An Elementary Proof of the Transformation Formula for the Dedekind Eta Function

Z. Y. Kong and L. P. Teo

Abstract

In this work, we give an elementary proof of the transformation formula for the Dedekind eta function under the action of the modular group $\operatorname{PSL}(2, \mathbb{Z})$. We start by giving a proof of the transformation formula $\eta(\tau)$ under the transformation $\tau \rightarrow-1 / \tau$, using the Jacobi triple product identity and the Poisson summation formula. After we establish some identities for the Dedekind sum, the transformation formula for $\eta(\tau)$ under the transformation induced by a general element of the modular group $\operatorname{PSL}(2, \mathbb{Z})$ is derived by induction.

Key Words: Dedekind Eta Function, Transformation Formula, Modular Group, Functional Equation
Mathematics Subject Classification 2020: 11F20, 11F03

1 Introduction

The Dedekind eta function is introduced by Dedekind in 1877 and is defined in the upper half plane $\mathbb{H}=\{\tau \mid \operatorname{Im} \tau>0\}$ by the equation

$$
\eta(\tau)=e^{\pi i \tau / 12} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right)
$$

It is closely related to the theory of modular forms [2]. In this note, we are going to derive the following formula which describes the transformation of $\eta(\tau)$ under a linear fractional transformation defined by an element of the modular group $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$:

$$
\begin{equation*}
\eta\left(\frac{a \tau+b}{c \tau+d}\right)=\exp \left\{\pi i\left(\frac{a+d}{12 c}+s(-d, c)\right)\right\}\{-i(c \tau+d)\}^{1 / 2} \eta(\tau) . \tag{1}
\end{equation*}
$$

Here $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is an element of Γ with $c>0$, and $s(-d, c)$ is a Dedekind sum. Equation (11) is known as the Dedekind functional equation for the Dedekind eta function. One can establish that the number

$$
\omega(a, b, c, d)=\frac{a+d}{c}+12 s(-d, c)
$$

is an integer. Therefore, the function $f(\tau)=\eta(\tau)^{24}$ satisfies

$$
f\left(\frac{a \tau+b}{c \tau+d}\right) \frac{1}{(c \tau+d)^{12}}=f(\tau) \quad \text { for all }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma
$$

In other words, $\eta(\tau)^{24}$ is a modular form of weight 12 for the modular group Γ.

The Dedekind functional equation (1) was proved using a more general transformation formula of Iseki [4] in the book [2]. In the special case $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], s(0,1)=0$, and formula (1) reduces to

$$
\begin{equation*}
\eta\left(-\frac{1}{\tau}\right)=(-i \tau)^{-1 / 2} \eta(\tau) \tag{2}
\end{equation*}
$$

This formula has been proved using various methods such as the contour integral method by Siegel [7] (see also [2]). A slight drawback of Siegel's method is that it involves a limiting process which needs to be justified using advanced theories.

In this note, we present a proof of (2) using elementary methods. We first present the proof of the Jacobi triple product formula

$$
\prod_{n=1}^{\infty}\left(1-w^{2 n}\right)\left(1+w^{2 n-1} z^{2}\right)\left(1+w^{2 n-1} z^{-2}\right)=\sum_{n=-\infty}^{\infty} w^{n^{2}} z^{2 n}, \quad|w|<1, z \neq 0
$$

following the approach in [1]. From here we derive the Euler pentagonal number formula

$$
\prod_{n=1}^{\infty}\left(1-w^{n}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} w^{\frac{3 n^{2}-n}{2}}, \quad|w|<1
$$

The Poisson summation formula is then employed to prove the transformation formula (2).

It is well known that the modular group Γ is generated by the two elements $T=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. The transformation of η under T is given by

$$
\eta(\tau+1)=e^{\frac{\pi i}{12}} \eta(\tau)
$$

which is obvious from its definition. The fact that Γ is generated by T and S can be proved by induction on c (see, for example, [2].) Using this idea, we prove the Dedekind functional equation (1) for general transformation using induction. This proof is completely elementary.

The purpose of this work is to give a self-contained elementary proof for the Dedekind functional equation. Therefore, we present in detail the proofs of all the results we need.

