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Abstract. In the paper we consider an operator algebra gen-
erated by a family of partial isometries associated with a self-
mapping on a countable set and by multipliers.
An action of the unit circle on this algebra is specified that de-
termines its Z-grading. Under some conditions on the mapping
the algebra is isomorphic to the crossed product of its fixed point
subalgebra and the semigroup N.

Key Words: C∗-algebra, partial isometry, conditional expectation, Toeplitz
algebra, crossed product, ∗-endomorphism
Mathematics Subject Classification 2000: 46L99

Introduction

In the paper we continue to study the structure of the algebra Mϕ (see [6]),
generated by a family of partial isometries and by the commutative algebra
of multipliers. The starting point is a selfmapping ϕ : X −→ X on a count-
able set X with finite numbers of preimages of each point. This mapping
generates a directed graph with vertices at the points of the set X and the
edges (x, ϕ(x)).
This mapping also induces an operator Tϕ : l2(X)→ l2(X), Tϕf = f ◦ ϕ.
A family U of partial isometries Un, n = 1, 2, . . . is associated with this com-
position operator Tϕ such that Tϕ = U1 +

√
2U2 + · · · +

√
mUm + · · · . We

use the notation U∗ for the family of partial isometries {U∗k , k = 1, 2, . . .}.
Operators Qϕ =

∑
k∈N

UkU
∗
k =

∑
k∈N

Qk and Pϕ =
∑
k∈N

U∗kUk =
∑
k∈N

Pk are projec-

tions determined by the initial mapping.
The operator algebra generated by such family of partial isometries (finite
or countable), was studied in [4, 5].
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Let B(X) be the algebra of all bounded functions on X. Each function
f from B(X) generates a multiplier operator Mfg = fg, g ∈ l2(X) such
that (Mf )

∗ = Mf . The C∗-algebra generated by all multipliers is de-
noted by M(X). This algebra is maximal commutative subalgebra (masa)
in B(l2(X)).
The main object of study in the paper is the C∗-algebra Mϕ, a subalgebra
of B(l2(X)) generated by the algebra M(X) and partial isometries from U .
It was shown in [6], that Mϕ is, in particular, a nuclear Z-graded algebra.
The algebra Mϕ can be considered as a modification of the Arzumanian-
Vershik algebra ([2, 3]), which is defined as the regular representation of
the algebra generated by the bicyclic semigroup and a commutative algebra
with natural commutation relations.

1 Preliminaries

Here we present briefly the basic information that will be needed further.
More detailed account can be found in [4, 6].
Throughout what follows some restrictions on the initial mapping are as-
sumed.
We suppose the mapping ϕ to be fixed satisfying the following conditions:

(i) there is no cyclic element in X, i.e. an element that ϕn(x) = x for
some n ∈ N

(ii) the number of preimages is uniformly bounded, i.e. a number m exists
such that

m = sup
x∈X

card{ϕ−1(x)} <∞ (1)

Under the last condition the operator T = Tϕ is bounded, and is a finite
sum
T = U1 +

√
2U2 + · · ·+

√
mUm (certain of summand-operators can be zero).

In turn, Uk = 1
k
TPk, k = 1, 2, . . . ,m. Thus, M = Mϕ can be described as a

C∗-algebra generated by the operator T and the subalgebra M(X).
To compute the conjugate operator T ∗ we introduce some notations. Let
En
y = {x ∈ X : ϕn(x) = y}, n = 0, 1, 2 . . .. We assume E0

y = y and let the
complete preimage of an element y ∈ X be Ey = E1

y = {x ∈ X : ϕ(x) = y}.
An element y for which Ey = ∅ we call ϕ-initial. Obviously, En

y1
∩ En

y2
= ∅

for y1 6= y2, and then for each n the set X can be represented as a disjoint
union of these subsets, X =

⋃
y∈X E

n
y . Respectively, for any fixed positive

integer n we have

l2(X) =
⊕
y∈X

l2(En
y ). (2)
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Now, evidently the conjugate operator T ∗ can be calculated by the formula

