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Operator [I" on a submanifold of Riemannian
manifold and its applications
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Abstract. The paper generalizes the self-adjoint differential
operator [J on hypersurfaces of a constant curvature manifold
to submanifolds, introduced by Cheng-Yau. Using the series of
such operators, a new way to prove Minkowski-Hsiung integral
formula is given and some integral formulas for compact subman-
ifolds is derived. An application to a hypersurface of a Rieman-
nian manifold with harmonic Riemannian curvature is presented.
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Introduction

Denote by V and W an n-dimensional and a p-dimensional vector spaces, re-
spectively, V* the dual space of V', {e;}(i = 1,...,n) and {e,}(a =1,...,p)
bases of V' and of W, respectively. Let the tensor D = ) Dfw; ®w; ®e, €
[e 2% 2%)
V'@ V* QW be symmetric which means that Df; = D, where {w;} is
the dual basis of {e;}. In this paper we first define the r-th Newton tensor
Tiy(D) (r=0,1,...,n), determined by the tensor D of type (1, 2) which will
be called the generalized Newton tensor. When V' is the tangent space to
a submanifold at some point, and D is the second fundamental form of the
submanifold (associated with the metric), the r-th elementary symmetric
functions are called the modified mean curvatures. Following this, we define
in the paper the r-th modified mean curvatures of Df; and call them Q,. We

also study some algebraic properties of the r-th Newton tensor associated
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No.2001 L21430) of Minnan Normal University


http://www.flib.sci.am/eng/journal/Math/

Operator (" on a submanifold of Riemannian manifold and its applications

with r-th modified mean curvatures and the properties of them for a sub-
manifold of a space with constant sectional curvature. We note that these
definitions and properties are natural generalizations of the classical New-
ton tensor and the r-th elementary symmetric polynomial’s definitions and
properties (see [I7]). Then, following the operator introduced by Cheng-Yau
in [6] and using the Newton tensor we induce a series of differential oper-
ators [J” which are adjoint relative to the L?-inner product. In the study
of those properties, we find a new way to prove Minkowski-Hsiung integral
formula and derive some integral formulas for compact submanifolds, which
are analogous to the usual Minkowski-Hsiung integral formula. Considering
the case [J" acts on @), we obtain two general conclusions. Finally, we fo-
cus on the [J? operator for a hypersurface of a Riemannian manifold with
harmonic Riemanian curvature to study and obtain a result of [20].

I’d like to thank Prof. Guo Zhen for brilliant guidance and stimulations.

1 The generalized Newton tensor and the
higher order mean curvatures

We begin with an algebra, first recalling some fundamental formulas. Let V'
be a (real) n-dimensional vector space, and D : V' — V be a diagonalizable
linear transformation. We fix a basis {v;,7 = 1,...,n} of V, and denote the
matrix of D relative to this basis by (D;;), and the eigenvalues of D relative
to this basis by kq, ..., k,.

The r-th elementary symmetric function is

Z 1 Z
QT’ = kil e kir = ﬁ kil o kir'
1<y <<ip<n S, i

The r-th Newton tensor is
T(r)(D) = QT’I - QT’—lD + -+ (_1)TD’V"

where D, denotes the r-times linear transformation on the vector space V'
by D. Relative to {v;}, the matrix of 7,(D) is

Tiryij = Qrdij — Qr_1Dyj + -+ (=1)"Dy, - - - D; 5.

R. C. Reilly gave the following properties (see [17]):

1). Toi1)(D) = Qpyad — DTy , 7 =0,1,...,n, where I is the identity
transformation.

2). Te)(D) = DTy
3). (r+1)Qr41 = Trace(DT,)).
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4). Let D = D(t) be a smooth one-parameter family of diagonalizable

transformations of V. Then for r =0, 1,...,n we have
aQrJrl D
= Trace(—T},)).
We recall the definition of the generalized Kronecker symbols (see [4]):
+1, if (j1,...,Jr) are distinct, and (j1,...,7,)
o is an even permutation of (i, ...,4,);
ept =9 —1, if (ji,...,j,) are distinct, and (ji,...,J,)
is an odd permutation of (iy,...,%,.);
0, other case .

Remark 1.1 Moreover, the generalized Kronecker symbol can be expressed
in terms of the matrix

Oirj Oivjir
i1 5i2j1 52’2]}
Jidr = . (1.1)
5irj1 5irjr
where 0;; is the standard Kronecker delta, which means:
s _ [+ =
Yo 0, if i# 7.
Lemma 1.1 1
Q= 53 i Dag e D 12)
1 D1 yeeeylpst
T(T)ij = ] Z j117 o leljl T Dirjr' (1'3)
P’l”OOf. For Diljl = kh 51'1]'17 ey Dirjr = k 5irjr7 we have
117 ’ZT . .« .. . - 111, ’ Y .
T' Z Jr DZl]l Dlr]r T" Z klr

= FZkk

- Q.

.From the right part of . we know that the generalized Kronecker sym-
bol can be expressed in terms of . then if we express the matrix of

52 Z; by unfolding the matrix along its last line, we obtain
7/17 ’Zr,l . o o o . . 7’1? 717‘72 P .
Tl Z 317 I 2131 DWT 7"' Z 11, oirsd 11 klr

Q’f‘ ij
Using the property 1 given by R. C. Reilly, we obtain that (1.3)) is true. O

rfl)lel]-
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Remark 1.2 These can be viewed as the second expression of the r-th ele-
mentary symmetric function and the r-th Newton tensor (the papers [11, [16]
make use of this kind of expression).

