On the structure of C^* -algebra generated by a family of partial isometries and multipliers

A. Yu. Kuznetsova and Ye. V. Patrin Kazan Federal University

Abstract. In the paper we consider an operator algebra generated by a family of partial isometries associated with a self-mapping on a countable set and by multipliers.

An action of the unit circle on this algebra is specified that determines its \mathbb{Z} -grading. Under some conditions on the mapping the algebra is isomorphic to the crossed product of its fixed point subalgebra and the semigroup \mathbb{N} .

Key Words: C*-algebra, partial isometry, conditional expectation, Toeplitz algebra, crossed product, *-endomorphism Mathematics Subject Classification 2000: 46L99

Introduction

In the paper we continue to study the structure of the algebra \mathfrak{M}_{φ} (see [6]), generated by a family of partial isometries and by the commutative algebra of multipliers. The starting point is a selfmapping $\varphi : X \longrightarrow X$ on a countable set X with finite numbers of preimages of each point. This mapping generates a directed graph with vertices at the points of the set X and the edges $(x, \varphi(x))$.

This mapping also induces an operator $T_{\varphi}: l^2(X) \to l^2(X), \quad T_{\varphi}f = f \circ \varphi$. A family \mathcal{U} of partial isometries $U_n, n = 1, 2, ...$ is associated with this composition operator T_{φ} such that $T_{\varphi} = U_1 + \sqrt{2}U_2 + \cdots + \sqrt{m}U_m + \cdots$. We use the notation \mathcal{U}^* for the family of partial isometries $\{U_k^*, k = 1, 2, ...\}$. Operators $Q_{\varphi} = \sum_{k \in \mathbb{N}} U_k U_k^* = \sum_{k \in \mathbb{N}} Q_k$ and $P_{\varphi} = \sum_{k \in \mathbb{N}} U_k^* U_k = \sum_{k \in \mathbb{N}} P_k$ are projections determined by the initial mapping.

The operator algebra generated by such family of partial isometries (finite or countable), was studied in [4, 5].

Let B(X) be the algebra of all bounded functions on X. Each function f from B(X) generates a multiplier operator $M_f g = fg, g \in l^2(X)$ such that $(M_f)^* = M_{\overline{f}}$. The C^* -algebra generated by all multipliers is denoted by M(X). This algebra is maximal commutative subalgebra (masa) in $B(l^2(X))$.

The main object of study in the paper is the C^* -algebra \mathfrak{M}_{φ} , a subalgebra of $B(l^2(X))$ generated by the algebra $\mathfrak{M}(X)$ and partial isometries from \mathcal{U} . It was shown in [6], that \mathfrak{M}_{φ} is, in particular, a nuclear \mathbb{Z} -graded algebra. The algebra \mathfrak{M}_{φ} can be considered as a modification of the Arzumanian-Vershik algebra ([2, 3]), which is defined as the regular representation of the algebra generated by the bicyclic semigroup and a commutative algebra

1 Preliminaries

with natural commutation relations.

Here we present briefly the basic information that will be needed further. More detailed account can be found in [4, 6].

Throughout what follows some restrictions on the initial mapping are assumed.

We suppose the mapping φ to be fixed satisfying the following conditions:

- (i) there is no cyclic element in X, i.e. an element that $\varphi^n(x) = x$ for some $n \in \mathbb{N}$
- (ii) the number of preimages is uniformly bounded, i.e. a number m exists such that

$$m = \sup_{x \in X} \operatorname{card}\{\varphi^{-1}(x)\} < \infty \tag{1}$$

Under the last condition the operator $T = T_{\varphi}$ is bounded, and is a *finite* sum

 $T = U_1 + \sqrt{2}U_2 + \cdots + \sqrt{m}U_m$ (certain of summand-operators can be zero). In turn, $U_k = \frac{1}{k}TP_k$, $k = 1, 2, \ldots, m$. Thus, $\mathfrak{M} = \mathfrak{M}_{\varphi}$ can be described as a C^* -algebra generated by the operator T and the subalgebra M(X).