2 Fractional Linear Transformations and the Modular Group

Let $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ be the extended complex plane. It is well known that a mapping $w: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is analytic and bijective if and only if w is a linear fractional transformation, namely,

$$
w(z)=\frac{a z+b}{c z+d}
$$

for some 4 -tuple (a, b, c, d) with $a d-b c \neq 0$. For any nonzero complex number k, the 4-tuples (a, b, c, d) and $(k a, k b, k c, k d)$ define the same fractional linear transformation. Therefore, we can normalize a, b, c, d by

$$
a d-b c=1,
$$

and associate this linear fractional transformation with the two-by-two matrix

$$
\left[\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right] .
$$

The set of two-by-two matrices of the form (3) with $a d-b c=1$ is denoted by $\mathrm{SL}(2, \mathbb{C})$. This is a group under matrix multiplication.

Since (a, b, c, d) and $(-a,-b,-c,-d)$ define the same fractional linear transformation, we can define an equivalence relation on $\operatorname{SL}(2, \mathbb{C})$ in the following way. If A and B are in $\operatorname{SL}(2, \mathbb{C})$, then $A \sim B$ if and only if

$$
A= \pm B .
$$

The quotient of $\operatorname{SL}(2, \mathbb{C})$ by this equivalence relation is denoted by $\operatorname{PSL}(2, \mathbb{C})$. Let I be the two-by-two identity matrix. Then $H=\{I,-I\}$ is a normal subgroup of $\operatorname{SL}(2, \mathbb{C})$. One can easily see that

$$
\operatorname{PSL}(2, \mathbb{C})=\operatorname{SL}(2, \mathbb{C}) / H .
$$

Therefore, $\operatorname{PSL}(2, \mathbb{C})$ is also a group, which we call the group of fractional linear transformations. The group operation is precisely composition of transformations.

The modular group $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ is the subgroup of $\operatorname{PSL}(2, \mathbb{C})$ consisting of elements $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, with integers a, b, c, d satisfying $a d-b c=1$. It is well known that it is generated by the two elements

$$
T=\left[\begin{array}{ll}
1 & 1 \tag{4}\\
0 & 1
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

which describe, respectively, the linear transformations

$$
z \mapsto z+1 \quad \text { and } \quad z \mapsto-\frac{1}{z}
$$

3 Jacobi Triple Product Identity

In this section, we derive the Jacobi triple product identity following the approach in [1].

Theorem 1 Let w and z be complex numbers with $|w|<1$ and $z \neq 0$. Then

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-w^{2 n}\right)\left(1+w^{2 n-1} z^{2}\right)\left(1+w^{2 n-1} z^{-2}\right)=\sum_{n=-\infty}^{\infty} w^{n^{2}} z^{2 n} \tag{5}
\end{equation*}
$$

Proof. When $|w|<1$ and $z \neq 0$, the triple product on the left-hand side of (5) converges absolutely. The sum on the right-hand side of (5) also converges absolutely.

For $|w|<1$ and $z \neq 0$, define the function $F(w, z)$ by

$$
F(w, z)=\prod_{n=1}^{\infty}\left(1-w^{2 n}\right)\left(1+w^{2 n-1} z^{2}\right)\left(1+w^{2 n-1} z^{-2}\right)
$$

For a fixed $w, F(w, z)$ can be expanded into a power series in z. Since $F(w, z)$ is even in z and $F(w, z)=F\left(w, z^{-1}\right)$, the corresponding power series has the form

$$
F(w, z)=\sum_{n=-\infty}^{\infty} a_{n}(w) z^{2 n}
$$

with

$$
a_{-n}(w)=a_{n}(w)
$$

Since $F(0, z)=1$, we find that $a_{0}(0)=1$ and $a_{n}(0)=0$ if $n \neq 0$.

Now, note that

$$
\begin{aligned}
F(w, w z) & =\prod_{n=1}^{\infty}\left(1-w^{2 n}\right)\left(1+w^{2 n+1} z^{2}\right)\left(1+w^{2 n-3} z^{-2}\right) \\
& =\frac{1+w^{-1} z^{-2}}{1+w z^{2}} F(w, z) \\
& =w^{-1} z^{-2} F(w, z) .
\end{aligned}
$$

Therefore,

$$
\sum_{n=-\infty}^{\infty} a_{n}(w) w^{2 n} z^{2 n}=w^{-1} z^{-2} \sum_{n=-\infty}^{\infty} a_{n}(w) z^{2 n}=\sum_{n=-\infty}^{\infty} a_{n+1}(w) w^{-1} z^{2 n}
$$

