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Abstract. In this work, we define a new generalization of the
Leonardo sequence by the recurrence relationGLen = aGLen−1+
GLen−2 + a (for even n) and GLen = bGLen−1 +GLen−2 + b (for
odd n) with the initial conditions GLe0 = 2a − 1 and GLe1 =
2ab−1, where a and b are real nonzero numbers. Some algebraic
properties of the sequence {GLen}n≥0 are studied and several
identities, including the generating function and Binet’s formula,
are established.
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Introduction

One of the well-known sequence is the Fibonacci sequence {Fn}n≥0, which
consists of integer numbers defined by a recurrence relation of order two,
Fn = Fn−1 + Fn−2, n ≥ 2, with the initial conditions F0 = 0 and F1 = 1.
The results concerning this sequence motivated the study of many other
numerical sequences, some of which are closely related to it as Lucas, Pell,
and Jacobsthal sequences (see [9, 10] and [11] for their applications). The
sequence of Leonardo, introduced by Catarino and Borges in [5], is one se-
quence motivated by Fibonacci numbers. The Leonardo sequence {Len}n≥0
is defined by the recurrence relation

Len = Len−1 + Len−2 + 1, n ≥ 2, (1)

or, equivalently,
Len+1 = 2Len − Len−2, n ≥ 2, (2)

with initial conditions Le0 = Le1 = 1. According to Proposition 2.2 in [5],
Leonardo and Fibonacci numbers are related as follows

Len = 2Fn+1 − 1, n ≥ 0. (3)
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Leonardo sequence served as the basis for a number of publications, in-
cluding the work of Alp and Koçer [1], Alves and Vieira [2], Catarino and
Borges [4], Kara and Yilmaz [8], Kuhapatanakul and Chobsorn [12], Tan
and Leung [14], and Gokbas [7], among others. Various generalizations of
known number sequences have also been considered. For example, for any
real nonzero numbers a and b, Edson and Yayenie [6] introduced the genera-

lization of the Fibonacci sequence {F (a,b)
n }n≥0 defined as

F (a,b)
n =

{
aF

(a,b)
n−1 + F

(a,b)
n−2 if n is even,

bF
(a,b)
n−1 + F

(a,b)
n−2 if n is odd,

n ≥ 2, (4)

with the initial conditions F
(a,b)
0 = 0 and F

(a,b)
1 = 1. When a = b = 1,

we have the classical Fibonacci sequence, and for a = b = 2, we get the
Pell numbers. If we set a = b = k for some positive integer k, we come to
the k-Fibonacci numbers. Theorem 5 in [6] established the following Binet
formula

F (a,b)
n =

(
a1−ξ(n)

(ab)b
n
2
c

)
αn − βn

α− β
(5)

where α = (ab+
√
a2b2 + 4ab)/2 and β = (ab−

√
a2b2 + 4ab)/2 are the roots

of the characteristic equation x2− abx− ab = 0, and ξ (n) = n− 2bn
2
c is the

parity function, that is,

ξ (n) =

{
0 if n is even,
1 if n is odd.

(6)

In [6], it was shown that the following relations hold true:

α + β = ab, α− β =
√
a2b2 + 4ab, αβ = −ab, α

β
= −α

2

ab
,
β

α
= −β

2

ab
. (7)

In the same way, Bilgici [3] introduced a new generalization of the Lu-
cas sequence, denoted by {ln}n≥0 and called the bi-periodic Lucas sequence
which is defined recursively

ln =

{
aln−1 + ln−2 if n is even,
bln−1 + ln−2 if n is odd,

n ≥ 2, (8)

with the initial conditions l0 = 2 and l1 = a. When a = b = 1, we have the
classical Lucas sequence. If we set a = b = k, for some positive integer k,
we get the k-Lucas numbers.

Uygun and Owusu [16] introduced and studied a generalization of the
Jacobsthal numbers, which is called the bi-periodic Jacobsthal sequence and
defined recursively by

ĵn =

{
bĵn−1 + 2ĵn−2 if n is even,

aĵn−1 + 2ĵn−2 if n is odd,
n ≥ 2,
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with the initial conditions ĵ0 = 0 and ĵ1 = 1. When a = b = 1, we have the
classical Jacobsthal sequence, and for a = b = k, with some positive integer
k, we get the k-Jacobsthal numbers.