To compute the conjugate operator T^* we introduce some notations. Let $E_y^n = \{x \in X : \varphi^n(x) = y\}, n = 0, 1, 2...$ We assume $E_y^0 = y$ and let the complete preimage of an element $y \in X$ be $E_y = E_y^1 = \{x \in X : \varphi(x) = y\}$. An element y for which $E_y = \emptyset$ we call φ -initial. Obviously, $E_{y_1}^n \cap E_{y_2}^n = \emptyset$ for $y_1 \neq y_2$, and then for each n the set X can be represented as a disjoint union of these subsets, $X = \bigcup_{y \in X} E_y^n$. Respectively, for any fixed positive integer n we have

$$l^{2}(X) = \bigoplus_{y \in X} l^{2}(E_{y}^{n}).$$

$$\tag{2}$$

Now, evidently the conjugate operator T^* can be calculated by the formula

$$(T_{\varphi}^*f)(y) = \begin{cases} \sum_{x \in E_y} f(x), & \text{if } E_y \neq \emptyset; \\ 0, & \text{if } E_y = \emptyset. \end{cases}$$
(3)

Accordingly, the set X can be represented as a disjoint union of the subsets $X_k = \{y \in X : \operatorname{card} E_y = k\}$, and then we obtain an orthogonal decomposition $l^2(X) = \bigoplus_{k=0}^m l^2(X_k)$ (assuming $l^2(X_k)$ as a $\{0\}$ space if X_k is empty) by the subspace described as $l^2(X_k) = \{f \in l^2(X) : T^*Tf = kf\}$. Then $T^*T = \bigoplus_{k=1}^m kP_k$, where P_k is the projection onto the subspace $l^2(X_k)$. Similarly, $TT^* = \bigoplus_{k=1}^m kQ_k$, where Q_k is the projection onto the subspace $l_k^2 = \{f \in l^2(X) : TT^*f = kf\}$ for all $k \neq 0$. Defining l_0^2 as the orthogonal complement to all remaining l_k^2 we obtain $l^2(X) = \bigoplus_{k=0}^m l_k^2$.

Functions from the family $\{e_x, x \in X\}$ where $e_x(y) = \delta_x^y$ (Kronecker symbol) forms an orthonormal basis on the Hilbert space $l^2(X)$ and the subspaces $l^2(X_k)$ mentioned above. The family $\{g_y = \frac{1}{\sqrt{k}} \sum_{x \in E_y} e_x, y \in X_k\}$, forms an orthonormal basis in the space l_k^2 when $k \neq 0$. The operator T^* acts on the basis elements as $T^*e_x = e_{\varphi(x)}, x \in X$.

Projections P_k and Q_k are equivalent and mutually non permutable in general. The respective partial isometry U_k , $k \neq 0$, is defined as follows:

$$U_k e_y = \begin{cases} g_y & \text{if } y \in X_k \\ 0, & \text{if } y \notin X_k. \end{cases}$$

$$\tag{4}$$

Accordingly,

$$U_k^* g_y = \begin{cases} e_y, & \text{if } y \in X_k \\ 0, & \text{if } y \notin X_k. \end{cases}$$
(5)

Obviously, the operator $U = U_1 + U_2 + \cdots + U_m$ is a partial isometry. If φ is surjective (resp. bijective), then U is an isometry (resp. unitary).

Remark 1 In the case when φ is surjective the operator U generates an inner endomorphism β_U of the algebra \mathfrak{M} ,

$$\beta_U(A) = UAU^*$$

which is an automorphism if φ is a bijection. This endomorphism plays the central role in representing the algebra \mathfrak{M} as a crossed product in Section 3.

We give important commutation relation between the generators (cf.[6]):

Proposition 1 ([6]) For each function f from B(X): (i) $TM_f = M_{T_f}T$ (ii) $T^*M_fT = M_{T^*f}$. **Remark 2** Similar relations can be deduced for the partial isometries mentioned above: for each function f from B(X) and every positive integer k(i) $U_k M_f = M_{Tf} U_k$ (ii) $U_k^* M_f U_k = \frac{1}{k} M_{(T^*Tf)I_k}$ where I_k is the indicator of the set X_k .