Let V and W denote an n-dimensional and a p-dimensional vector spaces,
respectively, V* denotes the dual space of V| {e;} (i = 1,...,n) and

{ea} (a=1,...,p) denote bases of V' and of W, respectively.
Let D = E D ‘Wi QWi ®eq € VIRQVTQ@W be symmetric which means
O{,’L,j

Dgs = DS;, where {w;} is the dual basis to {e;}. In this paper we begin with
deﬁnlng the 7-th Newton tensor T(,)(D)(r = 0,1,...,n). Closely following
the second exposition for the Newton tensor, and imitating the definition of
the mean curvature in [I7, [I1], we define the generalized Newton tensor as

follows:

Definition 1.1 1) If r is an odd integer, r = 2k + 1 (k = 0,1,...), then
Ti(D) is a mapping Tiy(D) : VQV* QW — V*QV* such that for
Z:ij‘-wi®wj®ea

1
T(r)(D)Z 5117 byt (D‘?‘l, Do ) .. (D‘?‘k . D% )(DZTJTZIJ)(JJZ (029) Wwj.

- /r-l J1sensdirsl 11717 1272 tr—2Jr—2"" tr—1Jr—1

Denoting 17, (D) = Letbtnt(pon Doty (DY D VD . we

! J1,endrsl 11717 2]z ir—2fr—27 " ir—1Jr—1 rJr?
have

T(r)<D>Z = T{f«)uZﬁwi @ wy, (T(r)(D)Z)ij = T(Cﬁ)uzﬁ

2) If v is an even integer, r = 2k (k =0,1,...), then T(;)(D) is detemined
as a map Ty (D) : VQV QW — V*QV* QW such that

1 B1 yeneslp sl « e [ « a
Tiy(D)Z = =i (DL DEL Y- (D D% ) 28w, @ wj @ eq.

Tl I g N1 22 tr—1Jr—1

Denoting T(,yu(D) = %5?1 """ (DL DXL Y (DY D% ), we obtain

.717"'7]7‘7l 71]J1 1272 Tr 1]7“ 1
T(r)(D)Z = T(r)ilZlo;‘wi R w;j & €q, (T(T)(D)Z)% = T(r)ilZl(;‘-

The map T(,y(D) is called the generalized Newton transformation (or
tensor) of D.

Remark 1.3 For convenience to compute, in this Section, we shall agree
that repeated indices are summed, and Ti)(D) is viewed as T(,y if 7 = 0,
Toyij = 0ij, tf r = n, T(nyi; = 0. Also, we suppose T,y = T(r)(D)

We are really interested only in the situation where V is the tangent space
to a submanifold, and D is the second fundamental form of the submanifold
(associated with the metric), the r-th elementary symmetric functions calling
the r-th modified mean curvatures. Then, following this we define the r-th
modified mean curvatures of Dj; and call them Q.
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Definition 1.2 1) If r is an odd integer, r = 2k + 1, then define

1
Q. = — e (DEL DS Y- (DS DR D2 e

,,a' J1yeeesJr 1171 1272 Tr 2]7‘ 2 lr—1Jr—1 L)y OO

1
o Ayl Qi ai Ok Ak o
QT : 1531, ,JT<D1131D1212) (Dlr 2Jr— 2Dzr 1Jr— 1)Dirjr‘

2) 1If ris an even integer, r = 2k, then define
1

[ SRR al al ag ay
Qr = Tlgjly---vjr<D11J1D1232) (Dzr 1Jr— 1Dirjr)'

Remark 1.4 If o, is a formal r-th mean curvature of D, then it is not
difficult to know that Q, = (:f) o, where (:‘) = Suppose Qo = 1, and
if ris 1, then Qy = noy = Zi’a Dge,.

(n r) 'r'

We are going to prove some algebraic properties of the r-th Newton tensor
associated with the r-th modified mean curvatures. Those properties are
natural generalizations of the algebraic properties of classical Newton tensor
and the r-th elementary symmetric polynomial.

Lemma 1.2
(r +1)Qp41 = Trace(T(,)D). (1.4)

Proof. 1f r is an odd integer,
Trace(T(,D) = TG,Dp

1
— Ell,...,l»p ’L (Dal Da1 ) . (Dak Dak )DOL DlZ

rl It sl 117171272 tp—2fr—2" lp_1Jr—1 i Jr

! 1 . o
— (T—I— ) 215eeesrylr 1 (Dal D™ ) (Dak D%k )

r! (T+ 1)! Tl JroJr41 NV 81517 122 lp—2Jr—2" tr—1Jr—1

(Dak+1 D'Otk+1’ )

irJr Tr4+1Jr+1

= (r+1)Qr.
If r is an even integer,
Trace(T(,) D) = T(r)izDﬁea
= D, D) (DR, D2 ) Dfe

/r-l J1yeeesdrsl 21J17 1272 Gr—1Jr—1
(T + 1) ]' B9 yeneslp 41 fos «@ [e% «@
- r! (7“ + 1)!€j17---7j7r,jrr+1<D%11JlD12132) ’ (Dzrk 1Jr— 1Dir§r)
«
irt1jrp1 G
— (7” + 1)QI‘+1'
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Lemma 1.3 If r is an odd integer,
T6yis = Tisi (1.5)
If r is an even integer,
Twyij = Ty (1.6)
Proof. Using the symmetry of D, if r is an odd integer, set r = 2k + 1,
1 .
o _ 1yl ai ag ag a
T(?")ij - T|€J17---,ij( 11]1’ sz) (D'Lr 2Jr—27 Di'rfljr71>Dirjr
1 o
P J17"'7]7‘7.7 aq i . (673 Qe (e
- 7,|€7417~-~,i7‘»7; (DjlllDJle) (D]r 20— ZDjrflirfl)Djrir
1
_ Jirendrd ()1 o Y | ag o o
_ Tlgllv--- iyt (D2131D12]2> (DZT 2Jr— 2Dir—1jr—1)DiTjr
1 . .
I 5 RV} [e3} a1 Qg Ak a
- 7»' jl""ij’f‘7i( 7:1.]‘113742.72) (D1r72]'r72 747'71]T71)D17‘]r
o o
= Toyi-
If r is an even integer, set r = 2k,
1 . .
AU ) FERRRY 7ortd aq g ag
T(T)”LJ o j1,~~~,jmj( 11J1’D12J2) (D%r 1Jr— 1’Dirjr)
1 .
— J1seesdrsd aq (3} . 675 Qg
- ,’n|8i17--'1r,l (DjluDjzzz) (D]r 1r— 1Djrir)
1 .
- Jl,m»Jr:J aq al Qg g
o T|5i1,--- pyl (Duthm) (Dzr 1Jr— lD'L'r]r>
1. ..
[ 5 PSRN 7o | ay ar L. ag Qg
= e aa(Di Digg,) - (DRt D)
= Twji-
[
Lemma 1.4 Ifr is an even integer,
J— [e7 [e]]
Ti(D) = Q.1 —T(;_) D" (1.7)
Ifr=1,
« _ « o
T6y(D) = Q1 — Tig) D (1.8)
Proof. If r is an even integer,
I & 1 - PO #o a1l yoa | oy o
T(T)@J - 7,.'Ejl,jQy--qu,j(D11]1D12]2) (Dlr 1Jr— 1Diro)
1 o
_ 11 Z2al3’ iyt _ gi2 11,83 5eey0r,0 1 01,225--5lr—1,0r
- T'<5 J1:9252Jr—1:Jr 5 € 1042 seeesdr—1,ir '+5j€j17j27---7j7‘717j7')
aq [e%1 (673 g
<D%1J1D12]2) (D'Lr 1Jr— 1Dirjr)

