On the structure of C^{*}-algebra generated by a family of partial isometries and multipliers

A. Yu. Kuznetsova and Ye. V. Patrin
Kazan Federal University

Abstract

In the paper we consider an operator algebra generated by a family of partial isometries associated with a selfmapping on a countable set and by multipliers. An action of the unit circle on this algebra is specified that determines its \mathbb{Z}-grading. Under some conditions on the mapping the algebra is isomorphic to the crossed product of its fixed point subalgebra and the semigroup \mathbb{N}.

Key Words: C^{*}-algebra, partial isometry, conditional expectation, Toeplitz algebra, crossed product, $*$-endomorphism
Mathematics Subject Classification 2000: 46L99

Introduction

In the paper we continue to study the structure of the algebra \mathfrak{M}_{φ} (see [6]), generated by a family of partial isometries and by the commutative algebra of multipliers. The starting point is a selfmapping $\varphi: X \longrightarrow X$ on a countable set X with finite numbers of preimages of each point. This mapping generates a directed graph with vertices at the points of the set X and the edges $(x, \varphi(x))$.
This mapping also induces an operator $T_{\varphi}: l^{2}(X) \rightarrow l^{2}(X), \quad T_{\varphi} f=f \circ \varphi$. A family \mathcal{U} of partial isometries $U_{n}, n=1,2, \ldots$ is associated with this composition operator T_{φ} such that $T_{\varphi}=U_{1}+\sqrt{2} U_{2}+\cdots+\sqrt{m} U_{m}+\cdots$. We use the notation \mathcal{U}^{*} for the family of partial isometries $\left\{U_{k}^{*}, k=1,2, \ldots\right\}$. Operators $Q_{\varphi}=\sum_{k \in \mathbb{N}} U_{k} U_{k}^{*}=\sum_{k \in \mathbb{N}} Q_{k}$ and $P_{\varphi}=\sum_{k \in \mathbb{N}} U_{k}^{*} U_{k}=\sum_{k \in \mathbb{N}} P_{k}$ are projections determined by the initial mapping.
The operator algebra generated by such family of partial isometries (finite or countable), was studied in (4, 5).

Let $B(X)$ be the algebra of all bounded functions on X. Each function f from $B(X)$ generates a multiplier operator $M_{f} g=f g, g \in l^{2}(X)$ such that $\left(M_{f}\right)^{*}=M_{\bar{f}}$. The C^{*}-algebra generated by all multipliers is denoted by $\mathrm{M}(X)$. This algebra is maximal commutative subalgebra (masa) in $B\left(l^{2}(X)\right)$.
The main object of study in the paper is the C^{*}-algebra \mathfrak{M}_{φ}, a subalgebra of $B\left(l^{2}(X)\right)$ generated by the algebra $\mathrm{M}(X)$ and partial isometries from \mathcal{U}. It was shown in [6], that \mathfrak{M}_{φ} is, in particular, a nuclear \mathbb{Z}-graded algebra.
The algebra \mathfrak{M}_{φ} can be considered as a modification of the ArzumanianVershik algebra ([2, 3]), which is defined as the regular representation of the algebra generated by the bicyclic semigroup and a commutative algebra with natural commutation relations.

1 Preliminaries

Here we present briefly the basic information that will be needed further. More detailed account can be found in [4, 6].
Throughout what follows some restrictions on the initial mapping are assumed.
We suppose the mapping φ to be fixed satisfying the following conditions:
(i) there is no cyclic element in X, i.e. an element that $\varphi^{n}(x)=x$ for some $n \in \mathbb{N}$
(ii) the number of preimages is uniformly bounded, i.e. a number m exists such that

$$
\begin{equation*}
m=\sup _{x \in X} \operatorname{card}\left\{\varphi^{-1}(x)\right\}<\infty \tag{1}
\end{equation*}
$$