In [15], the same authors study a new generalization of the Jacobsthal–
Lucas numbers, which is called the bi-periodic Jacobsthal–Lucas sequence
and defined as follows

ĉn =

{
bĉn−1 + 2ĉn−2 if n is even,
aĉn−1 + 2ĉn−2 if n is odd,

n ≥ 2,

with the initial conditions ĉ0 = 2 and ĉ1 = a. When a = b = 1, we have the
classical Jacobsthal Lucas sequence, and for a = b = k, with some positive
integer k, we get the k-Jacobsthal–Lucas numbers.

The main goal of this work is to define a new generalization for the
Leonardo sequence. Such sequence, which we shall call the bi-periodic
Leonardo sequence, is introduced in the next section. The Binet formula
is stated in Section 2, and the generating function is provided in Section 3.
Catalan’s, Cassini’s, and several other identities are established in Section 4.

1 The bi-periodic Leonardo sequence

In this section, we define a generalization of the Leonardo sequence similar
to the generalized Fibonacci sequence given by Edson and Yayenie [6] and
to the two generalizations of the Lucas sequence given by Bilgici [3].

Definition 1 For any real nonzero numbers a and b, the bi-periodic Leonardo
sequence is defined recursively by

GLen =

{
aGLen−1 +GLen−2 + a if n is even,
bGLen−1 +GLen−2 + b if n is odd,

n ≥ 2, (9)

with the initial conditions GLe0 = 2a− 1 and GLe1 = 2ab− 1.

The first few elements of the bi-periodic Leonardo sequence are presented
in Table 1.

When a = b = 1, expression (9) defines the Leonardo sequence (1). If
a = b = k for some positive integer k, we get the k-Leonardo numbers
studied, for example, by Mangueira, Alves, and Catarino [13].

Note that expression (9) is equivalent to

GLen+2 − a1−ξ[n]bξ[n]GLen+1 −GLen = a1−ξ[n]bξ[n], (10)

where ξ[·] is the parity function defined by (6). For n even, by subtracting
GLen+1 = bGLen + GLen−1 + b from GLen = aGLen−1 + GLen−2 + a, we
obtain

GLen+1 = (b+ 1)GLen + (1− a)GLen−1 −GLen−2 + (b− a), (11)



4 P. M. M. CATARINO AND E. V. P. SPREAFICO

Table 1: The first six elements of {GLen}n≥0
n GLen
0 2a− 1
1 2ab− 1
2 2a (ab+ 1)− 1
3 2ab (ab+ 2)− 1
4 2a (ab (ab+ 3) + 1)− 1
5 2ab (ab (ab+ 4) + 3)− 1

while subtracting GLen+1 = aGLen +GLen−1 + a from GLen = bGLen−1 +
GLen−2 + b for odd n, we obtain

GLen+1 = (a+ 1)GLen + (1− b)GLen−1 −GLen−2 + (a− b). (12)

Expressions (11) and (12) permit us to establish the following property.

Lemma 1 The bi-periodic Leonardo sequence {GLen}∞n=0 satisfies the fol-
lowing property

GLen+1 = (aξ[n]b1−ξ[n] + 1)GLen + (1− a1−ξ[n]bξ[n])GLen−1
−GLen−2 + (−1)n(b− a),

(13)

for n ≥ 2 and any real nonzero numbers a and b.

Putting a = b = 1 in (13), we obtain the well-know recurrence (2) for
Leonardo numbers (see [5]).

The next result gives us the relation between any bi-periodic Leonardo
number with the two previous terms of this sequence with the same parity
type of index.

Lemma 2 The bi-periodic Leonardo sequence {GLen}∞n=0 satisfies the fol-
lowing property: for any real nonzero numbers a and b and n ≥ 4,

GLen = (ab+ 2)GLen−2 −GLen−4 + ab. (14)

Proof. For even n, the statement is obtained from the following chain of
equalities:

GLe2n = aGLe2n−1 +GLe2n−2 + a

= a (bGLe2n−2 +GLe2n−3 + b) +GLe2n−2 + a

= (ab+ 1)GLe2n−2 + aGLe2n−3 + ab+ a

= (ab+ 1)GLe2n−2 +GLe2n−2 −GLe2n−4 + ab

= (ab+ 2)GLe2n−2 −GLe2n−4 + ab.