This implies that for any integer n,

$$
a_{n+1}(w)=w^{2 n+1} a_{n}(w) .
$$

By induction, we find that for $n \geq 1$,

$$
a_{-n}(w)=a_{n}(w)=w^{n^{2}} a_{0}(w) .
$$

Therefore,

$$
\begin{equation*}
F(w, z)=a_{0}(w) \sum_{n=-\infty}^{\infty} w^{n^{2}} z^{2 n} \tag{6}
\end{equation*}
$$

To prove the theorem, we need to show that $a_{0}(w)=1$ for all $|w|<1$. Setting $z=e^{\frac{\pi i}{4}}$ in (6), we have

$$
\begin{equation*}
\frac{F\left(w, e^{\frac{\pi i}{4}}\right)}{a_{0}(w)}=\sum_{n=-\infty}^{\infty} w^{n^{2}} i^{n} . \tag{7}
\end{equation*}
$$

Since $i^{2 n}=i^{-2 n}=(-1)^{n}$ and $i^{-(2 n+1)}=-i^{2 n+1}$, we find that the odd terms in the right hand side of (7) cancel, and only the even terms left. This gives

$$
\begin{equation*}
\frac{F\left(w, e^{\frac{\pi i}{4}}\right)}{a_{0}(w)}=\sum_{n=-\infty}^{\infty}(-1)^{n} w^{4 n^{2}} . \tag{8}
\end{equation*}
$$

Setting $z=i$ and replacing w with w^{4} in (6), we have

$$
\begin{equation*}
\frac{F\left(w^{4}, i\right)}{a_{0}\left(w^{4}\right)}=\sum_{n=-\infty}^{\infty}(-1)^{n} w^{4 n^{2}} \tag{9}
\end{equation*}
$$

A comparison of (8) and (9) gives

$$
\frac{a_{0}\left(w^{4}\right)}{a_{0}(w)}=\frac{F\left(w^{4}, i\right)}{F\left(w, e^{\frac{\pi i}{4}}\right)} .
$$

This implies that

$$
\begin{aligned}
\frac{a_{0}\left(w^{4}\right)}{a_{0}(w)} & =\prod_{n=1}^{\infty} \frac{\left(1-w^{8 n}\right)\left(1-w^{8 n-4}\right)^{2}}{\left(1-w^{2 n}\right)\left(1+i w^{2 n-1}\right)\left(1-i w^{2 n-1}\right)} \\
& =\prod_{n=1}^{\infty} \frac{\left(1-w^{8 n}\right)\left(1-w^{8 n-4}\right)^{2}}{\left(1-w^{2 n}\right)\left(1+w^{4 n-2}\right)}
\end{aligned}
$$

Since every positive integer of the form $4 n$ is either of the form $8 n$ or of the form $8 n-4$, we find that

$$
\prod_{n=1}^{\infty}\left(1-w^{8 n}\right)\left(1-w^{8 n-4}\right)=\prod_{n=1}^{\infty}\left(1-w^{4 n}\right)
$$

On the other hand,

$$
\left(1-w^{8 n-4}\right)=\left(1-w^{4 n-2}\right)\left(1+w^{4 n-2}\right) .
$$

Therefore,

$$
\frac{a_{0}\left(w^{4}\right)}{a_{0}(w)}=\prod_{n=1}^{\infty} \frac{\left(1-w^{4 n}\right)\left(1-w^{4 n-2}\right)}{1-w^{2 n}}
$$

Since every positive integer of the form $2 n$ is either of the form $4 n$ or of the form $4 n-2$, we find that

$$
\prod_{n=1}^{\infty}\left(1-w^{4 n}\right)\left(1-w^{4 n-2}\right)=\prod_{n=1}^{\infty}\left(1-w^{2 n}\right)
$$

This implies

$$
a_{0}\left(w^{4}\right)=a_{0}(w) .
$$

For any w with $|w|<1$ and any positive integer k,

$$
a_{0}(w)=a_{0}\left(w^{4}\right)=\cdots=a_{0}\left(w^{4 k}\right)
$$

Since $w^{4 k} \rightarrow 0$ when $k \rightarrow \infty$, we obtain

$$
a_{0}(w)=a_{0}(0)=1 .
$$

Hence,

$$
F(w, z)=\sum_{n=-\infty}^{\infty} w^{n^{2}} z^{2 n}
$$

which completes the proof.