Under the last condition the operator $T=T_{\varphi}$ is bounded, and is a finite sum
$T=U_{1}+\sqrt{2} U_{2}+\cdots+\sqrt{m} U_{m}$ (certain of summand-operators can be zero). In turn, $U_{k}=\frac{1}{k} T P_{k}, k=1,2, \ldots, m$. Thus, $\mathfrak{M}=\mathfrak{M}_{\varphi}$ can be described as a C^{*}-algebra generated by the operator T and the subalgebra $\mathrm{M}(X)$.
To compute the conjugate operator T^{*} we introduce some notations. Let $E_{y}^{n}=\left\{x \in X: \varphi^{n}(x)=y\right\}, n=0,1,2 \ldots$ We assume $E_{y}^{0}=y$ and let the complete preimage of an element $y \in X$ be $E_{y}=E_{y}^{1}=\{x \in X: \varphi(x)=y\}$. An element y for which $E_{y}=\emptyset$ we call φ-initial. Obviously, $E_{y_{1}}^{n} \cap E_{y_{2}}^{n}=\emptyset$ for $y_{1} \neq y_{2}$, and then for each n the set X can be represented as a disjoint union of these subsets, $X=\bigcup_{y \in X} E_{y}^{n}$. Respectively, for any fixed positive integer n we have

$$
\begin{equation*}
l^{2}(X)=\bigoplus_{y \in X} l^{2}\left(E_{y}^{n}\right) \tag{2}
\end{equation*}
$$

Now, evidently the conjugate operator T^{*} can be calculated by the formula

$$
\left(T_{\varphi}^{*} f\right)(y)= \begin{cases}\sum_{x \in E_{y}} f(x), & \text { if } E_{y} \neq \emptyset \tag{3}\\ 0, & \text { if } E_{y}=\emptyset\end{cases}
$$

Accordingly, the set X can be represented as a disjoint union of the subsets $X_{k}=\left\{y \in X: \operatorname{card} E_{y}=k\right\}$, and then we obtain an orthogonal decomposition $l^{2}(X)=\oplus_{k=0}^{m} l^{2}\left(X_{k}\right)$ (assuming $l^{2}\left(X_{k}\right)$ as a $\{0\}$ space if X_{k} is empty) by the subspace described as $l^{2}\left(X_{k}\right)=\left\{f \in l^{2}(X): T^{*} T f=k f\right\}$. Then $T^{*} T=\oplus_{k=1}^{m} k P_{k}$, where P_{k} is the projection onto the subspace $l^{2}\left(X_{k}\right)$.
Similarly, $T T^{*}=\oplus_{k=1}^{m} k Q_{k}$, where Q_{k} is the projection onto the subspace $l_{k}^{2}=\left\{f \in l^{2}(X): T T^{*} f=k f\right\}$ for all $k \neq 0$. Defining l_{0}^{2} as the orthogonal complement to all remaining l_{k}^{2} we obtain $l^{2}(X)=\bigoplus_{k=0}^{m} l_{k}^{2}$.

Functions from the family $\left\{e_{x}, x \in X\right\}$ where $e_{x}(y)=\delta_{x}^{y}$ (Kronecker symbol) forms an orthonormal basis on the Hilbert space $l^{2}(X)$ and the subspaces $l^{2}\left(X_{k}\right)$ mentioned above. The family $\left\{g_{y}=\frac{1}{\sqrt{k}} \sum_{x \in E_{y}} e_{x}, y \in X_{k}\right\}$, forms an orthonormal basis in the space l_{k}^{2} when $k \neq 0$. The operator T^{*} acts on the basis elements as $T^{*} e_{x}=e_{\varphi(x)}, x \in X$.

Projections P_{k} and Q_{k} are equivalent and mutually non permutable in general. The respective partial isometry $U_{k}, k \neq 0$, is defined as follows:

$$
U_{k} e_{y}= \begin{cases}g_{y} & \text { if } y \in X_{k} \tag{4}\\ 0, & \text { if } y \notin X_{k}\end{cases}
$$

Accordingly,

$$
U_{k}^{*} g_{y}= \begin{cases}e_{y}, & \text { if } y \in X_{k} \tag{5}\\ 0, & \text { if } y \notin X_{k}\end{cases}
$$

Obviously, the operator $U=U_{1}+U_{2}+\cdots+U_{m}$ is a partial isometry. If φ is surjective (resp. bijective), then U is an isometry (resp. unitary).

Remark 1 In the case when φ is surjective the operator U generates an inner endomorphism β_{U} of the algebra \mathfrak{M},

$$
\beta_{U}(A)=U A U^{*}
$$

which is an automorphism if φ is a bijection. This endomorphism plays the central role in representing the algebra \mathfrak{M} as a crossed product in Section 3.