For odd n, the proof proceeds similarly. �
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From identity (4), we get the bi-periodic Leonardo sequence of order n
in terms of the bi-periodic Fibonacci number of order n+ 1.

Theorem 1 For n ≥ 0,

GLen = 2a1−ξ[n]bξ[n]F
(a,b)
n+1 − 1. (15)

Proof. First note that expression (15) is equivalent to

GLen =

 2a
(
F

(a,b)
n+1

)
− 1 if n is even,

2b
(
F

(a,b)
n+1

)
− 1 if n is odd.

(16)

The proof is carried out by induction on n. For n = 0, we have GLe0 =
2a − 1 = 2aF

(a,b)
1 − 1 and the statement is true, and for n = 1, we obtain

GLe1 = 2ab − 1 = 2bF
(a,b)
2 − 1. Now suppose that expression (15) is true

for all 2 ≤ k ≤ n. We want to prove that the statement remains valid for
k = n + 1. If n is even then n + 1 is odd, and taking into account the
induction hypothesis and identity (4), we can write

GLen+1 = bGLen +GLen−1 + b

= b
(

2aF
(a,b)
n+1 − 1

)
+
(
2bF (a,b)

n − 1
)

+ b

= 2b
(
aF

(a,b)
n+1 + F (a,b)

n

)
− 1

= 2bF
(a,b)
n+2 − 1.

Further, if n is odd, then n+ 1 is even. Thus,

GLen+1 = aGLen +GLen−1 + a

= a
(

2bF
(a,b)
n+1 − 1

)
+
(
2aF (a,b)

n − 1
)

+ a

= 2a
(
bF

(a,b)
n+1 + F (a,b)

n

)
− 1

= 2aF
(a,b)
n+2 − 1.

�

According to Theorem 1, we can establish the next result, which can be
easily proved.

Proposition 1 For any nonzero integers a and b, and n ≥ 0, GLen is an
odd number.

Moreover, Theorem 3 in [3] provides that for every integer n,

ln = F
(a,b)
n+1 + F

(a,b)
n−1 .

Hence, Theorem 1 permits us to establish a connection between the bi-
periodic Leonardo numbers and the bi-periodic Lucas numbers, given in the
next proposition.
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Proposition 2 For the bi-periodic Leonardo numbers GLen and a, b nonzero
real numbers, the following identity holds:

GLen+1 +GLen−1 = 2a1−ξ[n]bξ[n]ln+1 − 2, (17)

where ln is the n-th bi-periodic Lucas number.

Proof. By combining identities

ln = F
(a,b)
n+1 + F

(a,b)
n−1

and
GLen = 2a1−ξ[n]bξ[n]F

(a,b)
n+1 − 1,

we get

GLen+1 +GLen−1 = 2a1−ξ[n]bξ[n](F
(a,b)
n+2 + F (a,b)

n )− 2

= 2a1−ξ[n]bξ[n]ln+1 − 2.

�

Proposition 3 For the bi-periodic Leonardo numbers GLen and a, b non-
zero real numbers, the following identity holds, whenever ab+ 4 6= 0,

GLen = 2a1−ξ[n]bξ[n]
(
ln + ln+2

ab+ 4

)
− 1,

where ln is the n-th bi-periodic Lucas number.

2 The Binet formula and some other identi-

ties

In this section, we provide the Binet formula for the bi-periodic Leonardo
sequence. We obtain the following result taking into account the Binet
formula for the bi-periodic Fibonacci sequence given by expression (5) and
Theorem 1.

Theorem 2 For n ≥ 0, the n-th bi-periodic Leonardo number is given by

GLen =
1

α− β

[
2a1−ξ[n]bξ[n]

(
a1−ξ(n+1)

(ab)b
n+1
2
c

)
(αn+1 − βn+1)− (α− β)

]
, (18)

where α = (ab +
√
a2b2 + 4ab)/2 and β = (ab −

√
a2b2 + 4ab)/2 are the

roots of the characteristic equation x2 − abx− ab = 0, and ξ[·] is the parity
function.
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The proof of Theorem 2 is given by substituting the Binet formula (5)
for bi-periodic Fibonacci number of order n in (15).