(T ∗ϕf)(y) =


∑
x∈Ey

f(x), if Ey 6= ∅;

0, if Ey = ∅.
(3)

Accordingly, the set X can be represented as a disjoint union of the subsets
Xk = {y ∈ X : cardEy = k}, and then we obtain an orthogonal decompo-
sition l2(X) = ⊕mk=0l

2(Xk) (assuming l2(Xk) as a {0} space if Xk is empty)
by the subspace described as l2(Xk) = {f ∈ l2(X) : T ∗Tf = kf}. Then
T ∗T = ⊕mk=1kPk, where Pk is the projection onto the subspace l2(Xk).
Similarly, TT ∗ = ⊕mk=1kQk, where Qk is the projection onto the subspace
l2k = {f ∈ l2(X) : TT ∗f = kf} for all k 6= 0. Defining l20 as the orthogonal
complement to all remaining l2k we obtain l2(X) =

⊕m
k=0 l

2
k.

Functions from the family {ex, x ∈ X} where ex(y) = δyx (Kronecker
symbol) forms an orthonormal basis on the Hilbert space l2(X) and the
subspaces l2(Xk) mentioned above. The family {gy = 1√

k

∑
x∈Ey

ex, y ∈ Xk},
forms an orthonormal basis in the space l2k when k 6= 0. The operator T ∗

acts on the basis elements as T ∗ex = eϕ(x), x ∈ X.
Projections Pk and Qk are equivalent and mutually non permutable in

general. The respective partial isometry Uk, k 6= 0, is defined as follows:

Ukey =

{
gy if y ∈ Xk

0, if y /∈ Xk.
(4)

Accordingly,

U∗kgy =

{
ey, if y ∈ Xk

0, if y /∈ Xk.
(5)

Obviously, the operator U = U1 + U2 + · · · + Um is a partial isometry. If ϕ
is surjective (resp. bijective), then U is an isometry (resp. unitary).

Remark 1 In the case when ϕ is surjective the operator U generates an
inner endomorphism βU of the algebra M,

βU(A) = UAU∗

which is an automorphism if ϕ is a bijection. This endomorphism plays the
central role in representing the algebra M as a crossed product in Section 3.

We give important commutation relation between the generators (cf.[6]):

Proposition 1 ([6]) For each function f from B(X):
(i) TMf = MTfT
(ii) T ∗MfT = MT ∗f .
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Remark 2 Similar relations can be deduced for the partial isometries men-
tioned above: for each function f from B(X) and every positive integer k
(i) UkMf = MTfUk
(ii) U∗kMfUk = 1

k
M(T ∗Tf)Ik

where Ik is the indicator of the set Xk.

The algebra M(X) ⊂ Mϕ contains all projections {PY := MI(Y ), Y ⊂ X},
where I(Y ) is the indicator of the set Y , and particulary one-dimensional
projections Px := P{x}. Thus, if (f, ex) 6= 0 for a function f and a point x,
then ex ∈ Mf . If the graph related to ϕ is connected, then the algebra M
is irreducible and contains the ideal K(l2(X)) of compact operators.
Elements of the set E(X) = M(X)

⋃
U
⋃
U∗ we call elementary monomials.

The notion of index (ind) can be defined for each operator from A ∈ E(X),
notably, ind(A) = 0 (1,−1) for A ∈ M(X) (U , or U∗, respectively). We
assume the index of zero operator to be 0. Each finite product of elementary
monomials we call monomial, denoting their set by Mon(X), and considering
indV for V ∈ Mon(X) as the sum of the indices of the factors. It was proved
in [6] that the index of a monomial does not depend of its representation as
a product of elementary monomials.
The length d(V ) of a monomial V is the least number of partial isometries
from U

⋃
U∗ participating in its representation as a product. Obviously,

linear combinations of monomials are dense in M and the set Mon(X) forms
a semigroup with respect to multiplication operation.
It was shown in [6] that by using the notion of index a Z-grading of M can
be established, namely, M = ⊕n∈ZMϕ,n, where Mn is a subspace generated
by monomials of index n.