Note that $w=e^{\pi i \tau}$ maps the upper half plane $\mathbb{H}=\{\operatorname{Im} \tau>0\}$ to the unit disc $\mathbb{D}=\{|w|<1\}$. Replacing w by $e^{\pi i \tau}$ and z by $e^{\pi i z}$, the Jacobi triple product identity takes the following form.

Corollary 1 For any complex numbers τ and z with $\operatorname{Im} \tau>0$, it holds

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right)\left(1+e^{\pi i(2 n-1) \tau} e^{2 \pi i z}\right)\left(1+e^{\pi i(2 n-1) \tau} e^{-2 \pi i z}\right) \\
& =\sum_{n=-\infty}^{\infty} e^{\pi i n^{2} \tau} e^{2 \pi i n z} \tag{10}
\end{align*}
$$

4 Poisson Summation Formula

Poisson summation formula, which is useful in the study of number theory, is a consequence of the theory of Fourier series. In this section, we present the Poisson summation formula and apply it to the Gaussian function.

Theorem 2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function such that

$$
\sum_{n=-\infty}^{\infty} f(x+n) \quad \text { and } \quad \sum_{n=-\infty}^{\infty} f^{\prime}(x+n)
$$

converge uniformly on the closed interval $[0,1]$. Then for any $x \in \mathbb{R}$,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f(x+n)=\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{2 \pi i n x} \tag{11}
\end{equation*}
$$

where

$$
\widehat{f}(n)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i n x} d x
$$

Proof. Define

$$
\begin{equation*}
F(x)=\sum_{n=-\infty}^{\infty} f(x+n) \quad \text { and } \quad G(x)=\sum_{n=-\infty}^{\infty} f^{\prime}(x+n) . \tag{12}
\end{equation*}
$$

Due to the assumption of uniform convergence on $[0,1]$ and the fact that f and f^{\prime} are continuous, F and G are continuous functions on $[0,1]$. It is easy to verify that the series for $F(x)$ and $G(x)$ converge uniformly on any closed and bounded interval,

$$
F(x+1)=F(x), \quad G(x+1)=G(x),
$$

and

$$
F^{\prime}(x)=G(x) .
$$

In particular, F is also continuously differentiable. Now, since F is a periodic function with period 1, Dirichlet theorem for Fourier series implies that the Fourier series of $F(x)$ converges to $F(x)$. Namely,

$$
\sum_{n=-\infty}^{\infty} f(x+n)=F(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

where

$$
c_{n}=\int_{0}^{1} F(x) e^{-2 \pi i n x} d x
$$

Let us compute c_{n} in terms of f. We have

$$
c_{n}=\int_{0}^{1} \sum_{k=-\infty}^{\infty} f(x+k) e^{-2 \pi i n x} d x
$$

Since the first series in (12) converges uniformly, we can interchange summation and integration to obtain

$$
c_{n}=\sum_{k=-\infty}^{\infty} \int_{0}^{1} f(x+k) e^{-2 \pi i n x} d x
$$

Making the change of variables $x \mapsto x-k$, we have

$$
\begin{aligned}
c_{n} & =\sum_{k=-\infty}^{\infty} \int_{k}^{k+1} f(x) e^{-2 \pi i n(x-k)} d x \\
& =\sum_{k=-\infty}^{\infty} \int_{k}^{k+1} f(x) e^{-2 \pi i n x} d x \\
& =\int_{-\infty}^{\infty} f(x) e^{-2 \pi i n x} d x
\end{aligned}
$$

This completes the proof of the theorem.
Before applying the Poisson summation formula to a Gaussian function, let us verify the uniform convergence of the corresponding series.

Lemma 1 Let u be a positive number and let b be any real number. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=e^{-2 \pi i b x} e^{-\pi u x^{2}}
$$

Then the two series

$$
F(x)=\sum_{n=-\infty}^{\infty} f(x+n) \quad \text { and } \quad G(x)=\sum_{n=-\infty}^{\infty} f^{\prime}(x+n)
$$

converge uniformly on $[0,1]$.

Proof. It suffices to consider the case $b=0$. We prove the uniform convergence for the series $G(x)$ by applying the Weierstrass M-test. The proof for the series $F(x)$ is similar.