Corollary 1 in [3] established a negative integers extension by using the
Binet formula for the bi-periodic Fibonacci and Lucas numbers, namely,

F
(a,b)
−n = (−1)n+1F (a,b)

n , (19)

l
(a,b)
−n = (−1)n+1l(a,b)n .

Similarly, the next result establishes a negative integers extension to the bi-
periodic Leonardo numbers by using the Binet formula (18), and identities
(15) and (19).

Corollary 1 For any integer n, we have

GLe−n = (−1)n(GLen−2 + 2(1− ξ[n])).

Proof. Recall that

GLen = 2a1−ξ[n]bξ[n]F
(a,b)
n+1 − 1.

By replacing n for −n in (15), we get

GLe−n = 2a1−ξ[−n]bξ[−n]F
(a,b)
−n+1 − 1.

Since ξ[−n] = ξ[n] and ξ[n− 2] = ξ[n]

GLe−n = 2a1−ξ[−n]bξ[−n]F
(a,b)
−(n−1) − 1,

= 2a1−ξ[n]bξ[n](−1)nF
(a,b)
n−1 − 1,

= (−1)n(2a1−ξ[n]bξ[n](−1)nF
(a,b)
n−1 + (−1)n+1),

= (−1)n(2a1−ξ[n−2]bξ[n−2]F
(a,b)
n−1 + (−1)n+1),

= (−1)n((2a1−ξ[n−2]bξ[n−2]F
(a,b)
n−1 − 1) + 1 + (−1)n),

= (−1)n(GLen−2 + 2(1− ξ[n])).

�

3 The generating function for the bi-periodic

Leonardo sequence

Generating functions give a technique for solving linear homogeneous recur-
rence relations. In this section, we establish the generating function for the
bi-periodic Leonardo sequence.
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Theorem 3 The generating function for bi-periodic Leonardo numbers is
given by

∞∑
n=0

GLenx
n =

(4a− 2− ab)− abx− (2a− 1)x2 + (2ab− 1)(ab+ 2)x3

(1− (ab+ 2)x2 + x4)

+
ab

(1− x)((1− (ab+ 2)x2 + x4))
. (20)

Proof. Consider the generating functions on parity:

h(x) =
∞∑
j=0

GLe2jx
2j,

g(x) =
∞∑
j=0

GLe2j+1x
2j+1.

Note that

h(x) = (2a− 1) + (2a(ab+ 1)− 1)x2 +
∞∑
j=2

GLe2jx
2j,

(ab+ 2)x2h(x) =
∞∑
j=0

(ab+ 2)GLe2jx
2j+2

= (2a− 1)(ab+ 2)x2 +
∞∑
m=2

(ab+ 2)GLe2m−2x
2m,

or

x4h(x) =
∞∑
j=0

GLe2jx
2j+4 =

∞∑
m=2

GLe2m−4x
2m.

Thus,

(1− (ab+ 2)x2 + x4)h(x) = (2a− 1) + (2a(ab+ 1)− 1)x2

−(2a− 1)(ab+ 2)x2 + ab

∞∑
m=2

x2m.

Similarly, we have

g(x) = (2ab− 1)x+
∞∑
m=1

GLe2m+1x
2m+1,

(ab+ 2)x2g(x) =
∞∑
j=0

(ab+ 2)GLe2j+1x
2j+3

= (2ab− 1)(ab+ 2)x3 +
∞∑
m=2

(ab+ 2)GLe2m−1x
2m+1
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and

x4g(x) =
∞∑
j=0

GLe2j−1x
2j+5 =

∞∑
m=2

GLe2m−3x
2m+1.

Thus,

(1− (ab+ 2)x2 + x4)h(x) = (2a− 1) + (2ab− 1)(ab+ 2)x3 + ab
∞∑
m=2

x2m−1.

Therefore,

F (x) =
(4a− 2− ab)− abx− (2a− 1)x2 + (2ab− 1)(ab+ 2)x3

(1− (ab+ 2)x2 + x4)

+
ab

(1− x)((1− (ab+ 2)x2 + x4))
.

�

We can obtain the generating function in terms of the parity function as
follows.