The algebra $\mathcal{M}(X) \subset \mathfrak{M}_{\varphi}$ contains all projections $\{P_Y := M_{I(Y)}, Y \subset X\}$, where I(Y) is the indicator of the set Y, and particularly one-dimensional projections $P_x := P_{\{x\}}$. Thus, if $(f, e_x) \neq 0$ for a function f and a point x, then $e_x \in \mathfrak{M}f$. If the graph related to φ is connected, then the algebra \mathfrak{M} is irreducible and contains the ideal $K(l^2(X))$ of compact operators.

Elements of the set $E(X) = M(X) \bigcup \mathcal{U} \bigcup \mathcal{U}^*$ we call elementary monomials. The notion of *index* (ind) can be defined for each operator from $A \in E(X)$, notably, $\operatorname{ind}(A) = 0 (1, -1)$ for $A \in M(X)$ (\mathcal{U} , or \mathcal{U}^* , respectively). We assume the index of zero operator to be 0. Each finite product of elementary monomials we call *monomial*, denoting their set by $\operatorname{Mon}(X)$, and considering indV for $V \in \operatorname{Mon}(X)$ as the sum of the indices of the factors. It was proved in [6] that the index of a monomial does not depend of its representation as a product of elementary monomials.

The length d(V) of a monomial V is the least number of partial isometries from $\mathcal{U} \bigcup \mathcal{U}^*$ participating in its representation as a product. Obviously, linear combinations of monomials are dense in \mathfrak{M} and the set Mon(X) forms a semigroup with respect to multiplication operation.

It was shown in [6] that by using the notion of index a \mathbb{Z} -grading of \mathfrak{M} can be established, namely, $\mathfrak{M} = \overline{\bigoplus_{n \in \mathbb{Z}} \mathfrak{M}_{\varphi,n}}$, where \mathfrak{M}_n is a subspace generated by monomials of index n.

2 Action of the unit circle

First of all we recall basic facts which will be used in further. Let \mathfrak{A} be a C^* -algebra and α be an action of the unit circle S^1 on \mathfrak{A} . For any $n \in \mathbb{Z}$ the spectral subspace

$$\mathfrak{A}_n = \{ A \in \mathfrak{A} : \alpha_z(A) = z^n A \quad \text{for} \quad z \in S^1 \}$$

and spectral projection $\mathcal{P}_n : \mathfrak{A} \longrightarrow \mathfrak{A}$,

$$\mathcal{P}_n(A) = \int\limits_{\mathbf{T}} z^{-n} \alpha_z(A) \, \mathrm{d}z$$

are determined. Obviously, the range of the projection \mathcal{P}_n is the spectral subspace \mathfrak{A}_n . By the way, the subalgebra \mathfrak{A}_0 is the *fixed point subalgebra* under the mentioned action.

Theorem 1 There exists a continuous morphism α of the group S^1 into the automorphism group $Aut(\mathfrak{M})$ such that the corresponding n-th spectral subspace coincides with the subspace \mathfrak{M}_n .

Proof. Define an action α of S^1 on the elements V of Mon(X) by the formula

$$\alpha_z(V) = z^{\operatorname{ind} V} V.$$

It is evident that \mathfrak{M}_n is the *n*-th spectral subspace. \Box

Remark, that the stationary subalgebra \mathfrak{M}_0 is fixed point subalgebra under the action α , i.e. the grading is generated by the covariant system $(\mathfrak{M}, S^1, \alpha)$. Moreover, the mentioned action is semi-saturated which means that the algebra \mathfrak{M} , as a C^* -algebra is generated by the fixed point subalgebra and the first spectral subspace \mathfrak{A}_1 (see [1]). It is easy to verify that the mapping defined as