11
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1 ...
— _51‘272-37”'71?“’1/ ) (Da1 Doq ). (Dak Dak )

/rl J15325--3Jr—1,]r JJ17 1292 lr—1Jr—1"" trjr
T 01,035y al nai ag ag
T|€j17j27---7jr—17jT(DHJID]JQ) (D'Lr 1Jr— lDi'rjr)

+ ..
1 .
i 811712 ,,,,, ip—1,%r (Doq Dot ) (Doék D% )(51

rl J15325e50r—1:0r 17177 1272 tr—1Jr—1"" trjr/7J

1 o
et (Do2 poa (DS DEs (DR, D)

/,4' J2,73--5Jr,J1 373 1474 (28 1]7" 1 1272 J1J1

1
__621,7,3,...%,@ (Da2 Da2 ). (DOék; DOék )(Doq Dal)

,rl J1533--+37r5J2 13737 t4J4 1Jr—1""trjr 1J17 J3J2

+Q:0;
_ _isill,i.g,m,l:rflyi(Dal Do ) (Dak D+ )(Da DIO;)

7l J1,J2-dr—1,0 1117 1272 Gp—3Jr—3" tr—2jr—2 Ir—1Jr—1

1 .
_ et pon pat )LDk D2 (D2 DR

7! J1,J2-odr—1,0 11517 i2J2 tr—3Jr—3"" tr—2jr—2 ir—1Jr—1

+Q,0
_ 1 Da ]' o4 Da (51
= _FT(T 1)il T ET(rq)u 1+ Qrd;

= Qrdz T(r lll‘Dlj

Ifr=1
T6(D) = €305,
= 5;1551)?131 - 5“51 Dih
— Qadl _ 57, DJO;l
= Q70 — Ty, Df;, -
O

Lemma 1.5 Let D = D(t) be a smooth one-parameter family of D, then
forr=1,...,n+1 we have
If r 1s even,

0Q, 6Da
5 = Trace(T;_ ) 5 —). (1.9)
Ifr =1,
QY oD*

L — Trace(T (o) ). (1.10)

ot ot

Proof. 1f r is even, from the equation

(1)@, = Trace(T(,—1yD)



and

we have

Ifr=1,
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1
QT‘ = 117 :jT(D’?ﬁjl

Dal ) . (Dak Dak )’

r‘ .71: 1272 T 1]7‘ 1 ir]r
. ay
Lt (8D11J1 Do ag aDizjz) . ( Ok Xk )
7! g1 dr 12J2 11J1 Ot lr—1Jr—1"" trjr
+ . ..
l 5enyir ol ar ., k-1 Af—1
+r 150 Jr (D21J1D12J2) (Dir—3jr—3 ir—2jr—2)
«
(6D1r—13'r 1 Dak + Dak ’brkj'r )
irJ Gr—1 1 Ot
6”’ (Dmﬂbm ) _T_ .j(Dak 1 Ak —1 )
! J17 SJr Va1 g1 T g2 lp—3Jr—3"" lr—2Jr—2
oDk o
( ip—1Jr— L D% Dak im>
ot 'Lr]r —1Jr—1 ot
4+ ...
11, i [e%1 o1 . Af—1 Qp—1
+ J17 wJr (DthDzwz) ( ir—3jr—3 ir—2jr—2)
ag
(aD'LT‘ 1Jr—1 Dak Dak irir )
ot ’Lr]r —1Jr— ot
(r=1)! 1 i1,. a1 al ap—1 ap—1
(rfl)! j17-~-7jr(DZ1J1D12J2) (Dir—:sjr—:s ir—2jr—2)
g
7"rfl]'r 1 (875 ag irjr
ot D'Lr]r + D —1Jr—1 ot )
a1 . Qi1 A1
rl (r—1!) 1 1131D12]2) (DiT73jr73 i'r72jr72)

3
8D1r—1]r 1 Dak-
Bt ir])r
AT [e%1 o1
e (D D;

Jr 11717 12]2

(

J’_ .