Theorem 4 The generating function for bi-periodic Leonardo numbers is
given by

∞∑
n=0

GLenx
n =

(2a− 1)(1− a1−ξ[n]bξ[n]x) + (2ab− 1)

(1− a1−ξ[n]bξ[n]x− x2)

+
a1−ξ[n]bξ[n]x2

(1− x)(1− a1−ξ[n]bξ[n]x− x2)
. (21)

Proof. Expression (10) multiplied by xn+2, gives us

GLen+2x
n+2 − a1−ξ[n]bξ[n]GLen+1x

n+2 −GLenxn+2 = a1−ξ[n]bξ[n]xn+2.

This implies

∞∑
n=0

GLen+2x
n+2 − a1−ξ[n]bξ[n]

∞∑
n=0

GLen+1x
n+2 −

∞∑
n=0

GLenx
n+2

= a1−ξ[n]bξ[n]
∞∑
n=0

xn+2,

or, by considering the expression F (x) =
∞∑
j=0

GLejx
j,

(F (x)−GLe0−GLe1)−a1−ξ[n]bξ[n]x(F (x)−GLe0)−x2F (x) =
a1−ξ[n]bξ[n]x2

1− x
.
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Thus,

F (x) =
(2a− 1)(1− a1−ξ[n]bξ[n]x) + (2ab− 1)

(1− a1−ξ[n]bξ[n]x− x2)

+
a1−ξ[n]bξ[n]x2

(1− x)(1− a1−ξ[n]bξ[n]x− x2)
.

�

4 Catalan’s, Cassini’s and d’Ocgane’s identi-

ties

In this section, we provide some identities involving the bi-periodic Leonar-
do numbers. In particular, Catalan’s and Cassini’s identities for bi-periodic
Leonardo numbers are established.

First of all, recall a result established in [Theorem 5, [3]]: for all integers
m and n, it holds

F
(a,b)
m+n =

1

2

[(
b

a

)ξ[m+1]ξ[n]

F (a,b)
m ln +

(
b

a

)ξ[m]ξ[n+1]

F (a,b)
n lm

]
. (22)

We prove the following new relation between the Fibonacci and Lucas
bi-periodic numbers.

Lemma 3 For any nonnegative integer n, we have

F
(a,b)
n+1+r + F

(a,b)
n+1−r =

{
F

(a,b)
n+1 lr if n is even,

F
(a,b)
r ln+1 if n is odd,

(23)

Proof. By (22), we obtain

F
(a,b)
(n+1)+r =

1

2

[(
b

a

)ξ[n+2]ξ[r]

F
(a,b)
n+1 lr +

(
b

a

)ξ[n+1]ξ[r+1]

F (a,b)
r ln+1

]
. (24)

On the other side, since F
(a,b)
−n = (−1)n+1F

(a,b)
−n and l−n = (−1)n+1l−n by

[Corollary 1, [3]], we get

F
(a,b)
(n+1)−r =

(−1)r

2

[(
b

a

)ξ[n+2]ξ[r]

F
(a,b)
n+1 lr −

(
b

a

)ξ[n+1]ξ[r+1]

F (a,b)
r ln+1

]
. (25)

Thus, for r even, the sum of expressions (24) and (25) gives

F
(a,b)
n+1+r + F

(a,b)
n+1−r = F

(a,b)
n+1 lr.
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Hence, for r odd we verify the equality

F
(a,b)
n+1+r + F

(a,b)
n+1−r = F (a,b)

r ln+1.

�

Note also that Lemma 3 can be proved by direct application of the Binet
formulas for F

(a,b)
n and ln, namely,

F (a,b)
n =

(
a1−ξ(n)

(ab)b
n
2
c

)
αn − βn

α− β

and

ln =

(
aξ(n)

(ab)b
n+1
2
c

)
(αn − βn),

by considering the parity of integers n and r.
The next result establishes Catalan’s identity for the bi-periodic Leonardo

numbers.

Theorem 5 For two positive integers n and r, the following equation holds
true:

aξ[n−r]b1−ξ[n−r]GLen−rGLen+r − aξ[n]b1−ξ[n]GLe2n (26)

= ab(aξ[n+1]+2ξ[r−1]−2b1−ξ[n+1]−2ξ[r−1](−1)n+2−r(GLer−1 + 1)2

+2aξ[n]b1−ξ[n](GLen + 1)− aξ[n−r]b1−ξ[n−r](GLen−r +GLen+r + 2)

+aξ[n−r]b1−ξ[n−r] − aξ[n]b1−ξ[n].

