proposed approxi-
mation this lower bound is achieved.

First we recall some known results on asymptotically efficient estimation

of the parameter ϑ. The family of measures
{
P

(k,n)
ϑ , ϑ ∈ Θ

}
induced in Rk

by the observations Xk are locally asymptotically mixed normal (LAMN),
i.e., the likelihood ratio

Zk,n (v) =
dP

(k,n)
ϑ0+ v√

n

dP
(k,n)
ϑ0

, v ∈ Vn =

{
v : ϑ0 +

v√
n
∈ Θ

}
,

admits the representation

Zk,n (v) = exp

{
〈v,∆k,n

(
ϑ0, X

k
)
〉 − 1

2
vIk,n (ϑ0) vT + rn

}
,

where rn = rn(v, ϑ0) → 0 in probability for fixed ϑ0 ∈ Θ and fixed v ∈ R.
The proof can be found in [3] (d = 1) and in [5] (d ≥ 1).

In statistical problems with such property of families of measures we
have, so-called, Jeganathan-type lower bound on the risks of all estimators
ϑ̄k,n:

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
ϑ̄k,n − ϑ

))
≥ Eϑ0` (ξt (ϑ0)) .

Here ` (v) , v ∈ Rd is some symmetric, non decreasing loss function (see the
conditions in [6]).

Therefore we can call an estimator ϑ∗k,n asymptotically efficient if for
some function ` (·) and all ϑ0 ∈ Θ we have the equality

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
ϑ∗k,n − ϑ

))
= Eϑ0` (ξt (ϑ0)) .

We say that the estimator-process ϑ∗k,n, k = N + 1, . . . , n is asymptotically
efficient for the values t ∈ [τ∗, T ], if we have this equality for all t ∈ [τ∗, T ].
Here 0 < τ < τ∗ < T .

Theorem 2 The one-step MLE-process ϑ?k,n, k = N+1, . . . , n is consistent,
asymptotically conditionally normal (stable convergence)

δ−1/2
(
ϑ?k,n − ϑ0

)
=⇒ ξt (ϑ0) (13)

and is asymptotically efficient for t ∈ [τ∗, T ] where τ < τ∗ < T and the loss
functions is bounded.
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Proof. The proof follows the main steps of the similar proof given in [10].
We have for any ν > 0 the estimates

P
(k,n)
ϑ0

{∣∣ϑ?k,n − ϑ0

∣∣ > ν
}
≤ P

(k,n)
ϑ0

{∣∣∣ϑ̂τ,n − ϑ0

∣∣∣ > ν

2

}
+ P

(k,n)
ϑ0

{∣∣∣√δ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X
k)
∣∣∣ > ν

2

}
.

We can write ∣∣∣Ik,n(ϑ̂τ,n)− Ik,n(ϑ0)
∣∣∣ ≤ C

∣∣∣ϑ̂τ,n − ϑ0

∣∣∣ −→ 0

and
√
δ
∣∣∣∆k,n(ϑ̂τ,n, X

k)−∆k,n(ϑ0, X
k)
∣∣∣ −→ 0.

Further, it can be shown that

P
(k,n)
ϑ0

{∣∣∣√δ Ik,n(ϑ0)−1∆k,n(ϑ0, X
k)
∣∣∣ > ν

2

}
.

Moreover, more detailed analysis allows to verify the uniform consistency as
well:

P
(k,n)
ϑ0

{
max

N+1≤k≤n

∣∣ϑ?k,n − ϑ0

∣∣ > ν

}
−→ 0.

See the similar problem in [10], Theorem 1. The asymptotic conditional
normality as well follows from the similar steps. We have

δ−1/2
(
ϑ?k,n − ϑ0

)
= δ−1/2

(
ϑ̂τ,n − ϑ0

)
+ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X

k)

= δ−1/2
(
ϑ̂τ,n − ϑ0

)
+ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ0, X

k)

+ Ik,n(ϑ̂τ,n)−1
[
∆k,n(ϑ̂τ,n, X

k)−∆k,n(ϑ0, X
k)
]
.

The central statistics

Ik,n(ϑ̂τ,n)−1∆k,n(ϑ0, X
k) =⇒ ξt (ϑ0) .