We give important commutation relation between the generators (cf.[6]):
Proposition 1 ([6]) For each function f from $B(X)$:
(i) $T M_{f}=M_{T_{f}} T$
(ii) $T^{*} M_{f} T=M_{T^{*} f}$.

Remark 2 Similar relations can be deduced for the partial isometries mentioned above: for each function f from $B(X)$ and every positive integer k
(i) $U_{k} M_{f}=M_{T f} U_{k}$
(ii) $U_{k}^{*} M_{f} U_{k}=\frac{1}{k} M_{\left(T^{*} T f\right) I_{k}}$
where I_{k} is the indicator of the set X_{k}.
The algebra $\mathrm{M}(X) \subset \mathfrak{M}_{\varphi}$ contains all projections $\left\{P_{Y}:=M_{I(Y)}, Y \subset X\right\}$, where $I(Y)$ is the indicator of the set Y, and particulary one-dimensional projections $P_{x}:=P_{\{x\}}$. Thus, if $\left(f, e_{x}\right) \neq 0$ for a function f and a point x, then $e_{x} \in \mathfrak{M} f$. If the graph related to φ is connected, then the algebra \mathfrak{M} is irreducible and contains the ideal $K\left(l^{2}(X)\right)$ of compact operators.
Elements of the set $E(X)=M(X) \bigcup \mathcal{U} \bigcup \mathcal{U}^{*}$ we call elementary monomials. The notion of index (ind) can be defined for each operator from $A \in E(X)$, notably, $\operatorname{ind}(A)=0(1,-1)$ for $A \in M(X)\left(\mathcal{U}\right.$, or \mathcal{U}^{*}, respectively). We assume the index of zero operator to be 0 . Each finite product of elementary monomials we call monomial, denoting their set by $\operatorname{Mon}(X)$, and considering ind V for $V \in \operatorname{Mon}(X)$ as the sum of the indices of the factors. It was proved in [6] that the index of a monomial does not depend of its representation as a product of elementary monomials.
The length $\mathrm{d}(V)$ of a monomial V is the least number of partial isometries from $\mathcal{U} \cup \mathcal{U}^{*}$ participating in its representation as a product. Obviously, linear combinations of monomials are dense in \mathfrak{M} and the set $\operatorname{Mon}(X)$ forms a semigroup with respect to multiplication operation.
It was shown in [6] that by using the notion of index a \mathbb{Z}-grading of \mathfrak{M} can be established, namely, $\mathfrak{M}=\overline{\oplus_{n \in \mathbb{Z}} \mathfrak{M}_{\varphi, n}}$, where \mathfrak{M}_{n} is a subspace generated by monomials of index n.

2 Action of the unit circle

First of all we recall basic facts which will be used in further. Let \mathfrak{A} be a C^{*}-algebra and α be an action of the unit circle S^{1} on \mathfrak{A}. For any $n \in \mathbb{Z}$ the spectral subspace

$$
\mathfrak{A}_{n}=\left\{A \in \mathfrak{A}: \alpha_{z}(A)=z^{n} A \quad \text { for } \quad z \in S^{1}\right\}
$$

and spectral projection $\mathcal{P}_{n}: \mathfrak{A} \longrightarrow \mathfrak{A}$,

$$
\mathcal{P}_{n}(A)=\int_{\mathrm{T}} z^{-n} \alpha_{z}(A) \mathrm{d} z
$$

are determined. Obviously, the range of the projection \mathcal{P}_{n} is the spectral subspace \mathfrak{A}_{n}. By the way, the subalgebra \mathfrak{A}_{0} is the fixed point subalgebra under the mentioned action.

Theorem 1 There exists a continuous morphism α of the group S^{1} into the automorphism group Aut (\mathfrak{M}) such that the corresponding n-th spectral subspace coincides with the subspace \mathfrak{M}_{n}.