+(7”—1)! 1 11, 7 (Doq
( + D
2

(r— 1)'

2 1 U15eeslp
T'(T' 1) 6]17 7jr(D

X
A 8Dirjr

(r—1)irjr Ot
OD>k

+
+5 T(r‘ 1)Zr]r 8izjr

o1 ot ) (D.Oék—l'

7/1]1 2272

X

’brj'r)
ir—1jr—1 Ot

) (DS

Qp—1 ) Qg

lr—3Jr—3"" tr—2Jr—2

O —1 ) g

lr—3Jr—3" tr—2jr—2

O(e D )

J1 11]1

ot
oD

21J1
6]1 825
oD*
Trace(7{o) T ).

i'r‘—ljr—l

lr—1Jr—1

Yk

rir

ot

ot

13
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2 Operator [I" on a submanifold of a space
with constant sectional curvatures and it’s
applications

In this Section, we follow closely the exposition of the moving frame in
[3, 21], and we agree that @, is a vector, formal in a submanifold like as
in the above Section, however being the modified mean curvature function
in a hypersurface. Let z : M™ — N™P be an isometric immersion of n-
dimensional Riemannian M"™ as a submanifold in (n + p)-dimensional space
N. We choose a local field of orthonormal frames ey, ..., €y, of N"*? such
that, restricted to M, the vectors ey, ...,e, are tangent to M. We shall
make use of the following convention on the ranges of indices

1<ABC,...<n+p, 1<ij5,k,...<n,

n+1<a,pB,7...<n+p,

and we shall agree that repeated indices are summed over the respective
ranges. With respect to the frame field of N chosen above, let wy, ..., wyip
be the field of the dual frame.

Then the structure equations of N are given by

de:ZwB/\wBA, wpa +wap =0, (2.1)

1 _
dwap = Z wac Nwep + Pap, Pap = —3 Z Rapecpwe ANwp,  (2.2)

where w,p is the Levi-civita connection of N with respect to e4 and Rapcp
is the Riemannian curvature tensor of N. We know that Ragpcp satisfies the
following identities

}_%ABCD = _RABDC = _EBADC; EABCD = }_%CDABy (23)

Rapep + Racps + Rapse = 0. (2.4)
We restrict these forms to M by the same letters. Then

wa = 0. (2.5)
The structure equations of M are

dwi = ij A wjz-, wji + wz-j = 0, (26)

J

1
dwij == Zwik A wkj + (I)ija (I)ij == —5 Z Rijklwk A wi. (27)
k
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Since 0 = dw, = Y w; A Wja, by Cartan’s lemma we may write
Wi = Y hw;, b = he,. (2.8)
J

.From these formulas we obtain

Riju = Riju + Y _(h5hS — h§hs,), (2.9)
1
dwag = Zwm A Wy + q)ag, (I)ag = —5 Z Ragklwk N wi. (210)
Y
Rogrt = Ropi + Y _ (W — hghiy). (2.11)

Here (w;;) defines a connection of M, and (w,g) a connection in the normal

bundle of M. We call B =} h%wi ® w; ® e, the second fundamental form

of the immersed manifold M. We take exterior differentiation of (2.8 and
use hg; ;. to denote the covariant derivatives by

> b pwp = dhS + Y hGwr + > hwki — Y hiiwag. (2.12)
Then

ho

ok — ik = Raijk‘ (2.13)

Now we introduce the operator [1".
For a C* function f defined on M, we define its gradient and Hessian by
the following formulas

df =) fawi, Y fawi=dfa+ Y faw; (fij = Fi)- (2.14)

For a section & = £%,, of the normal bundle T+(M) we define the covariant
derivative of £ by

D wi=de* +)  Pug, (2.15)

and the convariant derivative of 5 by

D wi=dE 4+ Ewii— Y Ewag. (2.16)

When p > 1 and r is odd, we can define the differential operator [J".

Definition 2.1 For a section & = %, of the normal bundle T+(M) we
denote the differential operator

O™ . C®(TH(M)) — C>(M)
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by
076 =) 16555 (2.17)
For a C* function f of M we define the differential operator
O : C®°(M) — C°(T*+(M))
by
O°f =Y T¢fiica (2.18)

If p > 1 and r is odd, we define differential operator [J", and in the case
p = 1 we also define differential operator (1" as well as the above definitions.

Definition 2.2 For a C* function f of M we can define the differential
operator

Or: C®(M) — C™(M)
O f= ZT(r)ijf,ij- (2.19)

Remark 2.1 Ifr =0, then Of =) f.; = Af.

Now we suppose that N is of constant curvature ¢, then
Fajkl =0, Rijkl = C(5ik5ﬂ - 5il5jk)
So we have the Gauss equation

Riji = c(0i05 — 0udje) + Y _(hGhS — hihS,) (2.20)

and
he

wk— Pk, = 0. (2.21)
So the fundamental form B must be a Codazzi tensor. We have a lemma as

follows:

Lemma 2.1 Let x : M™ — N"P(c) be an immersion of a compact ori-
entable n-dimensional Riemannian manifold M™ as a submanifold in the
(n 4 p)-dimensional Riemannian N"™P with constant sectional curvature c,
and let B be the second fundamental form of M™.

i) If p > 1 and r is an even integer, then the r-th Newton tensor of B is

divergence-free, i.e.,
> Ty = 0.
J
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If p > 1 and r is an odd integer, then
> Ty =0.
J

If p = 1 and r is any integer, then the r-th Newton tensor of B 1is

> Tiyigs = 0.
j

i)

divergence-free, i.e.,

Proof. Since ii) is proved in [I7], we are going to do only i)
If r is an even integer, set r = 2k,

RO ) 5 ).