We have to show that

bn = δ−1/2
(
ϑ̂τ,n − ϑ0

)
+ Ik,n(ϑ̂τ,n)−1

[
∆k,n(ϑ̂τ,n, X

k)−∆k,n(ϑ0, X
k)
]
−→ 0.

The representation

∆k,n(ϑ̂τ,n, X
k)−∆k,n(ϑ0, X

k)

=
k∑
j=1

∫ 1

0

˙̀
(
ϑ0 + v

(
ϑ̂τ,n − ϑ0

)
, Xtj−1

, Xtj

)(
ϑ̂τ,n − ϑ0

)
dv



ON APPROXIMATION OF THE BSDE WITH UNKNOWN VOLATILITY IN FORWARD EQUATION73

allows us to write

Ik,n(ϑ̂τ,n)bn

=

[
Ik,n(ϑ̂τ,n) +

k∑
j=1

∫ 1

0

῭
(
ϑ (v) , Xtj−1

, Xtj

)
dv
√
δ

] (
ϑ̂τ,n − ϑ0

)
√
δ

,

where ϑ (v) = ϑ0 + v
(
ϑ̂τ,n − ϑ0

)
. Further

k∑
j=1

῭
(
ϑ (v) , Xtj−1

, Xtj

)
=

k∑
j=1

῭
(
ϑ0, Xtj−1

, Xtj

)
+O

(
ϑ̂τ,n − ϑ0

)
= −

k∑
j=1

Ȧj−1 (ϑ0) Ȧj−1 (ϑ0)T

2Aj−1 (ϑ0)2

√
δ + o (1)

because in two other terms after the differentiation

˙̀
(
ϑ,Xtj−1

, Xtj

)
=

[(
Xtj −Xtj−1

− Sj−1 δ
)2 − Aj−1 (θ) δ

]
Ȧj−1 (ϑ)

2Aj−1 (ϑ)2
√
δ

contains the quantity[
Xtj −Xtj−1

− Sj−1δ
]2 − Aj−1 (ϑ0) δ = −σ

(
tj−1, Xtj−1

, ϑ0

)2
δ

+

(∫ tj

tj−1

[
S (s,Xs)− S

(
tj−1, Xtj−1

)]
ds+

∫ tj

tj−1

σ (s,Xs, ϑ0) dWs

)2

= 2

∫ tj

tj−1

X̃s

[
S (s,Xs)− S

(
tj−1, Xtj−1

)]
ds+ 2

∫ tj

tj−1

X̃sσ (s,Xs, ϑ0) dWs

+

∫ tj

tj−1

[
σ (s,Xs, ϑ0)2 − σ

(
tj−1, Xtj−1

, ϑ0

)2
]

ds = O
(
δ2
)

+O (δ) .

Here X̃s = Xs −Xtj−1
− Sj−1s. Hence

X̃s =

∫ s

tj−1

[
S (r,Xr)− S

(
tj−1, Xtj−1

)]
dr +

∫ s

tj−1

σ (r,Xr, ϑ0) dWr

= O
(
δ3/2
)

+ σ
(
tj−1, Xtj−1

, ϑ0

) [
Ws −Wtj−1

]
+O (δ) .

Note that for the stochastic integral as n→∞ we have∫ tj

tj−1

X̃sσ (s,Xs, ϑ0) dWs

= σ
(
tj−1, Xtj−1

, ϑ0

)2
∫ tj

tj−1

[
Ws −Wtj−1

]
dWs (1 + o (1))

= σ
(
tj−1, Xtj−1

, ϑ0

)2

[(
Wtj −Wtj−1

)2 − δ
2

]
.
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Therefore

Ik,n(ϑ̂τ,n) +
k∑
j=1

∫ 1

0

῭
(
ϑ (v) , Xtj−1

, Xtj

)
dv
√
δ

= Ik,n(ϑ̂τ,n)−
k∑
j=1

Ȧj−1 (ϑ0) Ȧj−1 (ϑ0)T

2Aj−1 (ϑ0)2 δ + o (1)

= Ik,n(ϑ̂τ,n)− Ik,n(ϑ0) + o (1) −→ 0.