$$\mathcal{P}_0(A) = \int_{\mathbf{T}} \alpha_z(A) \mathrm{d}z$$

is a conditional expectation onto the fixed point subalgebra. Obviously, if $A = \sum_{k=-n}^{m} A_k$, where $A_k \in \mathfrak{M}_k$, then of course, $\mathcal{P}_0(\sum_{k=-n}^{m} A_k) = A_0$. Let us now turn to the study of the structure of the fixed point subalgebra. Denote by $\mathfrak{M}_0^{(n)}$ the C^* -algebra generated by monomials V with $\operatorname{ind}(V) = 0$ and $\operatorname{d}(V) \leq 2n$. There is a directed chain of C^* -algebras,

$$\mathfrak{M}_{\varphi,0}^{(1)}\subset\mathfrak{M}_{\varphi,0}^{(2)}\subset\cdots\subset\mathfrak{M}_{\varphi,0}^{(n)}\subset\cdots,$$

and

$$\mathfrak{M}_{\varphi,0} = \overline{\bigcup_{s=1}^{\infty} \mathfrak{M}_{\varphi,0}^{(n)}}.$$

It is easy to understand, that each $l^2(E_y^n)$ in the representation (2) is a finitedimensional space which is invariant with respect to the monomials of zero index and the length $d \leq 2n$ (see [6], Corollary 3.3), and consequently, with respect to all operators from the algebra $\mathfrak{M}_0^{(n)}$.

Let $I_{y,n}$ be the indicator of the set E_y^n . Then, the operator $P_{y,n} := M_{I_{y,n}}$ belongs to \mathfrak{M}_0 and is a projection onto the subspace $l^2(E_y^n)$. Obviously, the operators $\{P_{y,n}\}$ form in \mathfrak{M} a block system such that all monomials from $\mathfrak{M}_0^{(n)}$ are block-diagonalized. Note that each zero index monomial from the algebra \mathfrak{M} is block-diagonalized.

Lemma 1 There exists on the algebra \mathfrak{M} a conditional expectation onto the subalgebra of multipliers.

Proof. Let us define $\mathcal{P}_M(A) = \bigoplus_{x \in X} P_{\{x\}} A P_{\{x\}}$ for $A \in \mathfrak{M}$. It can be checked at once that \mathcal{P}_M is a projection of norm one hence

$$\mathcal{P}_M:\mathfrak{M}\longrightarrow \mathrm{M}(X)$$

is a conditional expectation.

The following interesting observation is presented for completness.

Corollary 1 There exists a trace state on the algebra \mathfrak{M} .

Proof. Remind that each state on a commutative C^* -algebra is a trace state. Thus, if τ is a state on \mathfrak{M} , then $\tau \circ \mathcal{P}_M$ is a trace state on \mathfrak{M} . \Box

3 Crossed product structure on \mathfrak{M}

The next goal is to show that in some cases the algebra \mathfrak{M} can be represented as the crossed product in the sense of P.J. Stacey, [7]. We bring slightly simplified definitions formulated in terms of covariant representations. For any C^* -algebra \mathfrak{A} and a star-endomorphism α we use a standard notation \mathfrak{A}_{∞} for the inductive limit of the sequence

$$\mathfrak{A} \xrightarrow{\alpha} \mathfrak{A} \xrightarrow{\alpha} \mathfrak{A} \xrightarrow{\alpha} \mathfrak{A} \xrightarrow{\alpha} \mathfrak{A} \xrightarrow{\alpha} \cdots$$

Let \mathfrak{A} be a unital C^* -algebra and β be a *-endomorphism of \mathfrak{A} . The pair (π, V) is called the covariant representation of the system (\mathfrak{A}, β) if π is a non-degenerated representation $\pi : \mathfrak{A} \longrightarrow B(H)$ and V is an isometry of B(H) such that $\pi(\beta(a)) = V\pi(a)V^*$ for every $a \in \mathfrak{A}$ (that is $\pi \circ \beta = \beta_V \circ \pi$). The crossed product associated with a given system (\mathfrak{A}, β) with $\mathfrak{A}_{\infty} \neq 0$ is a unital C^* -algebra \mathfrak{B} together with an identity preserving *-homomorphism $\nu : \mathfrak{A} \longrightarrow \mathfrak{B}$ and an isometry u in \mathfrak{B} such that