Proof. Define an action α of S^{1} on the elements V of $\operatorname{Mon}(X)$ by the formula

$$
\alpha_{z}(V)=z^{\operatorname{ind} V} V
$$

It is evident that \mathfrak{M}_{n} is the n-th spectral subspace.
Remark, that the stationary subalgebra \mathfrak{M}_{0} is fixed point subalgebra under the action α, i.e. the grading is generated by the covariant system ($\left.\mathfrak{M}, S^{1}, \alpha\right)$. Moreover, the mentioned action is semi-saturated which means that the algebra \mathfrak{M}, as a C^{*}-algebra is generated by the fixed point subalgebra and the first spectral subspace \mathfrak{A}_{1} (see [1]). It is easy to verify that the mapping defined as

$$
\mathcal{P}_{0}(A)=\int_{\mathbf{T}} \alpha_{z}(A) \mathrm{d} z
$$

is a conditional expectation onto the fixed point subalgebra. Obviously, if $A=\sum_{k=-n}^{m} A_{k}$, where $A_{k} \in \mathfrak{M}_{k}$, then of course, $\mathcal{P}_{0}\left(\sum_{k=-n}^{m} A_{k}\right)=A_{0}$.
Let us now turn to the study of the structure of the fixed point subalgebra. Denote by $\mathfrak{M}_{0}^{(n)}$ the C^{*}-algebra generated by monomials V with $\operatorname{ind}(V)=0$ and $\mathrm{d}(V) \leq 2 n$. There is a directed chain of C^{*}-algebras,

$$
\mathfrak{M}_{\varphi, 0}^{(1)} \subset \mathfrak{M}_{\varphi, 0}^{(2)} \subset \cdots \subset \mathfrak{M}_{\varphi, 0}^{(n)} \subset \cdots,
$$

and

$$
\mathfrak{M}_{\varphi, 0}=\bigcup_{s=1}^{\infty} \mathfrak{M}_{\varphi, 0}^{(n)} .
$$

It is easy to understand, that each $l^{2}\left(E_{y}^{n}\right)$ in the representation (2) is a finitedimensional space which is invariant with respect to the monomials of zero index and the length $\mathrm{d} \leq 2 n$ (see [6], Corollary 3.3), and consequently, with respect to all operators from the algebra $\mathfrak{M}_{0}^{(n)}$.
Let $I_{y, n}$ be the indicator of the set E_{y}^{n}. Then, the operator $P_{y, n}:=M_{I_{y, n}}$ belongs to \mathfrak{M}_{0} and is a projection onto the subspace $l^{2}\left(E_{y}^{n}\right)$. Obviously, the operators $\left\{P_{y, n}\right\}$ form in \mathfrak{M} a block system such that all monomials from $\mathfrak{M}_{0}^{(n)}$ are block-diagonalized. Note that each zero index monomial from the algebra \mathfrak{M} is block-diagonalized.

Lemma 1 There exists on the algebra \mathfrak{M} a conditional expectation onto the subalgebra of multipliers.

Proof. Let us define $\mathcal{P}_{M}(A)=\oplus_{x \in X} P_{\{x\}} A P_{\{x\}}$ for $A \in \mathfrak{M}$. It can be checked at once that \mathcal{P}_{M} is a projection of norm one hence

$$
\mathcal{P}_{M}: \mathfrak{M} \longrightarrow \mathrm{M}(X)
$$

is a conditional expectation.

The following interesting observation is presented for completness.
Corollary 1 There exists a trace state on the algebra \mathfrak{M}.
Proof. Remind that each state on a commutative C^{*}-algebra is a trace state. Thus, if τ is a state on \mathfrak{M}, then $\tau \circ \mathcal{P}_{M}$ is a trace state on \mathfrak{M}.

3 Crossed product structure on \mathfrak{M}

The next goal is to show that in some cases the algebra \mathfrak{M} can be represented as the crossed product in the sense of P.J. Stacey, 7]. We bring slightly simplified definitions formulated in terms of covariant representations. For any C^{*}-algebra \mathfrak{A} and a star-endomorphism α we use a standard notation \mathfrak{A}_{∞} for the inductive limit of the sequence

$$
\mathfrak{A} \xrightarrow{\alpha} \mathfrak{A} \xrightarrow{\alpha} \mathfrak{A} \xrightarrow{\alpha} \mathfrak{A} \xrightarrow{\alpha} \cdots .
$$