The obtained relations prove the convergence (13). More detailed analysis
shows that this convergence is locally uniform. Hence the one-step MLE-
process is asymptotically efficient for the bounded loss functions.

Introduce for the values tk ∈ [τ, T ] the estimators

Y ?
tk,n

= u(tk, Xtk , ϑ
?
k,n), Z?

tk,n
= u′x(tk, Xtk , ϑ

?
k,n)σ(tk, Xtk , ϑ

?
k,n).

Theorem 3 Suppose that the conditions of regularity hold, then the estima-
tors

(
Y ?
t,n, t ∈ [τ, T ]

)
and

(
Z?
t,n, t ∈ [τ, T ]

)
are consistent

Y ?
tk,n
−→ Yt, Z?

tk,n
−→ Zt,

and are asymptotically conditionally normal (stable convergence)

δ−1/2
(
Y ?
tk,n
− Ytk

)
=⇒ 〈u̇ (t,Xt, ϑ0) , ξt (ϑ0)〉,

δ−1/2
(
Z?
tk,n
− Ztk

)
=⇒ σ (t,Xt, ϑ0) 〈u̇′x (t,Xt, ϑ0) , ξt (ϑ0)〉

+ u′x (t,Xt, ϑ0) 〈σ̇ (t,Xt, ϑ0) , ξt (ϑ0)〉.

Proof. Let us denote v?k,n = δ−1/2
(
ϑ?k,n − ϑ0

)
and write the Taylor expan-

sion

Y ?
tk,n

= u(tk, Xtk , ϑ0 + δ1/2v?k,n) = u(tk, Xtk , ϑ0)

+ δ1/2〈v?k,n, u̇(tk, Xtk , ϑ0)〉+ o
(
δ−1/2

)
,

Z?
tk,n

= u′x(tk, Xtk , ϑ0 + δ1/2v?k,n)σ(tk, Xtk , ϑ0 + δ1/2v?k,n)

= σ (tk, Xtk , ϑ0) 〈u̇′x (tk, Xtk , ϑ0) , ξtk (ϑ0)〉
+ u′x (tk, Xtk , ϑ0) 〈σ̇ (tk, Xtk , ϑ0) , ξtk (ϑ0)〉+ o

(
δ−1/2

)
.

Now the proof follows from the Theorem 2 and the regularity of the functions
u (·), u′x (·) and σ (·).
Remark. Note that we do not evaluate the difference δ−1/2(Y ?

t,n − Yt) for
t ∈ [tk, tk+1) because in the representation

δ−1/2(Y ?
t,n − Yt) = δ−1/2(Y ?

t,n − Ytk) + δ−1/2(Ytk − Yt)
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for the second term we have the relation

δ−1/2(Yt − Ytk) = δ−1/2u′x(t, X̃tk , ϑ0) (Xt −Xtk)

= u′x(t,Xtk , ϑ0)σ (ϑ0, tk, Xtk)
(Wt −Wtk)√
tk+1 − tk

(1 + o (1))

= u′x(t,Xtk , ϑ0)σ (ϑ0, tk, Xtk) ζt
√
vn (t) (1 + o (1)) .

Here ζt ∼ N (0, 1) and vn (t) = (tk+1 − tk)−1 (t− tk). The study of the limit
of vn (t) for all t ∈ [0, T ] is a special interesting problem.

To prove the optimality of the presented approximations Y ?
tk,n

and Z?
tk,n

we need the lower bound of Jeganathan type given in the following proposi-
tion. Below

η (t,Xt, ϑ0) = 〈u̇′x (t,Xt, ϑ0) , ξt (ϑ0)〉+ u′x (t,Xt, ϑ0) 〈σ̇ (t,Xt, ϑ0) , ξt (ϑ0)〉

Proposition 1 Let the conditions of regularity be fulfilled. Then for all
estimators Ȳtk,n and Z̄tk,n we have

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
Ȳtk,n − Ytk

))
≥ Eϑ0` (〈u̇ (t,Xt, ϑ0) , ξt (ϑ0)〉) ,

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
Z̄tk,n − Ztk

))
≥ Eϑ0` (η (t,Xt, ϑ0)) .

