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Abstract. In this work, we give an elementary proof of the
transformation formula for the Dedekind eta function under the
action of the modular group PSL (2,Z). We start by giving a
proof of the transformation formula η(τ) under the transforma-
tion τ → −1/τ , using the Jacobi triple product identity and the
Poisson summation formula. After we establish some identities
for the Dedekind sum, the transformation formula for η(τ) under
the transformation induced by a general element of the modular
group PSL (2,Z) is derived by induction.
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1 Introduction

The Dedekind eta function is introduced by Dedekind in 1877 and is defined
in the upper half plane H = {τ | Im τ > 0} by the equation

η(τ) = eπiτ/12
∞∏
n=1

(
1− e2πinτ

)
.

It is closely related to the theory of modular forms [2]. In this note, we are
going to derive the following formula which describes the transformation of
η(τ) under a linear fractional transformation defined by an element of the
modular group Γ = PSL (2,Z):

η

(
aτ + b

cτ + d

)
= exp

{
πi

(
a+ d

12c
+ s(−d, c)

)}
{−i(cτ + d)}1/2 η(τ). (1)
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Here

[
a b
c d

]
is an element of Γ with c > 0, and s(−d, c) is a Dedekind sum.

Equation (1) is known as the Dedekind functional equation for the Dedekind
eta function. One can establish that the number

ω(a, b, c, d) =
a+ d

c
+ 12s(−d, c)

is an integer. Therefore, the function f(τ) = η(τ)24 satisfies

f

(
aτ + b

cτ + d

)
1

(cτ + d)12
= f(τ) for all

[
a b
c d

]
∈ Γ.

In other words, η(τ)24 is a modular form of weight 12 for the modular
group Γ.

The Dedekind functional equation (1) was proved using a more gen-
eral transformation formula of Iseki [4] in the book [2]. In the special case[
a b
c d

]
=

[
0 −1
1 0

]
, s(0, 1) = 0, and formula (1) reduces to

η

(
−1

τ

)
= (−iτ)−1/2η(τ). (2)

This formula has been proved using various methods such as the contour
integral method by Siegel [7] (see also [2]). A slight drawback of Siegel’s
method is that it involves a limiting process which needs to be justified
using advanced theories.

In this note, we present a proof of (2) using elementary methods. We
first present the proof of the Jacobi triple product formula

∞∏
n=1

(
1− w2n

) (
1 + w2n−1z2

) (
1 + w2n−1z−2

)
=

∞∑
n=−∞

wn
2

z2n, |w| < 1, z 6= 0,

following the approach in [1]. From here we derive the Euler pentagonal
number formula

∞∏
n=1

(1− wn) =
∞∑

n=−∞

(−1)nw
3n2−n

2 , |w| < 1.

The Poisson summation formula is then employed to prove the transforma-
tion formula (2).

It is well known that the modular group Γ is generated by the two ele-

ments T =

[
1 1
0 1

]
and S =

[
0 −1
1 0

]
. The transformation of η under T is

given by

η(τ + 1) = e
πi
12η(τ),
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which is obvious from its definition. The fact that Γ is generated by T and
S can be proved by induction on c (see, for example, [2].) Using this idea,
we prove the Dedekind functional equation (1) for general transformation
using induction. This proof is completely elementary.

The purpose of this work is to give a self-contained elementary proof for
the Dedekind functional equation. Therefore, we present in detail the proofs
of all the results we need.

2 Fractional Linear Transformations and the

Modular Group

Let Ĉ = C ∪ {∞} be the extended complex plane. It is well known that

a mapping w : Ĉ → Ĉ is analytic and bijective if and only if w is a linear
fractional transformation, namely,

w(z) =
az + b

cz + d

for some 4-tuple (a, b, c, d) with ad−bc 6= 0. For any nonzero complex number
k, the 4-tuples (a, b, c, d) and (ka, kb, kc, kd) define the same fractional linear
transformation. Therefore, we can normalize a, b, c, d by

ad− bc = 1,

and associate this linear fractional transformation with the two-by-two ma-
trix [

a b
c d

]
. (3)

The set of two-by-two matrices of the form (3) with ad− bc = 1 is denoted
by SL (2,C). This is a group under matrix multiplication.