T(?")ZJ = 531732, g\ g1 Yiage

We have
Tonee s — lgilyiQ: yiryt (hoa B L po poa ) (hoék Rk )
(rijg  — 7! J15J2sedrsJ N V11,7 7,2]2 1171 "i252,] lr—1Jr—1""trjr
- 11,22, Jiryt ap ol | ay ag ay ag
+ J17J2, 7]r:](h11]1h’l2]2) (hlr 1Jr— 17Jh%]r hlr 1Jr—1,] irj'r:j>
. a1 a1 a1 aq
) (h h j + hlr 1Jr— 17]hi7'j7'7j>

l il,ig,...,ir,i( Xk Ok
lp—1Jr—1,] irjr

- ! TILg2 0 gL 2 g
- 11,22, iyt ar pa1 | ayg ag ag ay
+ IR 7]r7](h11]1h12]2) (hzr 1r— mhwr hzr 1Jr—1,] irjmj>
_ E€i1,i27-~7ir7i( a1 pod ) (hak h 4 pO* ag )
ol J1:J25-5Jrd N T8 J1 V272 Tr—1Jr—1,] Tp—1Jr—1,] " “irjr,J
1 o
11,02,..0r,8 (01 p oy oy,
€ (hl1j1h1232) (hlr 1Jr—1,J irjr,j)'

= (r _ 1)' J15J25e-2JrsJ

and we know that
TR i1
i deg TER G5 =0
A g )
irjv‘,j - iTj:j"‘

so we have

> Tiyigs = 0.

J
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If r is an odd integer, set r = 2k + 1,

pl T IT2s =10 N 1] 22 1141 Vi2j2,j

1 .
J

«
‘hirjr + ..

1 g s i

A2, =150 [e%1 a1 L 73 g 758
i et g iy Mg, ) - (he s, b,y +

6
ir]r

1 11,12 1,0, «@ «@ « «@
+_51, e lr—1,0r, (h 1 h'1 )(hk hk )hoz

r! J15J25eJr—1,JrJ N V1 g1 V22 tr—2fr—2" "ir—1Jr—1/""lrjr,J
_ zgil,i2,~~~,imi (hal hot ) . (hak ROk )ha
T )T Iz grd Vg Y22, tr—2jr—2" Vir—1Jr—1,3/ " Virjr

2 11,8 Tp—1,0r,0 « a a a
1+Ze 152250-05tr— 1,07, (h 1 h-l )(hk h k )ha

r! J15J25-Jr—1,Jr,d \' V171" Vi2J2 Tr—2fr—2"' "lr—1Jr—1,J/" irJr

1 ..
+_811,12,...,Z7‘_1,Z7—,Z (hal h/al ) . (hak hak )ha

,,,.[ J15J25 0 Jr—1,Jr>] 111" "12J2 lp—2Jr—2" Yir—1Jr—1,J irfr,J

_ % i17i27~~-7ir—17ir7i( o hal )"'(hak Qe ) 04
rl 90025 dr—1,0r,d N i1 N2 g tr—2fr—2" Vir—1jr—1,3/ " Virjr

1 01,8 Tpr—1,0r,0 « a 67 a «
o ghiizedrind (pen pan y L pok - po )h

ﬁ J15025sdr—1,dr,5 \' Y11 Yinge ir—2jr—2'Vir—1jr—1,5/ ' “irjr.j
1 (by exchanging the second integers)
o %eh,ig,...,z}_l,ir,i (hal hal ) . (hak hak )hcx
- rl J15J25e+d5JrsJr—1 \" "i171" Vi2g2 ip—2fr—2" Yir—1§,Jr—1/" "irjr

1 i1.d ISR ) o (67 &4
+_81,2u~~-,7“ 1br, (h 1 h/-l )...(h.k

rl J1:925-0Jr—1,3:0r \ 81 J1" V22 ir—2Jr—2

1 (B is a Codazzi tensor)
2k ilai2:~~~7ir—1yiryi (5] [e%] Q. Qe «
= 2 (he R Y- (R h )h

F J1:325--500rJr—1 N i1J1 22 tp—2Jr—2" "tr—1Jr—1,3/ " Virjr

Wt L e

ir—1Jr—1,] irdyJr

+_811112:-~->'Lr71ﬂ7‘71 (hal th ) .. (hak hock )ha

pl TI0d2eJr=1,0,0r N i1 Y22 tr—2Jr—2" "lr—1Jr—1,3/ " Virjr,j

1 (the generalized Kronecker sign is anti-symmetric)

2k

= DLt pan oy (pOk L pak o pa
,’a[ 315725 Jr=1,Jr,] N 701]1° 1272 tr—2Jr—2 "tr—1Jr—1,3/" "trjr

_l i17i21---7ir7177:7"7i( ar pai )H,(hak Qg ) a
gl TI0I25 e dr—15]rs) N LI T02]2 tr—2Jr—2" tr—1Jr—1,J/" "trjrsJ] "’

So we have

Z TGyijg = 0
J

This completes the proof of the lemma 2.4. [J

Tp—2fr—2"' Vlp—1Jr—1

i,

gk
tr—2Jr—2,] "tr—1Jr—1,]
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For any point ¢ € M, the Riemannian metric (, ), induces inner products in
the normal bundles over M, also denoted by (,),. Then, we can define for
any 5777 < COO(TL<M)) a function <£77]>l1 = <£l17 nq>Q7 since £q>77q S TL(M)Q
It also induces the operator * by requiring

So we can define the L*inner product on C*(T+(M)) as

s 6n) = [ emar = [ nase

denoting the volume form by dM, see [5], [7]. We recall Theorem 1.1 of [7].

Lemma 2.2 Let M be a compact oriented submanifold. If ¢ satisfies the

conditions
(i) o5 = o5, (i) ) o5, =0,

then Ly and Uy, are adjoint, which means

(f;156) = (& Taf), (2.22)

wn particular
/MD;;fdM = 0. (2.23)

We have the following key Theorem.

Theorem 2.1 Let M be a compact oriented submanifold of a space with
constant sectional curvature, the definitions of 10" and O™ being as above.
Then

i) if p> 1 and r is an odd integer, 1 < r < n, O" and O are adjoint
relative to the L*-inner product of M, i.e.,

(@7, f) = & 0°f), (2.24)
wm particular,

/ O¢dM = 0. (2.25)
M

it) if p > 1 and r is an even integer or p =1, O is self-adjoint relative to
the L?-inner product of M, i.e.,

(9,;87°f) = (f,079), (2.26)

i particular
/ O fAM = 0. (2.27)
M



20 Guo Shun Zi

Suppose £ is a vector of the tangent bundle T (M). We have

/ O"¢édM = 0,
M
where we denote the volume form by dM .