Let \mathfrak{A} be a unital C^{*}-algebra and β be a $*$-endomorphism of \mathfrak{A}. The pair (π, V) is called the covariant representation of the system (\mathfrak{A}, β) if π is a non-degenerated representation $\pi: \mathfrak{A} \longrightarrow B(H)$ and V is an isometry of $B(H)$ such that $\pi(\beta(a))=V \pi(a) V^{*}$ for every $a \in \mathfrak{A}$ (that is $\pi \circ \beta=\beta_{V} \circ \pi$). The crossed product associated with a given system (\mathfrak{A}, β) with $\mathfrak{A}_{\infty} \neq 0$ is a unital C^{*}-algebra \mathfrak{B} together with an identity preserving $*$-homomorphism $\nu: \mathfrak{A} \longrightarrow \mathfrak{B}$ and an isometry u in \mathfrak{B} such that
(i) $\nu(\beta(a))=u \nu(a) u^{*}$ for all $a \in \mathfrak{A}$ (that is, $\nu \circ \beta=\beta_{u} \circ \nu$)
(ii) for every covariant representation (π, V) of the system (\mathfrak{A}, β) there exists a non-degenerated representation τ of \mathfrak{B} in H_{π} with $\tau \circ \nu=\pi$, and $\tau(u)=V$
(iii) the algebra \mathfrak{B} is generated by elements of the form $\nu(a) u^{n} u^{* m}$.

Theorem 2 Let φ be a surjective (non injective) mapping. Then the algebra \mathfrak{M}_{φ} is the crossed product associated to the system $\left(\mathfrak{M}_{\varphi 0}, \beta_{U_{\varphi}}\right)$ consisting of the fixed point subalgebra and the standard inner endomorphism.

Proof. Under the conditions, the operator $U=U_{\varphi}$ from $\mathfrak{M}=\mathfrak{M}_{\varphi}$ (see remark 11) is isometric (non unitary). It is evident that the fixed point subalgebra is invariant under the action of $\beta=\beta_{U}$. Since $\beta^{n}(A)=U^{n} A U^{* n}$ and so $U^{* n} \beta^{n}(A) U^{n}=A$, we have $\left\|\beta^{n}(A)\right\|=\|A\|$. Then $\mathfrak{M}_{0 \infty} \neq 0$ and the pair (id, U) is a covariant representation of the system $\left(\mathfrak{M}_{0}, \beta_{U}\right)$.
It remains to show that the algebra \mathfrak{M} is generated by the fixed point subalgebra and the isometry U. Indeed, finite sums of operators $A_{n} \in \mathfrak{M}_{n}$ are dense in $\mathfrak{M}\left([6)\right.$. In the case $n>0$ we have $A_{n}=A_{n} U^{* n} U^{n}$ with $A_{n} U^{* n} \in$ \mathfrak{M}_{0}. If $n<0$, then similarly $A_{n}=U^{*-n} U^{-n} A_{n}$ with $U^{-n} A_{n} \in \mathfrak{M}_{\varphi 0}$.

4 Example

Let φ be the right shift on $\mathbb{Z}_{+}, \varphi(n)=n+1$. The corresponding C^{*}-algebra \mathfrak{M}_{φ} is denoted as usual by \mathfrak{M}. Thus, the algebra is generated by an isometric operator $W=T^{*}$ and by multipliers. According to the known theorem of Coburn, operator W generates the so called Toeplitz algebra \mathfrak{T}.
Our aim is to give a detailed description of the algebra \mathfrak{M}.
Lemma 2 For each function $f \in B(X)$ there exist the functions f_{1}, f_{2} from $B(X)$ such that $M_{f} W=W M_{f_{1}}$ and $W M_{f}=M_{f_{2}} W$.

Proof. . The first relation follows immediately from the proposition 1, with $f_{1}=f \circ \varphi$. As f_{2} one can take the following function

$$
f_{2}(n)= \begin{cases}f(n-1), & \text { if } n \neq 0 \\ 0, & \text { if } n=0\end{cases}
$$

Equality can be checked by simple substitution.
Corollary 2 Evidently, $\mathfrak{M}=\overline{M\left(\mathbb{Z}_{+}\right) \mathfrak{T}}$.
The \mathbb{Z}-grading of the algebra \mathfrak{M} can be described more precisely.
Corollary 3 We have $\mathfrak{M}=\bigoplus_{n \in \mathbb{Z}} \overline{\mathcal{M}_{n}}$ where

$$
\mathfrak{M}_{n}=\left\{\begin{array}{lll}
\mathrm{M}\left(\mathbb{Z}_{+}\right) W^{n}, & \text { if } & n>0 \\
W^{* n} \mathrm{M}\left(\mathbb{Z}_{+}\right), & \text {if } \quad n<0 .
\end{array}\right.
$$

Proof. Since the subalgebra \mathfrak{T}_{0} corresponding to zero in the \mathbb{Z}-grading of the Toeplitz algebra is generated by the identity operator and by the onedimensional basis projections, it is contained in $\mathrm{M}\left(\mathbb{Z}_{+}\right)$.