Proof. By (15), we get

aξ[n−r]b1−ξ[n−r]GLen−rGLen+r − aξ[n]b1−ξ[n]GLe2n (27)

= aξ[n−r]b1−ξ[n−r](2a1−ξ[n−r]bξ[n−r]F
(a,b)
n−r+1 − 1)(2a1−ξ[n+r]bξ[n+r]F

(a,b)
n+r+1 − 1)

−aξ[n]b1−ξ[n](2a1−ξ[n]bξ[n]F (a,b)
n+1 − 1)2,

= 4a2−ξ[n+r]b1+ξ[n+r]F
(a,b)
n−r+1F

(a,b)
n+r+1 − 4a2−ξ[n]b1+ξ[n](F

(a,b)
n+1 )2

+4abF
(a,b)
n+1 − 2ab(F

(a,b)
n−r+1 + bF

(a,b)
n+r+1) + aξ[n−r]b1−ξ[n−r] − aξ[n]b1−ξ[n].

Since ξ[n−r+1] = 1− ξ[n−r] = 1− ξ[n+r] and ξ[n+1] = 1− ξ[n], further
we can write

4ab(a1−ξ[n+r]bξ[n+r]F
(a,b)
n−r+1F

(a,b)
n+r+1 − a1−ξ[n]bξ[n](F

(a,b)
n+1 )2) (28)

= 4ab(aξ[n−r+1]b1−ξ[n−r+1]F
(a,b)
n−r+1F

(a,b)
n+r+1 − aξ[n+1]b1−ξ[n+1](F

(a,b)
n+r )2)

= 4ab(aξ[n+1]b1−ξ[n+1](−1)n+2−r(F (a,b)
r )2).
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Hence, by substituting (28) in (27), we obtain

aξ[n−r]b1−ξ[n−r]GLen−rGLen+r − aξ[n]b1−ξ[n]GLe2n (29)

= 4ab(aξ[n+1]b1−ξ[n+1](−1)n+2−r(F (a,b)
r )2) + 4abF

(a,b)
n+1

−2ab(F
(a,b)
n−r+1 + F

(a,b)
n+r+1) + aξ[n−r]b1−ξ[n−r] − aξ[n]b1−ξ[n].

Therefore, putting

GLer−1 + 1

2a1−ξ[r−1]bξ[r−1]
= F (a,b)

r ,
GLen + 1

2a1−ξ[n]bξ[n]
= F

(a,b)
n+1 ,

GLen−r + 1

2a1−ξ[n−r]bξ[n−r]
= F

(a,b)
n−r+1,

GLen+r + 1

2a1−ξ[n+r]bξ[n+r]
= F

(a,b)
n+r+1

in (29), we get

aξ[n−r]b1−ξ[n−r]GLen−rGLen+r − aξ[n]b1−ξ[n]GLe2n
= ab(aξ[n+1]+2ξ[r−1]−2b1−ξ[n+1]−2ξ[r−1](−1)n+2−r(GLer−1 + 1)2

+2aξ[n]b1−ξ[n](GLen + 1)− aξ[n−r]b1−ξ[n−r](GLen−r +GLen+r + 2)

+aξ[n−r]b1−ξ[n−r] − aξ[n]b1−ξ[n].

�

The next result provides Cassini’s identity for the bi-periodic Leonardo
numbers, established in [Proposition 4.1, [5]], it also can be verified by setting
r = 1 in Theorem 5.

Proposition 4 For any integer n, it holds

a1−ξ[n]bξ[n]GLen−1GLen+1 − aξ[n]b1−ξ[n]GLe2n (30)

= 4(−1)n+1(ab)a1−ξ[n]bξ[n] − aξ[n]b1−ξ[n](2GLen−1
+(a1−ξ[n]bξ[n] − 2)GLen + ab+ 4aξ[n]b1−ξ[n]) + (−1)n(a− b),

Proof. By (15), we get

aξ[n−1]b1−ξ[n−1]GLen−1GLen+1 − aξ[n]b1−ξ[n]GLe2n (31)

= 4a(2−ξ[n+1])b1+ξ[n+1]F (a,b)
n F

(a,b)
n+2 − 2abF (a,b)

n − 2abF
(a,b)
n+2 + aξ[n−1]b1−ξ[n−1]

−4a2−ξ[n]b1+ξ[n](F
(a,b)
n+1 )2 + 4abF

(a,b)
n+1 − aξ[n]b1−ξ[n].