Proof. 1f p > 1 and r is an even integer, or p = 1,
g0 f: = 9> Twiifis=> (9> Teyiifi)s
irj j i

- Z 95wy fi—9g Z Tryijgf
i3 2]

= Z(g Z Tiryifi)g — Z(g,jT(r)ijf),z’ + Z 95i Ty f
i ij

J
+ Z 95 Tmijifi —9 Z Tryijjfi-
i, ,J
If r is even, we have from Lemma [2.1

ZT(T)UJ =0, ZT(T)Z'J}Z’ =0.
J i

Meanwhile, set & = g> Ty fis 1 = [ Tiryij9,:- Making use of Green’s
( J

theorem we get
(9. 00°f) = (f,0g).
If g =1 we have fMDdeM = 0.
If p > 1 and r is an odd integer, making use of lemma [2.1] and Lemma [2.2
we obtain

O™ f) =& 0f).
This completes the proof of the theorem. [J

Remark 2.2 When p = 1, (! is the same as the operator O derived by
Cheng-Yau, [0].

Now we choose a vector a € R"™PT! of N"*P with the constant curvatures.
For any point p € M", let X (p) € M™ be the position vector. We define the
height function by ¢ := (a, X'), where (,) is the inner product in M".

We are going to calculate [I"p.

The moving equation of M™ in N™*? is

dX = W; €5,
de; wijej + Wigeq — cXw;, (2.28)
de, = —Wia€i + Wapses-
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Hence
dp = (dX, a) = (w;e;, a).

If we set ¢; = (e;,a) from the definition (2.14)) of the covariant derivatives
of ¢; we obtain

Pijw; = dpi + @ jWji. (2.29)
Taking moving equations (2.28)) into the above equation, we obtain

piwi = wij{€; a) + hij{eq, a)w;
—c(X ayw; + <ej, a)wj; (2.30)
= [h”<ea, a) — (X, a)d;;|w;.

So
i = hi(ea, a) — (X, a)dy;. (2.31)

If r is even and p > 1, then
O = ZTT)WW
= Z T r)ij 1_7 <eOf7 > - CZT(T)ij<X7 a>5ij (232)

a,t,J

27]
= (Trace(T()B), a) — c(X, a)Trace(T,).

From (1.4), we know Trace(T(,yB) = (r + 1)Qy41,
and from (1.7), T,y (B) = Q-1 — T(;_,)B* we have

Trace(T(,y) = nQ, —rQ, = (n —r)Q,. (2.33)

Then
O = (r + 1){(Qry1,a) — (X, a)(n —r)Q,. (2.34)

The same proof works for the case where p = 1 and r is any integer, so

O = (7” + 1>Qr+1 <€n+17 a> - C<X7 CL> (Tl - T)Qrv (235)

n
Qr = (r)ar'

Using Theorem 2.1 we obtain the following theorem.

and

Theorem 2.2 Let © : M™ — N"(c) be an immersion of the compact
orientable n-dimensional Riemannian manifold M™ as a submanifold in the
(n + p)-dimensional Riemannian N™tP C R"™*L with constant sectional
curvature, let a be any fized element of N"*? e, (« = 1,...,p) be the unit
normal vector field of M", o, (r =0,1,...,(n— 1)) be the mean curvature

21
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on M"™, and X be the position vector of M".
i) If p>1 and r is an even integer, then

/M(<Jr+1,a> — (X, a)o,)dM = 0. (2.36)

it) If p=1 and r is any integer, then

/M(Ur+1<6n+17a> — (X, a)o,)dM = 0. (2.37)

Remark 2.3 For hypersurfaces in the unit sphere, from the theorem we can
deduce Theorem A of R. C. Reilly, in [15], so our Theorem is a generalization
of the mentioned result.

Corollary 2.1 (Reilly [I5]) Let z : M™ — S™* be an immersion of the com-
pact orientable n-dimensional Riemannian manifold M™ as a hypersurface in
the (n+1)-dimensional unit sphere S C R"™. Let a be any fizved element
of S e,.1 be the unit normal vector field of M™, o, (r =0,1,...,(n—1))
be the mean curvature functions on M"™, and X be the position vector of M™.
Then

/J\4(0r+1<€n+1, a) — (X, a)o,)dM = 0. (2.38)

If p=1, and e, is the unit normal vector field on M™ C N"(c), using
the moving equations ([2.28)) we are going to compute "¢, 1. By

déni1 = — E Wi(n+1)€i = E _hijeiwja

we know

En+1j = — Z hij6i7 €n+li — — Z hijeja (2-39)
i J
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and we have
g ent1ijwj = dent1;+ E Ent1,jWji
J J

= — Z (dhij)e; + hijde; + Z hijwijiex]
= Z hij kwre; + Z hirw;ire; + Z hijwire;
—cX Z hijw; + Z hijwjker + Z hijwiier

+ Z hyih ijwken-i-l)
Z hijrwre; + Z hijwgens1) + X Z hijw;
= - Z Z hzg kex + Z hjkhkzenJrl CXh’Lj)

So we can obtain

Cn+lij =— — Z hij,kek — Z ]’ijhkien_;,_l + CXhij. (240)
k k

On the other hand,
Z T(r)ijhikhkj = Z(Qr+153k - T)Jk)hkj
Tk Tk (2.41)
= Qr1Q1— (1 +2)Qr12.