The algebra \mathfrak{M} contains the ideal of compact operators $K\left(l^{2}\left(\mathbb{Z}_{+}\right)\right.$. Let us consider the quotient algebra $\widehat{\mathfrak{M}}=\mathfrak{M} / K\left(l^{2}\left(\mathbb{Z}_{+}\right)\right)$(the quotient image always will be denoted by hat). Despite the fact that quotient of the Toeplitz algebra is commutative as well as the algebra of multipliers, algebra $\widehat{\mathfrak{M}}$ is not commutative. However, there is a commutative subalgebra $\widehat{\mathrm{M}\left(\mathbb{Z}_{+}\right)}$in \mathfrak{M}. Moreover, this algebra is masa (as an image of masa in Calkin algebra), [8].
The following result shows that the quotient image of our algebra is a usual crossed product of the commutative subalgebra and the group \mathbb{Z}.

Lemma 3 The algebra $\widehat{\mathfrak{M}}$ is the crossed product associated with the system $\left(\widehat{\mathrm{M}\left(\mathbb{Z}_{+}\right)}, \beta_{\widehat{W}}\right)$, consisting of the quotient image of the algebra of multipliers and inner automorphism $\beta_{\widehat{W}}$.

The algebra $\widehat{\mathfrak{M}}$ inherits the grading of the algebra \mathfrak{M} (see 3)

$$
\widehat{\mathfrak{M}}=\bigoplus_{n \in \mathbb{Z}} \overline{\mathfrak{M}_{n}}
$$

where the subspaces $\widehat{\mathfrak{M}_{n}}$ can be described as

$$
\widehat{\mathfrak{M}_{n}}= \begin{cases}\widehat{\mathrm{M}\left(Z_{+}\right)} \widehat{W}^{n}, & \text { if } n>0 \\ \widehat{W^{*}|n|} \widehat{\mathrm{M}\left(\mathbb{Z}_{+}\right)}, & \text {if } n<0\end{cases}
$$

where the operator \widehat{W} is obviously unitary.
Corollary 4 There exists a short exact sequence

$$
0 \longrightarrow K\left(l^{2}\left(\mathbb{Z}_{+}\right)\right) \longrightarrow \mathfrak{M} \longrightarrow \widehat{\mathfrak{M}} \longrightarrow 0
$$

References

[1] R. Exel, Circle actions on C^{*}-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (2) (1994), 361-401.
[2] R. Exel, A. Vershik, C^{*}-algebras of irreversible dynamical systems, Canad. J. Math., 58 (1) (2006), 39-63.
[3] V. Arzumanian, Operator algebras associated with non-singular endomorphisms of Lebesgue space, J. Conterporary Mathematical Analysis, 21 (6) (1986), 596-616.
[4] S.A. Grigoryan, A.Yu Kuznetsova, C^{*}-algebras Generated by Mappings [in Russian], Math. Notes 87(5) (2010), 663-671.
[5] S. Grigoryan, A. Kuznetsova, On a class of nuclear C^{*}-algebras, Operator Theory Summer, Proc. of 23 rd Int. Conf. on Operator Theory (Timisoara, Romania, 2010), 39-50.
[6] A.Yu. Kuznetsova, E.V. Patrin, One class of C^{*}-algebras generated by a family of partial isometries and multiplicators, Russian Mathematics (Iz. VUZ) 56(6) (2012), 37-47.
[7] P.J. Stacey, Crossed product of C*-algebras by*-endomorphisms, J. Austral. Math. Soc., Series A, 54 (1993), 204-212.
[8] S.Shelan, J. Steprans, Masas in the Calkin algebra without the continiuum hypothesis, J. Applied Analysis 17 (2011), 69-89.
A.Yu. Kuznetsova

Institute of Physics
Kazan Federal University
18, Kremlevskaya str.
20008 Kazan, Russia
alla.kuznetsova@gmail.com

Ye.V. Patrin
Institute of Physics
Kazan Federal University
18, Kremlevskaya str.
20008 Kazan, Russia
evgeniipatrin@mail.ru
Please, cite to this paper as published in
Armen. J. Math., V. 7, N. 1(2015), pp. 5058