Now, according to (31) for n even, we can write

aGLen−1GLen+1 − bGLe2n
= 4ab2F (a,b)

n F
(a,b)
n+2 − 2ab(F (a,b)

n + F
(a,b)
n+2 ) + a− 4a2b(F

(a,b)
n+1 )2 + 4abF

(a,b)
n+1 − b

= 4ab(bF (a,b)
n F

(a,b)
n+2 − a(F

(a,b)
n+1 )2)− 2ab(F (a,b)

n + F
(a,b)
n+2 ) + 4abF

(a,b)
n+1 + a− b.
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Since
bF (a,b)

n F
(a,b)
n+2 − a(F

(a,b)
n+1 )2 = a(−1)n+1(F

(a,b)
1 )2,

for n even,

aGLen−1GLen+1 − bGLe2n = 4a(−1)n+1ab− b(2GLen−1)
−b((a− 2)GLen + ab+ 4b) + a− b.

Similarly, according to (31) for n odd, we have

bGLen−1GLen+1 − aGLe2n = 4a2b1F (a,b)
n F

(a,b)
n+2 − 2abF (a,b)

n − 2abF
(a,b)
n+2

+b− 4ab2(F
(a,b)
n+1 )2 + 4abF

(a,b)
n+1 − a.

Since
aF (a,b)

n F
(a,b)
n+2 − b(F

(a,b)
n+1 )2 = b(−1)n+1(F

(a,b)
1 )2,

for n odd, we obtain

bGLen−1GLen+1 − aGLe2n = 4(−1)n+1ab2 − a(2GLen−1)

−a(b− 2)GLen + ab+ 4a) + (b− a).

�

As a corollary of Proposition 4, we have Cassini’s identity for the Leonardo
numbers established in also [Proposition 4.1, [5]] and [Corollary 2.16,[1]]).

Corollary 2 For positive integer n and a = b = 1, the following identity
holds

GLen−1GLen+1 −GLe2n = 4(−1)n+1 − (GLen−1 −GLen−2). (32)

The next result establishes d’Ocgane’s identity for the bi-periodic Leonardo
numbers.

Theorem 6 For m, n positive integers, the following expressions hold true:

aξ[mn+m]bξ[mn+n]GLem−1GLen − aξ[mn+n]bξ[mn+m]GLemGLen−1

= GLem−1GLen −GLemGLen−1 (33)

= (−1)n2a2−ξ[m−1]−ξ[n]bξ[m−1]+ξ[n]−1(GLem−n−1 + 1)

−GLem−1 +GLen−1 −GLen +GLem

if m and n have the same parity, and, otherwise,

aξ[mn+m]bξ[mn+n]GLem−1GLen − aξ[mn+n]bξ[mn+m]GLemGLen−1

= a5ξ[n]−2b3ξ[m]−2ξ[n](GLem−1 + 1)(GLen + 1)

−a5ξ[m]−2b3ξ[n]−2ξ[m](GLem + 1)(GLen−1 + 1) (34)

−a2ξ[m]+ξ[n]−1b3ξ[n](GLem−1 +GLen + 2)

+a2ξ[n]+ξ[m]−1b3ξ[m](GLem +GLem + 2).
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Proof. By (15), we get

aξ[mn+m]bξ[mn+n]GLem−1GLen − aξ[mn+n]bξ[mn+m]GLemGLen−1

= aξ[mn+m]bξ[mn+n]4a2−ξ[m−1]−ξ[n]bξ[m−1]+ξ[n]F (a,b)
m F

(a,b)
n+1

−aξ[mn+n]bξ[mn+m]4a2−ξ[m]−ξ[n−1]bξ[m]+ξ[n−1]F
(a,b)
m+1F

(a,b)
n (35)

+aξ[mn+m]bξ[mn+n](−2a1−ξ[m−1]bξ[m−1]F (a,b)
m − 2a1−ξ[n]bξ[n]F

(a,b)
n+1 )

−aξ[mn+n]bξ[mn+m](−2a1−ξ[m]bξ[m]F
(a,b)
m+1 − 2a1−ξ[n−1]bξ[n−1]F (a,b)

n ).