Since (a, b, c, d) and (−a,−b,−c,−d) define the same fractional linear
transformation, we can define an equivalence relation on SL (2,C) in the
following way. If A and B are in SL (2,C), then A ∼ B if and only if

A = ±B.

The quotient of SL (2,C) by this equivalence relation is denoted by PSL (2,C).
Let I be the two-by-two identity matrix. Then H = {I,−I} is a normal
subgroup of SL (2,C). One can easily see that

PSL (2,C) = SL (2,C)/H.
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Therefore, PSL (2,C) is also a group, which we call the group of fractional
linear transformations. The group operation is precisely composition of
transformations.

The modular group Γ = PSL (2,Z) is the subgroup of PSL (2,C) con-

sisting of elements

[
a b
c d

]
, with integers a, b, c, d satisfying ad − bc = 1. It

is well known that it is generated by the two elements

T =

[
1 1
0 1

]
and S =

[
0 −1
1 0

]
, (4)

which describe, respectively, the linear transformations

z 7→ z + 1 and z 7→ −1

z
.

3 Jacobi Triple Product Identity

In this section, we derive the Jacobi triple product identity following the
approach in [1].

Theorem 1 Let w and z be complex numbers with |w| < 1 and z 6= 0. Then

∞∏
n=1

(
1− w2n

) (
1 + w2n−1z2

) (
1 + w2n−1z−2

)
=

∞∑
n=−∞

wn
2

z2n. (5)

Proof. When |w| < 1 and z 6= 0, the triple product on the left-hand side
of (5) converges absolutely. The sum on the right-hand side of (5) also
converges absolutely.

For |w| < 1 and z 6= 0, define the function F (w, z) by

F (w, z) =
∞∏
n=1

(
1− w2n

) (
1 + w2n−1z2

) (
1 + w2n−1z−2

)
.

For a fixed w, F (w, z) can be expanded into a power series in z. Since F (w, z)
is even in z and F (w, z) = F (w, z−1), the corresponding power series has
the form

F (w, z) =
∞∑

n=−∞

an(w)z2n

with

a−n(w) = an(w).

Since F (0, z) = 1, we find that a0(0) = 1 and an(0) = 0 if n 6= 0.
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Now, note that

F (w,wz) =
∞∏
n=1

(
1− w2n

) (
1 + w2n+1z2

) (
1 + w2n−3z−2

)
=

1 + w−1z−2

1 + wz2
F (w, z)

= w−1z−2F (w, z).

Therefore,

∞∑
n=−∞

an(w)w2nz2n = w−1z−2
∞∑

n=−∞

an(w)z2n =
∞∑

n=−∞

an+1(w)w−1z2n.

This implies that for any integer n,

an+1(w) = w2n+1an(w).

By induction, we find that for n ≥ 1,

a−n(w) = an(w) = wn
2

a0(w).

Therefore,

F (w, z) = a0(w)
∞∑

n=−∞

wn
2

z2n. (6)

To prove the theorem, we need to show that a0(w) = 1 for all |w| < 1.

Setting z = e
πi
4 in (6), we have

F
(
w, e

πi
4

)
a0(w)

=
∞∑

n=−∞

wn
2

in. (7)

Since i2n = i−2n = (−1)n and i−(2n+1) = −i2n+1, we find that the odd terms
in the right hand side of (7) cancel, and only the even terms left. This gives

F
(
w, e

πi
4

)
a0(w)

=
∞∑

n=−∞

(−1)nw4n2

. (8)

Setting z = i and replacing w with w4 in (6), we have

F (w4, i)

a0(w4)
=

∞∑
n=−∞

(−1)nw4n2

. (9)
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A comparison of (8) and (9) gives

a0(w
4)

a0(w)
=

F (w4, i)

F
(
w, e

πi
4

) .
This implies that

a0(w
4)

a0(w)
=
∞∏
n=1

(1− w8n)(1− w8n−4)2

(1− w2n)(1 + iw2n−1)(1− iw2n−1)

=
∞∏
n=1

(1− w8n)(1− w8n−4)2

(1− w2n)(1 + w4n−2)
.