- (i) $\nu(\beta(a)) = u\nu(a)u^*$ for all $a \in \mathfrak{A}$ (that is, $\nu \circ \beta = \beta_u \circ \nu$)
- (ii) for every covariant representation (π, V) of the system (\mathfrak{A}, β) there exists a non-degenerated representation τ of \mathfrak{B} in H_{π} with $\tau \circ \nu = \pi$, and $\tau(u) = V$
- (iii) the algebra \mathfrak{B} is generated by elements of the form $\nu(a)u^nu^{*m}$.

Theorem 2 Let φ be a surjective (non injective) mapping. Then the algebra \mathfrak{M}_{φ} is the crossed product associated to the system $(\mathfrak{M}_{\varphi 0}, \beta_{U_{\varphi}})$ consisting of the fixed point subalgebra and the standard inner endomorphism.

Proof. Under the conditions, the operator $U = U_{\varphi}$ from $\mathfrak{M} = \mathfrak{M}_{\varphi}$ (see remark 1) is isometric (non unitary). It is evident that the fixed point subalgebra is invariant under the action of $\beta = \beta_U$. Since $\beta^n(A) = U^n A U^{*n}$ and so $U^{*n}\beta^n(A)U^n = A$, we have $\|\beta^n(A)\| = \|A\|$. Then $\mathfrak{M}_{0\infty} \neq 0$ and the pair (id, U) is a covariant representation of the system $(\mathfrak{M}_0, \beta_U)$.

It remains to show that the algebra \mathfrak{M} is generated by the fixed point subalgebra and the isometry U. Indeed, finite sums of operators $A_n \in \mathfrak{M}_n$ are dense in \mathfrak{M} ([6]). In the case n > 0 we have $A_n = A_n U^{*n} U^n$ with $A_n U^{*n} \in \mathfrak{M}_0$. If n < 0, then similarly $A_n = U^{*-n} U^{-n} A_n$ with $U^{-n} A_n \in \mathfrak{M}_{\varphi 0}$. \Box

4 Example

Let φ be the right shift on \mathbb{Z}_+ , $\varphi(n) = n+1$. The corresponding C^* -algebra \mathfrak{M}_{φ} is denoted as usual by \mathfrak{M} . Thus, the algebra is generated by an isometric operator $W = T^*$ and by multipliers. According to the known theorem of Coburn, operator W generates the so called Toeplitz algebra \mathfrak{T} . Our aim is to give a detailed description of the algebra \mathfrak{M} .

Lemma 2 For each function $f \in B(X)$ there exist the functions f_1, f_2 from B(X) such that $M_f W = W M_{f_1}$ and $W M_f = M_{f_2} W$.

Proof. The first relation follows immediately from the proposition 1, with $f_1 = f \circ \varphi$. As f_2 one can take the following function

$$f_2(n) = \begin{cases} f(n-1), & \text{if } n \neq 0\\ 0, & \text{if } n = 0. \end{cases}$$

Equality can be checked by simple substitution. \Box

Corollary 2 Evidently, $\mathfrak{M} = \overline{M(\mathbb{Z}_+)\mathfrak{T}}$.

The \mathbb{Z} -grading of the algebra \mathfrak{M} can be described more precisely.