Considering the same parity ξ[n] = ξ[m] for n and m in (35), we have

2− ξ[m− 1]− ξ[n] = 2− ξ[n− 1]− ξ[m], ξ[m− 1] + ξ[n] = ξ[n− 1] + ξ[m].

Then

aξ[mn+m]bξ[mn+n]GLem−1GLen − aξ[mn+n]bξ[mn+m]GLemGLen−1

= 4a2−ξ[m−1]−ξ[n]bξ[m−1]+ξ[n](aξ[mn+m]bξ[mn+n]F (a,b)
m F

(a,b)
n+1

−aξ[mn+n]bξ[mn+m]F
(a,b)
m+1F

(a,b)
n )

= aξ[mn+m]bξ[mn+n](−2a1−ξ[m−1]bξ[m−1]F (a,b)
m − 2a1−ξ[n]bξ[n]F

(a,b)
n+1 )

−aξ[mn+n]bξ[mn+m](−2a1−ξ[m]bξ[m]F
(a,b)
m+1 − 2a1−ξ[n−1]bξ[n−1]F (a,b)

n ).

According to the identities

aξ[mn+m]bξ[mn+n]F (a,b)
m F

(a,b)
n+1 − aξ[mn+n]bξ[mn+m]F

(a,b)
m+1F

(a,b)
n

= (−1)naξ[m−n]F
(a,b)
m−n,

ξ[nm+ n] = ξ[mn+ n] = 0,

and (15), we obtain

aξ[mn+m]bξ[mn+n]GLem−1GLen − aξ[mn+n]bξ[mn+m]GLemGLen−1

= GLem−1GLen −GLemGLen−1
= (−1)n2a2−ξ[m−1]−ξ[n]bξ[m−1]+ξ[n]−1(GLem−n−1 + 1)

−GLem−1 +GLen−1 −GLen +GLem,

for m, n with the same parity.
Now suppose that m and n have opposite parity. This implies that

ξ[mn + m] = ξ[m] and ξ[mn + n] = ξ[n]. Then, we can rewrite (35) in the
following form:

aξ[mn+m]bξ[mn+n]GLem−1GLen − aξ[mn+n]bξ[mn+m]GLemGLen−1

= aξ[m]bξ[n]GLem−1GLen − aξ[n]bξ[m]GLemGLen−1

= 4(a3ξ[n]b3ξ[m]F (a,b)
m F

(a,b)
n+1 − a3ξ[m]b3ξ[n]F

(a,b)
m+1F

(a,b)
n )

−2a2ξ[m]b2ξ[n](F (a,b)
m + F

(a,b)
n+1 ) + 2a2ξ[n]b2ξ[m](F

(a,b)
m+1 + F (a,b)

n ).
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By (15), we get

aξ[mn+m]bξ[mn+n]GLem−1GLen − aξ[mn+n]bξ[mn+m]GLemGLen−1

= aξ[m]bξ[n]GLem−1GLen − aξ[n]bξ[m]GLemGLem−1

= a5ξ[n]−2b3ξ[m]−2ξ[n](GLem−1 + 1)(GLen + 1)

−a5ξ[m]−2b3ξ[n]−2ξ[m](GLem + 1)(GLen−1 + 1)

−a2ξ[m]+ξ[n]−1b3ξ[n](GLem−1 +GLen + 2)

+a2ξ[n]+ξ[m]−1b3ξ[m](GLem +GLem + 2).

�

5 Conclusions

In this paper, we defined a new generalization of the Leonardo sequence
of numbers, the bi-periodic Leonardo sequence {GLen}n≥0, and established
algebraic properties, the Binet formula and generating function for this se-
quence. In addition, identities involving the bi-periodic Leonardo numbers,
the bi-periodic Fibonacci numbers, and the bi-periodic Lucas numbers are
provided. Moreover, we established the analogous of classical identities,
such as Catalan’s, Cassini’s, and d’Ocgane’s identities for the bi-periodic
Leonardo numbers.

We believe that the introduced sequence of numbers can serve as an
object for study in several aspects such as combinatorial, analytical, and
matrix perspectives.
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