Since every positive integer of the form 4n is either of the form 8n or of the
form 8n− 4, we find that

∞∏
n=1

(1− w8n)(1− w8n−4) =
∞∏
n=1

(1− w4n).

On the other hand,

(1− w8n−4) = (1− w4n−2)(1 + w4n−2).

Therefore,

a0(w
4)

a0(w)
=
∞∏
n=1

(1− w4n)(1− w4n−2)

1− w2n
.

Since every positive integer of the form 2n is either of the form 4n or of the
form 4n− 2, we find that

∞∏
n=1

(1− w4n)(1− w4n−2) =
∞∏
n=1

(1− w2n).

This implies
a0(w

4) = a0(w).

For any w with |w| < 1 and any positive integer k,

a0(w) = a0(w
4) = · · · = a0(w

4k).

Since w4k → 0 when k →∞, we obtain

a0(w) = a0(0) = 1.

Hence,

F (w, z) =
∞∑

n=−∞

wn
2

z2n,

which completes the proof. �
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Note that w = eπiτ maps the upper half plane H = {Im τ > 0} to the
unit disc D = {|w| < 1}. Replacing w by eπiτ and z by eπiz, the Jacobi triple
product identity takes the following form.

Corollary 1 For any complex numbers τ and z with Im τ > 0, it holds

∞∏
n=1

(
1− e2πinτ

) (
1 + eπi(2n−1)τe2πiz

) (
1 + eπi(2n−1)τe−2πiz

)
=

∞∑
n=−∞

eπin
2τe2πinz.

(10)

4 Poisson Summation Formula

Poisson summation formula, which is useful in the study of number theory,
is a consequence of the theory of Fourier series. In this section, we present
the Poisson summation formula and apply it to the Gaussian function.

Theorem 2 Let f : R → R be a continuously differentiable function such
that

∞∑
n=−∞

f(x+ n) and
∞∑

n=−∞

f ′(x+ n)

converge uniformly on the closed interval [0, 1]. Then for any x ∈ R,

∞∑
n=−∞

f(x+ n) =
∞∑

n=−∞

f̂(n)e2πinx (11)

where

f̂(n) =

∫ ∞
−∞

f(x)e−2πinxdx.

Proof. Define

F (x) =
∞∑

n=−∞

f(x+ n) and G(x) =
∞∑

n=−∞

f ′(x+ n). (12)

Due to the assumption of uniform convergence on [0, 1] and the fact that f
and f ′ are continuous, F and G are continuous functions on [0, 1]. It is easy
to verify that the series for F (x) and G(x) converge uniformly on any closed
and bounded interval,

F (x+ 1) = F (x), G(x+ 1) = G(x),

and
F ′(x) = G(x).
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In particular, F is also continuously differentiable. Now, since F is a periodic
function with period 1, Dirichlet theorem for Fourier series implies that the
Fourier series of F (x) converges to F (x). Namely,

∞∑
n=−∞

f(x+ n) = F (x) =
∞∑

n=−∞

cne
2πinx

where

cn =

∫ 1

0

F (x)e−2πinxdx.

Let us compute cn in terms of f . We have

cn =

∫ 1

0

∞∑
k=−∞

f(x+ k)e−2πinxdx.

Since the first series in (12) converges uniformly, we can interchange sum-
mation and integration to obtain

cn =
∞∑

k=−∞

∫ 1

0

f(x+ k)e−2πinxdx.

Making the change of variables x 7→ x− k, we have

cn =
∞∑

k=−∞

∫ k+1

k

f(x)e−2πin(x−k)dx

=
∞∑

k=−∞

∫ k+1

k

f(x)e−2πinxdx

=

∫ ∞
−∞

f(x)e−2πinxdx.

This completes the proof of the theorem. �

Before applying the Poisson summation formula to a Gaussian function,
let us verify the uniform convergence of the corresponding series.

Lemma 1 Let u be a positive number and let b be any real number. Define
the function f : R→ R by

f(x) = e−2πibxe−πux
2

.

Then the two series

F (x) =
∞∑

n=−∞

f(x+ n) and G(x) =
∞∑

n=−∞

f ′(x+ n)

converge uniformly on [0, 1].
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Proof. It suffices to consider the case b = 0. We prove the uniform conver-
gence for the series G(x) by applying the Weierstrass M -test. The proof for
the series F (x) is similar.