Note that when $b=0$,

$$
f^{\prime}(x)=-2 \pi u x e^{-\pi u x^{2}}
$$

For $x \in[0,1]$ and $n \geq 1$, we can write

$$
\left|f^{\prime}(x+n)\right| \leq 2 \pi u(n+1) e^{-\pi u n^{2}} \leq 2 \pi u(n+1) e^{-\pi u n}
$$

When $n \geq 2$,

$$
\left|f^{\prime}(x-n)\right| \leq 2 \pi u n e^{-\pi u(n-1)^{2}} \leq 2 \pi u n e^{-\pi u(n-1)}
$$

It remains to note that the two series

$$
\sum_{n=1}^{\infty} 2 \pi u(n+1) e^{-\pi u n} \quad \text { and } \quad \sum_{n=2}^{\infty} 2 \pi u n e^{-\pi u(n-1)}
$$

are both convergent.
Theorem 3 Let u be a positive number. For any real numbers a and b, one has

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} e^{-2 \pi i(n+a) b} e^{-\pi u(n+a)^{2}}=\frac{1}{\sqrt{u}} \sum_{n=-\infty}^{\infty} e^{2 \pi i n a} e^{-\pi(n+b)^{2} / u} \tag{13}
\end{equation*}
$$

Proof. Let $f(x)$ be the function defined in Lemma 1. By the Poisson summation formula (11), we have

$$
\sum_{n=-\infty}^{\infty} e^{-2 \pi i(n+a) b} e^{-\pi u(n+a)^{2}}=\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{2 \pi i n a}
$$

Now we only need to compute $\widehat{f}(n)$. We can write

$$
\begin{aligned}
\widehat{f}(n) & =\int_{-\infty}^{\infty} e^{-2 \pi i b x} e^{-\pi u x^{2}} e^{-2 \pi i n x} d x \\
& =e^{-\pi(n+b)^{2} / u} \int_{-\infty}^{\infty} e^{-\pi u(x+i(n+b) / u)^{2}} d x
\end{aligned}
$$

Here the function $e^{-\pi u z^{2}}$ is integrated over the closed contour $\operatorname{Im} z=(n+$ b) $/ u$. Since $e^{-\pi u z^{2}}$ is analytic, we can shift the contour of integration to the real $\operatorname{line} \operatorname{Im} z=0$. This gives

$$
\int_{-\infty}^{\infty} e^{-\pi u(x+i(n+b) / u)^{2}} d x=\int_{-\infty}^{\infty} e^{-\pi u x^{2}} d x=\frac{1}{\sqrt{u}}
$$

Therefore,

$$
\widehat{f}(n)=\frac{1}{\sqrt{u}} e^{-\pi(n+b)^{2} / u}
$$

and the proof is completed.

Let

$$
D=\left\{(\tau, z, w) \in \mathbb{C}^{3} \mid \operatorname{Im} \tau>0\right\}
$$

Note that both the series

$$
H_{1}(\tau, z, w)=\sum_{n=-\infty}^{\infty} e^{-2 \pi i(n+z) w} e^{\pi i \tau(n+z)^{2}}
$$

and

$$
H_{2}(\tau, z)=(-i \tau)^{-1 / 2} \sum_{n=-\infty}^{\infty} e^{2 \pi i n z} e^{-\pi i(n+w)^{2} / \tau}
$$

converge absolutely and uniformly on any compact subsets of D. Hence, both of them define analytic functions on D. When $\tau=i u, u>0$ and $z=a, w=b, a, b \in \mathbb{R}$, it follows from (13) that

$$
H_{1}(i u, a, b)=H_{2}(i u, a, b) .
$$

By analytic continuation, we obtain

$$
H_{1}(\tau, z, w)=H_{2}(\tau, z, w) \quad \text { for all }(\tau, z, w) \in D
$$

Corollary 2 For any complex numbers τ, z and w with $\operatorname{Im} \tau>0$, it holds

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} e^{-2 \pi i(n+z) w} e^{\pi i \tau(n+z)^{2}}=(-i \tau)^{-1 / 2} \sum_{n=-\infty}^{\infty} e^{2 \pi i n z} e^{-\pi i(n+w)^{2} / \tau} \tag{14}
\end{equation*}
$$

5 Transformation Defined by the Generators of the Modular Group

In this section, we consider the transformation of the Dedekind eta function $\eta(\tau)$ under the action of the two generators T and S (4) of the modular group PSL $(2, \mathbb{Z})$.

For the generator T, its power T^{m} defines the transformation $\tau \mapsto \tau+m$. The transformation of $\eta(\tau)$ under the action of T^{m} is easily deduced.

Proposition 4 If $\tau \in \mathbb{H}$ and m is an integer, we have

$$
\eta(\tau+m)=\exp \left(\frac{\pi i m}{12}\right) \eta(\tau)
$$

For the transformation of $\eta(\tau)$ under the generator S, we have the following result.