2 Action of the unit circle

First of all we recall basic facts which will be used in further. Let A be a
C∗-algebra and α be an action of the unit circle S1 on A. For any n ∈ Z the
spectral subspace

An = {A ∈ A : αz(A) = znA for z ∈ S1}

and spectral projection Pn : A −→ A,

Pn(A) =

∫
T

z−nαz(A) dz

are determined. Obviously, the range of the projection Pn is the spectral
subspace An. By the way, the subalgebra A0 is the fixed point subalgebra
under the mentioned action.
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Theorem 1 There exists a continuous morphism α of the group S1 into
the automorphism group Aut(M) such that the corresponding n-th spectral
subspace coincides with the subspace Mn.

Proof. Define an action α of S1 on the elements V of Mon(X) by the
formula

αz(V ) = zindV V.

It is evident that Mn is the n-th spectral subspace. �

Remark, that the stationary subalgebra M0 is fixed point subalgebra under
the action α, i.e. the grading is generated by the covariant system (M, S1, α).
Moreover, the mentioned action is semi-saturated which means that the
algebra M, as a C∗-algebra is generated by the fixed point subalgebra and
the first spectral subspace A1 (see [1]). It is easy to verify that the mapping
defined as

P0(A) =

∫
T

αz(A)dz

is a conditional expectation onto the fixed point subalgebra. Obviously, if
A =

∑m
k=−nAk, where Ak ∈Mk, then of course, P0(

∑m
k=−nAk) = A0.

Let us now turn to the study of the structure of the fixed point subalgebra.
Denote by M

(n)
0 the C∗-algebra generated by monomials V with ind(V ) = 0

and d(V ) ≤ 2n. There is a directed chain of C∗-algebras,

M
(1)
ϕ,0 ⊂M

(2)
ϕ,0 ⊂ · · · ⊂M

(n)
ϕ,0 ⊂ · · · ,

and

Mϕ,0 =
∞⋃
s=1

M
(n)
ϕ,0.

It is easy to understand, that each l2(En
y ) in the representation (2) is a finite-

dimensional space which is invariant with respect to the monomials of zero
index and the length d ≤ 2n (see [6], Corollary 3.3), and consequently, with

respect to all operators from the algebra M
(n)
0 .

Let Iy,n be the indicator of the set En
y . Then, the operator Py,n := MIy,n

belongs to M0 and is a projection onto the subspace l2(En
y ). Obviously, the

operators {Py,n} form in M a block system such that all monomials from

M
(n)
0 are block-diagonalized. Note that each zero index monomial from the

algebra M is block-diagonalized.

Lemma 1 There exists on the algebra M a conditional expectation onto the
subalgebra of multipliers.
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Proof. Let us define PM(A) = ⊕x∈XP{x}AP{x} for A ∈ M. It can be
checked at once that PM is a projection of norm one hence

PM : M −→ M(X)

is a conditional expectation.
�

The following interesting observation is presented for completness.

Corollary 1 There exists a trace state on the algebra M.

Proof. Remind that each state on a commutative C∗-algebra is a trace
state. Thus, if τ is a state on M, then τ ◦ PM is a trace state on M. �

3 Crossed product structure on M

The next goal is to show that in some cases the algebra M can be represented
as the crossed product in the sense of P.J. Stacey, [7]. We bring slightly
simplified definitions formulated in terms of covariant representations.
For any C∗-algebra A and a star-endomorphism α we use a standard notation
A∞ for the inductive limit of the sequence

A
α−−−→ A

α−−−→ A
α−−−→ A

α−−−→ · · · .