Note that when b = 0,

f ′(x) = −2πuxe−πux
2

.

For x ∈ [0, 1] and n ≥ 1, we can write

|f ′(x+ n)| ≤ 2πu(n+ 1)e−πun
2 ≤ 2πu(n+ 1)e−πun.

When n ≥ 2,

|f ′(x− n)| ≤ 2πune−πu(n−1)
2 ≤ 2πune−πu(n−1).

It remains to note that the two series
∞∑
n=1

2πu(n+ 1)e−πun and
∞∑
n=2

2πune−πu(n−1)

are both convergent. �

Theorem 3 Let u be a positive number. For any real numbers a and b, one
has

∞∑
n=−∞

e−2πi(n+a)be−πu(n+a)
2

=
1√
u

∞∑
n=−∞

e2πinae−π(n+b)
2/u. (13)

Proof. Let f(x) be the function defined in Lemma 1. By the Poisson sum-
mation formula (11), we have

∞∑
n=−∞

e−2πi(n+a)be−πu(n+a)
2

=
∞∑

n=−∞

f̂(n)e2πina.

Now we only need to compute f̂(n). We can write

f̂(n) =

∫ ∞
−∞

e−2πibxe−πux
2

e−2πinxdx

= e−π(n+b)
2/u

∫ ∞
−∞

e−πu(x+i(n+b)/u)
2

dx.

Here the function e−πuz
2

is integrated over the closed contour Im z = (n +
b)/u. Since e−πuz

2
is analytic, we can shift the contour of integration to the

real line Im z = 0. This gives∫ ∞
−∞

e−πu(x+i(n+b)/u)
2

dx =

∫ ∞
−∞

e−πux
2

dx =
1√
u
.

Therefore,

f̂(n) =
1√
u
e−π(n+b)

2/u,

and the proof is completed. �
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Let

D =
{

(τ, z, w) ∈ C3 | Im τ > 0
}
.

Note that both the series

H1(τ, z, w) =
∞∑

n=−∞

e−2πi(n+z)weπiτ(n+z)
2

and

H2(τ, z) = (−iτ)−1/2
∞∑

n=−∞

e2πinze−πi(n+w)
2/τ

converge absolutely and uniformly on any compact subsets of D. Hence,
both of them define analytic functions on D. When τ = iu, u > 0 and
z = a, w = b, a, b ∈ R, it follows from (13) that

H1(iu, a, b) = H2(iu, a, b).

By analytic continuation, we obtain

H1(τ, z, w) = H2(τ, z, w) for all (τ, z, w) ∈ D.

Corollary 2 For any complex numbers τ , z and w with Im τ > 0, it holds

∞∑
n=−∞

e−2πi(n+z)weπiτ(n+z)
2

= (−iτ)−1/2
∞∑

n=−∞

e2πinze−πi(n+w)
2/τ . (14)

5 Transformation Defined by the Generators

of the Modular Group

In this section, we consider the transformation of the Dedekind eta function
η(τ) under the action of the two generators T and S (4) of the modular
group PSL (2,Z).

For the generator T , its power Tm defines the transformation τ 7→ τ+m.
The transformation of η(τ) under the action of Tm is easily deduced.

Proposition 4 If τ ∈ H and m is an integer, we have

η(τ +m) = exp

(
πim

12

)
η(τ).

For the transformation of η(τ) under the generator S, we have the fol-
lowing result.
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Theorem 5 When Im τ > 0, it holds

η

(
−1

τ

)
= (−iτ)1/2η(τ). (15)

There are various methods that can be used to prove this transforma-
tion formula. In [2], (15) was proved using Siegel’s method which employs
residue calculus. In [5], (15) was derived as a consequence of the corre-
sponding transformation formula for the Eisenstein series E2(z). In [8], (15)
was proved using the Jacobi triple product formula as well as the Poisson
summation formula. However, it was first proved that

η

(
−1

τ

)3

= (−iτ)3/2η(τ)3.

Here we are going to give an alternative proof of (15) by first deriving the
Euler pentagonal number theorem.