The proof of this proposition is similar to the proof of the lower bound
in the problem of approximation of the solution of BSDE in the asymptotics
of small noise given in the works [11] and [12].
Example. Black-Scholes model. We are given the forward equation

dXt = αXtdt+ ϑXt dWt, X0 = x0, 0 ≤ t ≤ T

and two functions f (x, y, z) = βy+γxz and Φ (x). We have to approximate
the solution of the backward equation

dYt = −βYtdt− γXtZtdt+ ZtdWt, YT = Φ (XT )

in the situation where ϑ ∈ (a, b) , a > 0 and is unknown.
The corresponding partial differential equation is

∂u

∂t
+ (α + ϑγ)x

∂u

∂x
+
ϑ2x2

2

∂2u

∂x2
+ βu = 0, u (T, x, ϑ) = Φ (x) .

The solution of this equation is the function

u (t, x, ϑ) =
eβ(T−t)√

2πϑ2 (T − t)

∫ ∞
−∞

e
− z2

2ϑ2(T−t) Φ

(
xe

(
α+ϑγ−ϑ2

2

)
(T−t)−z

)
dz.
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The discrete-time observations are Xn = (X0, Xt1 . . . , Xtn). We can calcu-
late the pseudo MLE-process

ϑ̂tk,n =

(
1

tk

k−1∑
j=0

(Xtj+1
−Xtj − αXtjδ)

2

X2
tj

) 1
2

.

The estimator of Yt = u (t,Xt, ϑ0) is

Ŷtk =

∫ ∞
−∞

e
− z2

2ϑ̂2
tk,n(T−tk)

+β(T−tk)√
2πϑ̂2

tk,n
(T − tk)

Φ

(
Xtke

(α+ϑ̂tk,nγ−
ϑ̂2
tk,n

2
)(T−tk)−z

)
dz,

where k =
[
t
T
n
]
.

Approximation of Ẑt = ϑ0Xtu
′ (t,Xt, ϑ0) can be written explicitly as

well.
The one-step MLE-process is constructed as follows. Let us fix a learning

interval [0, τ ] , τ < T and introduce the estimator ϑ̂τ,n constructed by the
observations XN = (X0, Xt1 . . . , XtN ), where N =

[
τ
T
n
]

is as preliminary.
Then we have

ϑ?k,n = ϑ̂τ,n +
1

2ϑ̂τ,n

k∑
j=1

[(
Xj −Xtj−1

− αXtj−1
δ
)2 − ϑ̂2

τ,nX
2
tj−1

δ
]
.

The corresponding approximations are

Ŷ ?
tk

= u
(
tk, Xtk , ϑ

?
k,n

)
, Z?

t = ϑ?k,nXtu
′ (t,Xt, ϑ

?
k,n

)
, N + 1 ≤ k ≤ n

and by Theorem 3 and by Proposition 1 these approximations are asymp-
totically conditionally normal and asymptotically efficient.

5 Discussions

The approximation of the solution of the BSDE is done in several steps.
First we estimate the unknown parameter on the learning interval [0; τ ]
and then using this estimator we constructed the one-step MLE process
ϑ?k,n, τ ≤ tk ≤ T . Then we take the solution of partial differential equa-

tion u (t, x, ϑ) and put Y ?
tk

= u
(
tk, Xtk , ϑ

?
k,n

)
, τ ≤ tk ≤ T and Z?

t =

ϑ?k,nXtu
′ (t,Xt, ϑ

?
k,n

)
, τ ≤ tk ≤ T . The obtained approximation of (Yt, Zt) is

valid for the values t ∈ [τ, T ]. This restriction is due to the condition that
the preliminary estimator has to be consistent with good rate of conver-
gence. Note that it is possible to obtain such approximations on the interval
[0, τn], where τn → 0 with special rate. The preliminary estimator in such
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situation is
√

n
Nn

-rate (which tends to ∞) consistent, but the construction
of one-step (and more generally multi-step) MLE-processes allow neverthe-
less to construct the asymptotically efficient estimator-processes with the
good rate. Such estimators were already studied in the works [10] (ergodic
diffusion process) and [12] (dynamical systems with small noise).
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