Making use of this identity we obtain
Uenyr = Z Tryijen+iij
= - Z TT)’L] ij,k€Ck — Z Tr )ij khkzen—i—l +cX ZTT‘)’U i

4,4,k 4,5,k

- = kar + 1)Qr+l,kek - (Qr+1Q1 (7° + 2)Qr+2)€n+1

+e(r+1)Qr1 X.
(2.42)

Theorem 2.3 Let x : M™ — N"(c) be an immersion of a compact ori-
entable n-dimensional Riemannian manifold M™ as a hypersurface in (n+1)-
dimensional Riemannian manifold N"** C R""2. Let e,,1 be the unit nor-
mal vector field of M™, @, (r =0,1,...,(n— 1)) be the r-th modified mean
curvature functions on M"™, and X be the position vector of M™. Then

/ (Z(T+1>Qr+1,kek+<Qr+lQl_(T+2)Qr+2>en+1_C(T+1)QT+IX)dM =0.
M

k
(2.43)

23
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Remark 2.4 If Q.1 = const, then

/M (Qr11Q1 — (r +2)Qrp2)ent1 — c(r + 1)Q, 11 X )dM = 0. (2.44)

If Qry1 =0, then
/ QT+2€n+1dM = 0. (245)
M

Furthermore, if a is a fixed vector of N"™!(c), it is easy to know

(ent1,0) i = (€nt1j @) (2.46)
JFrom above computing we obtain

DT<€n+1, a) = — zk:(r + 1)Qr+1,k<€k7 a> (2 47)

—(Qr1Q1 — (r +2)Qr12){ent1,a) +c(r + 1)Qr 11 (X, a).

Combining this equation with the equation (2.34]), we get

O (ens1,0) =0+ (X, a) = — 2(r+1)Qrsrplen, @)
_QTJrlQl <€n+17 CL> + CnQr+1 <X, CL>.

Corollary 2.2 Let x : M™ — N"l(c) be an immersion of a compact ori-
entable n-dimensional Riemannian manifold M™ as a hypersurface in (n+1)-
dimensional Riemannian manifolds N"™' C R""2. Let e, be the unit nor-
mal vector field of M™, @, (r =0,1,...,(n— 1)) be the r-th modified mean
curvature functions on M™, a be any fived element of N"™, and X be the
position vector of M™. Then

(2.48)

/ (Z(T + 1)Qr+1,k<€k7 a) + Qr+1Q1<en+17 (I> - CnQrJrl(X’ a’>)dM =0.
M

' (2.49)

If NP is the Euclidean space R"*?, for any point p € M™ let X ' be the
projection of the position vector X on the tangent space T,,M at the point
p, X+ be the projection of the position vector X on the normal space T’ pLM
at the point p, so

(2.50)

We are going to compute ("X '.
¢ From (2.14) we denote the covariant derivative of u; by

U ;W5 = duvi + U ;W . (251)
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Taking (2.28) and ¢ = 0 into the above equation, we obtain by a direct
calculation
U5 = hq;pa + 523 (252)

)

So we have
O°XT = > Tyijug

J
= TraceT(,(B) + Trace(T{,)h*)p" (2.53)
= (n—=7)Qr + (r + 1){Qry1, X).

Using Theorem 2.1 we get the following theorem

Theorem 2.4 (Reilly [16]). Let x : M™ — R"™™P be an immersion of a
compact orientable n-dimensional Riemannian manifold M™ as a subman-
ifold in the (n+ p)-dimensional Euclidean space R, e,(a=1,...,p) be
the unit normal vector field of M™, o,(r = 0,1,...,(n — 1)) be the mean
curvature on M"™, and X be the position vector of M™.

i) If p>1 and r is an even integer, then

/ ((0r41, X) + 07)dM = 0. (2.54)

it) If p=1 and r is any integer, then
/ (<O’7«+1€n+1,X> + O'T)dM = O (255)
M

Remark 2.5 The theorem is Lemma A in Reilly, [10]. Here ii) is the one
of classical Minkowski-Hsiung integral formulas, [8, [10].

3 Related results to [J"

Let e;(i = 1,...,n) be a local orthonormal frame field on an n-dimensional
Riemannian manifold M™, w; be its dual coframe field. The structure equa-

tions of M are equations (2.6) and (2.7) in Section 2. Let ¢ = > p;jw; @ w;
]

be a symmetric tensor defined on M™", T{,) the r-th Newton transformation
of ¢, @, the r-th modified curvature,

DTQT = Z T(r)ijQr,ij- (31)
Then
DTQT = Z T(r)ijQT,ij
= ) (@6 — > To—ryaj) @ris-
l

25
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We suppose that Cy;; = T(yupi;- It is clear that C(,y is a symmetric tensor
here and r@Q, = Trace C(,_1), hence we have

. 1,1
0'Qr == > (=trCudy; = Clonyig) (trCirn)) iy (3.2)

r

The convariant derivative of C(,;; is defined by the following formula
Z Cyijewr = dCryij + Z Ciryjwri + Z CryikWiy, (3.3)
k k k

and the convariant derivative of C(;;; is defined by

Z C(r)ij,klwl = dC(T)ij,k + Z C(r)mj,kwmi + Z C(r)im,kwmj + Z C(r)ij,mwmk-
l m m m

(3.4)
Taking exterior differentiation of the equation (3.3]), we obtain
Z C(r)ij,klwl Nwi = Z C('r)qu)mz + Z O(r)zm(bmj (35)
Lk m m

Therefore

Z(C(T)ij,kl - O(r)ij,lk)wl Awy =2 Z(C(r)qu)mz + Z C(r)zmq)mj) (36)

Ik

Taking (2.7)) into (3.6)), we have the Ricci identity

O('r)ij,kl - C(r)ij,lk: = Z C(r)ijmikl + Z C(T)imijkl~ (37)

Let C(,—1) be a Codazzi tensor, which satisfies

Co-vyijk — Cr—1yir,j = 0. (3.8)
;From the results of Theorem [2.1] it is easy to obtain the following lemma:
Lemma 3.1 Let M"™ be a compact orientable n-dimensional Riemannian

manifold, ¢ be a symmetric tensor on M, Cy = Ty . If C_1) is a Codazzi
tensor, then for (0 <r <mn),