Theorem 6 When Im τ > 0, one has

∞∏
n=1

(
1− e2πinτ

)
=

∞∑
n=−∞

(−1)neπi(3n
2−n)τ =

∞∑
n=−∞

(−1)neπi(3n
2+n)τ .

Proof. Replacing τ by 3τ , and z by (τ + 1)/2 in the Jacobi triple product
identity (10), we obtain

∞∏
n=1

(
1− e2πi(3n)τ

) (
1− e2πi(3n−1)τ

) (
1− e2πi(3n−2)τ

)
=

∞∑
n=−∞

(−1)neπi(3n
2+n)τ .

When n runs through positive integers, 3n, 3n − 1 and 3n − 2 also runs
through positive integers. Hence,

∞∏
n=1

(
1− e2πi(3n)τ

) (
1− e2πi(3n−1)τ

) (
1− e2πi(3n−2)τ

)
=
∞∏
n=1

(
1− e2πinτ

)
.

�

Using the Euler pentagonal number theorem, we can express the Dedekind
eta function as a sum.

Corollary 3 When Im τ > 0,

η(τ) =
∞∑

n=−∞

eπine3πi(n+
1
6)

2
τ . (16)
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Using the identity (14), we can now prove the transformation formula (15).

Proof of Theorem 5 Replacing τ by τ/3 and setting z = 1/2, w = 1/6
in (14), we obtain

∞∑
n=−∞

eπine−3πi(n+1/6)2/τ =
(−iτ)1/2√

3

∞∑
n=−∞

e−πin/3e−πi/6eπiτ(n+1/2)2/3. (17)

By (16), the left-hand side of (17) is η(−1/τ). For the right-hand side, note
that when n runs through all integers, 3n, 3n− 1 and 3n + 1 together also
run through all integers. Therefore,

∞∑
n=−∞

e−πin/3e−πi/6eπiτ(n+1/2)2/3

=
∞∑

n=−∞

e−πine−πi/6eπiτ(3n+1/2)2/3 +
∞∑

n=−∞

e−πineπi/6eπiτ(3n−1/2)
2/3

+
∞∑

n=−∞

e−πine−πi/2eπiτ(3n+3/2)2/3.

(18)

The first two terms on the right-hand side of (18) give

∞∑
n=−∞

e−πine−πi/6eπiτ(3n+1/2)2/3 +
∞∑

n=−∞

e−πineπi/6eπiτ(3n−1/2)
2/3

= 2 cos
π

6

∞∑
n=−∞

(−1)ne3πiτ(n+1/6)2

=
√

3η(τ).

(19)

The last term on the right-hand side of (18) is

I = −i
∞∑

n=−∞

(−1)ne3πiτ(n+1/2)2 .

When n runs through all integers, −1−n also runs through all integers. We
then find that

I = −i
∞∑

n=−∞

(−1)n+1e3πiτ(−n−1/2)
2

= i
∞∑

n=−∞

(−1)ne3πiτ(n+1/2)2 = −I.

Thus, I = 0, and we conclude from (17), (18) and (19) that

η (1/τ) = (−iτ)1/2η(τ).

�
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Remark 1 Define the function χ : Z→ C by

χ(1) = χ(11) = 1, χ(5) = χ(7) = −1,

χ(2) = χ(3) = χ(4) = χ(6) = χ(8) = χ(9) = χ(10) = χ(12) = 0,

and

χ(n+ 12) = χ(n) for all n ∈ Z.

Then χ(n) is a Dirichlet character modulo 12. It satisfies the multiplicativity
property:

χ(mn) = χ(m)χ(n) for all m,n ∈ Z.

As n runs through all integers, 2n and 2n+ 1 together also runs through all
integers. The formula for η(τ) (16) shows that

η(τ) =
∞∑

n=−∞

eπiτ(12n+1)2/12 −
∞∑

n=−∞

eπiτ(12n+7)2/12

=
1

2

{
∞∑

n=−∞

χ(12n+ 1)eπiτ(12n+1)2/12 +
∞∑

n=−∞

χ(12n− 1)eπiτ(12n−1)
2/12

+
∞∑

n=−∞

χ(12n+ 7)eπiτ(12n+7)2/12 +
∞∑

n=−∞

χ(12n− 7)eπiτ(12n−7)
2/12

}

=
1

2

12∑
m=1

χ(m)
∞∑

n=−∞

eπiτ(12n+m)2/12

=
1

2

∞∑
n=−∞

χ(n)eπiτn
2/12.