Let A be a unital C∗-algebra and β be a ∗-endomorphism of A. The pair
(π, V ) is called the covariant representation of the system (A, β) if π is a
non-degenerated representation π : A −→ B(H) and V is an isometry of
B(H) such that π(β(a)) = V π(a)V ∗ for every a ∈ A (that is π ◦β = βV ◦π).
The crossed product associated with a given system (A, β) with A∞ 6= 0 is a
unital C∗-algebra B together with an identity preserving ∗-homomorphism
ν : A −→ B and an isometry u in B such that

(i) ν(β(a)) = uν(a)u∗ for all a ∈ A (that is, ν ◦ β = βu ◦ ν)

(ii) for every covariant representation (π, V ) of the system (A, β) there
exists a non-degenerated representation τ of B in Hπ with τ ◦ ν = π,
and τ(u) = V

(iii) the algebra B is generated by elements of the form ν(a)unu∗m.

Theorem 2 Let ϕ be a surjective (non injective) mapping. Then the algebra
Mϕ is the crossed product associated to the system (Mϕ0, βUϕ) consisting of
the fixed point subalgebra and the standard inner endomorphism.
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Proof. Under the conditions, the operator U = Uϕ from M = Mϕ (see
remark 1) is isometric (non unitary). It is evident that the fixed point sub-
algebra is invariant under the action of β = βU . Since βn(A) = UnAU∗n

and so U∗nβn(A)Un = A, we have ‖βn(A)‖ = ‖A‖. Then M0∞ 6= 0 and the
pair (id, U) is a covariant representation of the system (M0, βU).
It remains to show that the algebra M is generated by the fixed point sub-
algebra and the isometry U . Indeed, finite sums of operators An ∈Mn are
dense in M ([6]). In the case n > 0 we have An = AnU

∗nUn with AnU
∗n ∈

M0. If n < 0, then similarly An = U∗−nU−nAn with U−nAn ∈Mϕ0. �

4 Example

Let ϕ be the right shift on Z+, ϕ(n) = n+1. The corresponding C∗-algebra
Mϕ is denoted as usual by M. Thus, the algebra is generated by an isometric
operator W = T ∗ and by multipliers. According to the known theorem of
Coburn, operator W generates the so called Toeplitz algebra T.
Our aim is to give a detailed description of the algebra M.

Lemma 2 For each function f ∈ B(X) there exist the functions f1, f2 from
B(X) such that MfW = WMf1 and WMf = Mf2W .

Proof. . The first relation follows immediately from the proposition 1, with
f1 = f ◦ ϕ. As f2 one can take the following function

f2(n) =

{
f(n− 1), if n 6= 0

0, if n = 0.

Equality can be checked by simple substitution. �

Corollary 2 Evidently, M = M(Z+)T.

The Z-grading of the algebra M can be described more precisely.

Corollary 3 We have M =
⊕
n∈Z

Mn where

Mn =

{
M(Z+)W n, if n > 0

W ∗nM(Z+), if n < 0.

Proof. Since the subalgebra T0 corresponding to zero in the Z-grading of
the Toeplitz algebra is generated by the identity operator and by the one-
dimensional basis projections, it is contained in M(Z+). �
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The algebra M contains the ideal of compact operators K(l2(Z+). Let us

consider the quotient algebra M̂ = M�K(l2(Z+)) (the quotient image al-
ways will be denoted by hat). Despite the fact that quotient of the Toeplitz

algebra is commutative as well as the algebra of multipliers, algebra M̂ is

not commutative. However, there is a commutative subalgebra M̂(Z+) in
M. Moreover, this algebra is masa (as an image of masa in Calkin algebra),
[8].
The following result shows that the quotient image of our algebra is a usual
crossed product of the commutative subalgebra and the group Z.

Lemma 3 The algebra M̂ is the crossed product associated with the system

(M̂(Z+), βŴ ), consisting of the quotient image of the algebra of multipliers
and inner automorphism βŴ .

The algebra M̂ inherits the grading of the algebra M (see 3)

M̂ =
⊕
n∈Z

M̂n

where the subspaces M̂n can be described as

M̂n =

{
M̂(Z+)Ŵ n, if n > 0

Ŵ ∗|n|M̂(Z+), if n < 0

where the operator Ŵ is obviously unitary.

Corollary 4 There exists a short exact sequence

0 −→ K(l2(Z+)) −→M −→ M̂ −→ 0.
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