/ 0rQ,dM = 0.
M

>~ Cr—1yij ek being defined as the Laplacian of C(,_1);;. Using equation (3.7)),
k
and following the methods of Calabi, Simons, Chern, Cheng-Yau, [I], 2, [I8|
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3, [0, [18], one can compute the Laplacian of the tensor,

AC(T—I)ij = Z C(r—l)ij,kk
k
= > (Co—vyijrk — Cor—1yikjr) + Z(C (r—1)ik,jk — Clr—1)ik kj)
k
+Z( (r—1)ik,kj — C(r l)kkz])+zcr 1)kk,ij

27

= Z Cr 1 mkRmmk + Z O (r—1 szmk]k + Z( (r—1)ij,kk — C(r—l)ik,jk)

+ Z( (r—1)ik,kj — O(r—l)kk,zg) + Z C (r—1)kk,ij-
k

(3.9)
Using (3.8)), we obtain

ACq_1)ij = Z Cor—1ymk Bomigr + Z Cir—1)imBmijk + (trCp_1y) 5. (3.10)

m,k m,k

Let us set |Ci_p)|* = ZC(T yij» [VCe-)? = Z CZ_1yijx Making use of

the equation ([3.10f), we obtam

1
§A|C(r,1)|2 = |VC(T71)|2+ Z C(r—l)ijc(rfl)mkRmijk

i,5,m,k
+ Z CT 1 sz(r 1 szmkjk + Z Cr l)z](trcr 1 )
i,5,m,k
(3.11)
Near a point p € M™ we choose an orthonormal frame fields e; (i = 1,...,n)
such that C(r—l)ij = C'(T_l)iiél-j at p. Then 311 is 31mphﬁed to
1
sVICenl = IVCe)® + 332 Rijii (Cornyis — Cr = 1)5)? 3.12)
0. .
+ Z Cii(trC-1)) is
From equations (3.2)) and (| - we have
DTQT - _Z tTC(r 1 51] C(r 1 z])(tror 1)) i
T
- FlgACial - VG~ ZAICe-oP (313
+VCep|” + |2 Z Riji; (C C(T—l)jj)Q)-

JFrom Lemma we obtain immediately the following theorem :

Theorem 3.1 Let M™ be a compact orientable n-dimensional Riemannian
manifold, ¢ be a symmetric tensor. For (1 < r < n) set Cp—1) = T(r—1)¢p.
Near a point P € M we choose orthomormal frame fields {e;}(i = 0,1,...,n)
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such that C(,_1)ij = C(r—1)ii05. Suppose C(,_1) 1s a Codazzi tensor. Then
1 1
/M(|VC<T—1>\2 ——|VirCey* + 5 > Rijij(Cr—ryii = Clryjs)*)dM = 0.
.J

If M™ C N"*(¢) and r = 1, the operator derived by Cheng-Yau (see [6])
identifies our operator

O'f = Z((TW)% — i) fij-

Supposing M a compact hypersurface, the integral formula in the Theorem
[B.1] proves to be

1
[ V6l = 1VtroR + 53 Rl = )M 0. (314
1,J

Now we set ¢;; = h;;. When M is of nonnegative sectional curvature, it is
obvious from the above integral formula that

|VB|> —n?|VH|* > 0, (3.15)

where H = %Z hi;. When H is constant, the condition above is naturally

true. A lot of works have been done for this case, see [1], [14], [18] and
[19]. If R — C = const > 0 where R is the normalized scalar curvature, the
condition is also true. Cheng-Yau ([6]), Yau ([22]), Li ([12], and [13]) have
discussed the geometric meaning of the case.

Let (R;;) be the matrix of the Ricci curvature tensor on M, r be the scalar

curvature,
Rij = Z Rkikj7 r = Z Rkk- (316)
k k

Schouten tensor S = ) S;jw; ® w;, where
ij

1

A T

It is well known that Schouten tensor is a Codazzi tensor on a local conformal

symmetric space. In this situation we set ¢;; = S;;, and then the integral

formula ([3.14]) exists. The geometric meaning of the case is discussed in [9].
When r = 2,

T?‘C(l) ) -
2 Y

D2Q2 = Z(Trc(l)éij — C(l)ij)(

]
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Suppose M™ C N"l(c) and M™ is of harmonic Riemannian curvatures,
however from the definitions of the convariant derivatives of R;; and R;ju

Z Rijpwy = dR;j + Z Rirwr; + Z Ryjwhi, (3.18)
Y Rijkimwm : = dRiu 4 Y Rujiimi + Y RimiiWm;
+ Z Rijmlwmk: + Z Rijkmwml-

Taking exterior differention of equation (2.7) we obtain the following Bianchi
identity

(3.19)

Rijkim + Rijimk + Rijmrg = 0. (3.20)
Combining (2.3) (2.4 with (3.19) we obtain
Rijr — Riry = Y Ruijry
1 (Riemanian curvature is harmonic) (3.21)
= 0.

We set Pij = h’ZJ By
Rij = Clyij + (n — 1)cdyj;,

we know that C(y) is a Codazzi tensor. So the integral formula of Theorem
proves to be

1 1
/M <Z Ry — 2 > it 2 > Rijiy(Rii — Rjj)2> dM =0.  (3.22)
i ij

Z‘?j?k
However
> Ry = > Rigeg
J k,j
= E Rjpir; = 0.
k7j
So we have

7"71' = Z Rjj,i
J
— Z Rij,j — O
J

Hence the integral formula (3.22)) is
1
/ O R+ 3 > Rijij(Ris — Ryj)*)dM = 0. (3.23)
Mk i\j
Xia in [20] discussed the geometric meaning of this situation.

Corollary 3.1 Let M™ be a compact Riemannian manifold with harmonic
curvature tensor and nonnegative sectional curvature. If M™ can be im-

mersed into S™' as a hypersurface, then M"™ is isometric with either
S*(a) x S"7k(b)(a® +b* = 1) or S™.

29
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