As in [3], this formula can be used to give another proof of Theorem 5.

Second proof of Theorem 5 One can easily verify that for all integer n,

χ(n) =
1√
12

12∑
m=1

χ(m)e
2πimn

12 .

Therefore,

η(−1/τ) =
1

2
√

12

12∑
m=1

χ(m)
∞∑

n=−∞

e
2πimn

12 e−πin
2/(12τ).
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For each 1 ≤ m ≤ 12, using (14) with τ replaced by 12τ , z = m/12 and
w = 0, we find that

η(−1/τ) =
(−iτ)1/2

2

12∑
m=1

χ(m)
∞∑

n=−∞

e12πiτ(n+m/12)
2

=
(−iτ)1/2

2

12∑
m=1

χ(m)
∞∑

n=−∞

eπiτ(12n+m)2/12

= (−iτ)1/2η(τ).

Thus, the transformation formula (15) is a special case of a more general
transformation formula for the theta function associated with Dirichlet char-
acters [6]. �

6 The Dedekind Sums

For the transformation formula for η under a general element of the modular
group, we first define the Dedekind sum.

If h is an integer and k is a positive integer larger than 1, the Dedekind
sum s(h, k) is defined as

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
. (20)

When k = 1, we put s(h, 1) = 0 for any integer h.
The Dedekind sums have the following properties.

Lemma 2 Let k be a positive integer and let h and h′ be integers relatively
prime to k. If h ≡ h′ mod k, then

s(h, k) = s(h′, k).

Proof. The statement is obvious if k = 1. If k > 1, there is an integer m
such that

h′ = km+ h.

Then for any integer r,

h′r

k
−
⌊
h′r

k

⌋
=

(km+ h)r

k
−
⌊

(km+ h)r

k

⌋
= mr +

hr

k
−
⌊
mr +

hr

k

⌋
= mr +

hr

k
−mr −

⌊
hr

k

⌋
=
hr

k
−
⌊
hr

k

⌋
.
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It follows from the definition (20) that s(h′, k) = s(h, k). �

There is a simple relation between s(h, k) and s(−h, k).

Lemma 3 If k is a positive integer and h is an integer relatively prime to
k, then

s(−h, k) = −s(h, k).

Proof. For each 1 ≤ r ≤ k − 1, there is an r′ such that 1 ≤ r′ ≤ k − 1 and

hr ≡ r′ mod k.

This implies that
hr

k
−
⌊
hr

k

⌋
=
r′

k
,

Since

−hr ≡ k − r′ mod k

and 1 ≤ k − r′ ≤ k − 1, we have

−hr
k
−
⌊
−hr
r

⌋
=
k − r′

k
= 1− r′

k
.

Therefore,

s(−h, k) =
k−1∑
r=1

r

k

(
−hr
k
−
⌊
−hr
k

⌋
− 1

2

)

=
k−1∑
r=1

r

k

(
1

2
− r′

k

)

= −
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
= −s(h, k).

�

Next we establish the reciprocity relation between s(h, k) and s(k, h)
when h and k are positive integers. The main idea is the same as in [2],
where one evaluates a sum in two different ways. To make it easier to
understand, we extract some identities as lemmas. Instead of using purely
number theoretic argument as in [2], we give an interpretation in terms of
counting lattice points, an idea that has been used in one of the proofs of
the law of quadratic reciprocity.
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Lemma 4 If k is a positive integer and h is an integer relative prime to k,
then

k−1∑
r=1

⌊
hr

k

⌋
=

(h− 1)(k − 1)

2
.

Proof. As in the proof of Lemma 3, for each 1 ≤ r ≤ k − 1, there is an
integer r′ such that 1 ≤ r′ ≤ k − 1 and

hr ≡ r′ mod k.

This implies that
hr

k
−
⌊
hr

k

⌋
=
r′

k
.

As r runs through the integers from 1 to k − 1, r′ also runs through the
integers from 1 to k − 1. Therefore,

k−1∑
r=1

⌊
hr

k

⌋
=

k−1∑
r=1

hr

k
−

k−1∑
r′=1

r′

k
=

(h− 1)(k − 1)

2
.