Corollary 3 We have $\mathfrak{M} = \bigoplus_{n \in \mathbb{Z}} \overline{\mathfrak{M}_n}$ where

$$\mathfrak{M}_n = \begin{cases} \mathcal{M}(\mathbb{Z}_+)W^n, & \text{if } n > 0\\ W^{*n}\mathcal{M}(\mathbb{Z}_+), & \text{if } n < 0. \end{cases}$$

Proof. Since the subalgebra \mathfrak{T}_0 corresponding to zero in the \mathbb{Z} -grading of the Toeplitz algebra is generated by the identity operator and by the onedimensional basis projections, it is contained in $M(\mathbb{Z}_+)$. \Box The algebra \mathfrak{M} contains the ideal of compact operators $K(l^2(\mathbb{Z}_+))$. Let us consider the quotient algebra $\widehat{\mathfrak{M}} = \mathfrak{M} / K(l^2(\mathbb{Z}_+))$ (the quotient image always will be denoted by hat). Despite the fact that quotient of the Toeplitz algebra is commutative as well as the algebra of multipliers, algebra $\widehat{\mathfrak{M}}$ is not commutative. However, there is a commutative subalgebra $\widehat{\mathfrak{M}(\mathbb{Z}_+)}$ in \mathfrak{M} . Moreover, this algebra is masa (as an image of masa in Calkin algebra), [8].

The following result shows that the quotient image of our algebra is a usual crossed product of the commutative subalgebra and the group \mathbb{Z} .

Lemma 3 The algebra $\widehat{\mathfrak{M}}$ is the crossed product associated with the system $(\widehat{\mathfrak{M}(\mathbb{Z}_+)}, \beta_{\widehat{W}})$, consisting of the quotient image of the algebra of multipliers and inner automorphism $\beta_{\widehat{W}}$.

The algebra $\widehat{\mathfrak{M}}$ inherits the grading of the algebra \mathfrak{M} (see 3)

$$\widehat{\mathfrak{M}} = igoplus_{n \in \mathbb{Z}} \overline{\widehat{\mathfrak{M}_n}}$$

where the subspaces $\widehat{\mathfrak{M}_n}$ can be described as

$$\widehat{\mathfrak{M}_n} = \begin{cases} \widehat{\mathcal{M}(Z_+)}\widehat{W}^n, & \text{if } n > 0\\ \widehat{W}^{*|n|}\widehat{\mathcal{M}(\mathbb{Z}_+)}, & \text{if } n < 0 \end{cases}$$

where the operator \widehat{W} is obviously unitary.

Corollary 4 There exists a short exact sequence

$$0 \longrightarrow K(l^2(\mathbb{Z}_+)) \longrightarrow \mathfrak{M} \longrightarrow \mathfrak{M} \longrightarrow 0.$$

References

- R. Exel, Circle actions on C*-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (2) (1994), 361–401.
- R. Exel, A. Vershik, C^{*}-algebras of irreversible dynamical systems, Canad. J. Math., 58 (1) (2006), 39–63.
- [3] V. Arzumanian, Operator algebras associated with non-singular endomorphisms of Lebesgue space, J. Conterporary Mathematical Analysis, 21 (6) (1986), 596-616.
- [4] S.A. Grigoryan, A.Yu Kuznetsova, C^{*}-algebras Generated by Mappings [in Russian], Math. Notes 87(5) (2010), 663–671.

- [5] S. Grigoryan, A. Kuznetsova, On a class of nuclear C^{*}-algebras, Operator Theory Summer, Proc. of 23rd Int. Conf. on Operator Theory (Timisoara, Romania, 2010), 39–50.
- [6] A.Yu. Kuznetsova, E.V. Patrin, One class of C*-algebras generated by a family of partial isometries and multiplicators, Russian Mathematics (Iz. VUZ) 56(6) (2012), 37–47.
- P.J. Stacey, Crossed product of C*-algebras by *-endomorphisms, J. Austral. Math. Soc., Series A, 54 (1993), 204–212.
- [8] S.Shelan, J. Steprans, Masas in the Calkin algebra without the continiuum hypothesis, J. Applied Analysis 17 (2011), 69–89.

A.Yu. Kuznetsova Institute of Physics Kazan Federal University 18, Kremlevskaya str. 20008 Kazan, Russia alla.kuznetsova@gmail.com

Ye.V. Patrin Institute of Physics Kazan Federal University 18, Kremlevskaya str. 20008 Kazan, Russia evgeniipatrin@mail.ru

Please, cite to this paper as published in Armen. J. Math., V. 7, N. 1(2015), pp. 50–58