�

Lemma 5 If h and k are positive integers with (h, k) = 1, then

k−1∑
r=1

(⌊
hr

k

⌋)2

= 2hs(k, h) +
(2hk − 3h− k + 3)(h− 1)

6
.

Proof. Using Lemma 4, we find that

k−1∑
r=1

(⌊
hr

k

⌋)2

=
k−1∑
r=1

⌊
hr

k

⌋(⌊
hr

k

⌋
+ 1

)
−

k−1∑
r=1

⌊
hr

k

⌋

= 2
k−1∑
r=1

bhrk c∑
s=1

s− (h− 1)(k − 1)

2
.

Consider the lattice points (r, s) with 1 ≤ r ≤ k−1 and 1 ≤ s ≤ h−1. Since
h and k are relatively prime, none of these points lie on the line hx = ky.
Hence,

k−1∑
r=1

bhrk c∑
s=1

s =
∑

1≤r≤k−1, 1≤s≤h−1
ks≤hr

s

=
∑

1≤r≤k−1, 1≤s≤h−1

s−
∑

1≤r≤k−1, 1≤s≤h−1
hr≤ks

s.
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It follows that

k−1∑
r=1

(⌊
hr

k

⌋)2

= (k − 1)(h− 1)h− 2
h−1∑
s=1

b ksh c∑
r=1

s− (h− 1)(k − 1)

2

=
(k − 1)(h− 1)(2h− 1)

2
− 2

h−1∑
s=1

s

⌊
ks

h

⌋

= 2h
h−1∑
s=1

s

h

(
ks

h
−
⌊
ks

h

⌋
− 1

2

)
− 2h

h−1∑
s=1

s

h

(
ks

h
− 1

2

)
+

(k − 1)(h− 1)(2h− 1)

2
.

A straightforward computation gives

k−1∑
r=1

(⌊
hr

k

⌋)2

= 2hs(k, h) +
(2hk − 3h− k + 3)(h− 1)

6
.

�

Now, we can establish the reciprocity law for Dedekind sums.

Theorem 7 If h and k are positive integers with (h, k) = 1, then

s(h, k) + s(k, h) =
h2 + k2 − 3hk + 1

12hk
.

Proof. Since there is a symmetry in h and k, we can assume that h ≥ k.
It is easy to check that the formula is true when h = k = 1. When k = 1
and h > 1,

s(h, k) + s(k, h) = s(1, h)

=
h−1∑
r=1

r

h

(
r

h
− 1

2

)
=
h2 − 3h+ 2

12h

=
h2 + k2 − 3hk + 1

12hk
.

Let h ≥ k > 1. Since (h, k) = 1, we must have h > k. As in the proof
of Lemma 3, for each integer 1 ≤ r ≤ k − 1, there is a unique r′ such that
1 ≤ r′ ≤ k − 1 and

hr ≡ r′ mod k,
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which implies that
hr

k
−
⌊
hr

k

⌋
=
r′

k
.

Hence,

k−1∑
r′=1

(
r′

k

)2

=
k−1∑
r=1

(
hr

k
−
⌊
hr

k

⌋)2

= 2
k−1∑
r=1

hr

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
−

k−1∑
r=1

h2r2

k2

+
k−1∑
r=1

(⌊
hr

k

⌋)2

+
k−1∑
r=1

hr

k
.

Using Lemma 5, we find that

2hs(h, k) =
k−1∑
r′=1

(
r′

k

)2

+
k−1∑
r=1

h2r2

k2
−

k−1∑
r=1

hr

k
− 2hs(k, h)

− (2hk − 3h− k + 3)(h− 1)

6

Hence,

s(h, k) + s(k, h)

=
1

2h

{
k−1∑
r′=1

(
r′

k

)2

+
k−1∑
r=1

h2r2

k2
−

k−1∑
r=1

hr

k
− (2hk − 3h− k + 3)(h− 1)

6

}

=
h2 + k2 − 3hk + 1

12hk
.

�

7 Dedekind’s Functional Equation

The main result of this section is the induction proof of the Dedekind’s
functional equation presented in Theorem 8.

Theorem 8 If

[
a b
c d

]
∈ Γ and c > 0, then

η

(
aτ + b

cτ + d

)
= exp

(
πiω(a, b, c, d)

12

)
{−i(cτ + d)}1/2 η(τ)

where

ω(a, b, c, d) =
a+ d

c
+ 12s(−d, c) (21)

is an integer.
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Proof. We use induction on c. When c = 1, b = ad− 1. Thus,

aτ + b

cτ + d
=
a(τ + d)− 1

τ + d
= a− 1

τ + d
.

It follows from Proposition 4 and Theorem 6 that

η

(
aτ + b

cτ + d

)
= η

(
a− 1

τ + d

)
= exp

(
πia

12

)
η

(
− 1

τ + d

)
= exp

(
πia

12

)
{−i(τ + d)}1/2 η (τ + d)

= exp

(
πi(a+ d)

12

)
{−i(τ + d)}1/2 η (τ)

= exp

(
πiω(a, b, c, d)

12

)
{−i(cτ + d)}1/2 η(τ),

where
ω(a, b, c, d) = a+ d

is an integer. Since s(−d, c) = s(−d, 1) = 0, this proves the statement of
the theorem when c = 1.

Now we will use principle of strong induction. Let c be an integer larger

than or equal to 2. Suppose that for all

[
a′ b′

c′ d′

]
∈ Γ with 1 ≤ c′ ≤ c − 1,

the statement of the theorem is proved. Consider

[
a b
c d

]
with ad− bc = 1.

Since c and d are relatively prime, there is a unique positive integer r less
than c such that −d ≡ r mod c. In other words, there is an integer q such
that

d = cq − r.
Let

u = aq − b.
Then [

a b
c d

]
=

[
u a
r c

] [
0 −1
1 0

] [
1 q
0 1

]
.

Let γ1, γ2, γ3 be linear fractional transformations defined by

γ1(τ) =
uτ + a

rτ + c
, γ2(τ) = S(τ) = −1

τ
, γ3(τ) = T q(τ) = τ + q.

Then
aτ + b

cτ + d
= γ1(τ

′) =
uτ ′ + a

rτ ′ + c
, τ ′ = γ2(γ3(τ)) = − 1

τ + q
.
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Since 0 < r < c, we can apply induction hypothesis and obtain

η

(
aτ + b

cτ + d

)
= η

(
uτ ′ + a

rτ ′ + c

)
= exp

(
πiω(u, a, r, c)

12

)
{−i(rτ ′ + c)}1/2 η(τ ′),

where

ω(u, a, r, c) =
u+ c

r
+ 12s(−c, r)

is an integer. From the case c = 1, we have

η(τ ′) = η

(
− 1

τ + q

)
= exp

(
πiq

12

)
{−i(τ + q)}1/2 η(τ).

Since
(rτ ′ + c)(τ + q) = c(τ + q)− r = cτ + d

and

(−i)1/2 = exp

(
−πi

4

)
,

we find that

η

(
aτ + b

cτ + d

)
= exp

(
πiω(a, b, c, d)

12

)
{−i(cτ + d)}1/2 η(τ),

where

ω(a, b, c, d) = ω(u, a, r, c) + q − 3 =
u+ c+ qr

r
+ 12s(−c, r)− 3.

From the first equality, we conclude by the inductive hypothesis that ω(a, b, c, d)
is an integer. Now we need to prove that ω(a, b, c, d) is given by (21). By
Lemma 3,

s(−c, r) = −s(c, r).

By Theorem 7, we find that

s(−c, r) = s(r, c)− r2 + c2 − 3rc+ 1

12rc
.

Since −d is congruent to r modulo c, Lemma 2 implies that

s(−c, r) = s(−d, c)− r2 + c2 − 3rc+ 1

12rc
.

Hence,
ω(a, b, c, d) = Λ(a, b, c, d) + 12s(−d, c),
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where

Λ(a, b, c, d) =
u+ c+ qr

r
− 3− r2 + c2 − 3rc+ 1

rc

=
uc+ cqr − r2 − 1

rc

=
c(aq − b)− 1 + dr

rc

=
a(cq − d) + dr

rc

=
a+ d

c
.

This proves (21). Hence, the theorem is proved. �
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