Theorem 5 When $\operatorname{Im} \tau>0$, it holds

$$
\begin{equation*}
\eta\left(-\frac{1}{\tau}\right)=(-i \tau)^{1 / 2} \eta(\tau) \tag{15}
\end{equation*}
$$

There are various methods that can be used to prove this transformation formula. In [2], (15) was proved using Siegel's method which employs residue calculus. In [5], (15) was derived as a consequence of the corresponding transformation formula for the Eisenstein series $E_{2}(z)$. In [8], (15) was proved using the Jacobi triple product formula as well as the Poisson summation formula. However, it was first proved that

$$
\eta\left(-\frac{1}{\tau}\right)^{3}=(-i \tau)^{3 / 2} \eta(\tau)^{3}
$$

Here we are going to give an alternative proof of (15) by first deriving the Euler pentagonal number theorem.

Theorem 6 When $\operatorname{Im} \tau>0$, one has

$$
\prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{\pi i\left(3 n^{2}-n\right) \tau}=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{\pi i\left(3 n^{2}+n\right) \tau}
$$

Proof. Replacing τ by 3τ, and z by $(\tau+1) / 2$ in the Jacobi triple product identity (10), we obtain

$$
\prod_{n=1}^{\infty}\left(1-e^{2 \pi i(3 n) \tau}\right)\left(1-e^{2 \pi i(3 n-1) \tau}\right)\left(1-e^{2 \pi i(3 n-2) \tau}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{\pi i\left(3 n^{2}+n\right) \tau} .
$$

When n runs through positive integers, $3 n, 3 n-1$ and $3 n-2$ also runs through positive integers. Hence,

$$
\prod_{n=1}^{\infty}\left(1-e^{2 \pi i(3 n) \tau}\right)\left(1-e^{2 \pi i(3 n-1) \tau}\right)\left(1-e^{2 \pi i(3 n-2) \tau}\right)=\prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right) .
$$

Using the Euler pentagonal number theorem, we can express the Dedekind eta function as a sum.

Corollary 3 When $\operatorname{Im} \tau>0$,

$$
\begin{equation*}
\eta(\tau)=\sum_{n=-\infty}^{\infty} e^{\pi i n} e^{3 \pi i\left(n+\frac{1}{6}\right)^{2} \tau} \tag{16}
\end{equation*}
$$

Using the identity (14), we can now prove the transformation formula (15).
Proof of Theorem 5 Replacing τ by $\tau / 3$ and setting $z=1 / 2, w=1 / 6$ in (14), we obtain

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} e^{\pi i n} e^{-3 \pi i(n+1 / 6)^{2} / \tau}=\frac{(-i \tau)^{1 / 2}}{\sqrt{3}} \sum_{n=-\infty}^{\infty} e^{-\pi i n / 3} e^{-\pi i / 6} e^{\pi i \tau(n+1 / 2)^{2} / 3} \tag{17}
\end{equation*}
$$

By (16), the left-hand side of (17) is $\eta(-1 / \tau)$. For the right-hand side, note that when n runs through all integers, $3 n, 3 n-1$ and $3 n+1$ together also run through all integers. Therefore,

$$
\begin{align*}
& \sum_{n=-\infty}^{\infty} e^{-\pi i n / 3} e^{-\pi i / 6} e^{\pi i \tau(n+1 / 2)^{2} / 3} \\
& =\sum_{n=-\infty}^{\infty} e^{-\pi i n} e^{-\pi i / 6} e^{\pi i \tau(3 n+1 / 2)^{2} / 3}+\sum_{n=-\infty}^{\infty} e^{-\pi i n} e^{\pi i / 6} e^{\pi i \tau(3 n-1 / 2)^{2} / 3} \tag{18}\\
& \\
& \quad+\sum_{n=-\infty}^{\infty} e^{-\pi i n} e^{-\pi i / 2} e^{\pi i \tau(3 n+3 / 2)^{2} / 3} .
\end{align*}
$$

The first two terms on the right-hand side of (18) give

$$
\begin{align*}
& \sum_{n=-\infty}^{\infty} e^{-\pi i n} e^{-\pi i / 6} e^{\pi i \tau(3 n+1 / 2)^{2} / 3}+\sum_{n=-\infty}^{\infty} e^{-\pi i n} e^{\pi i / 6} e^{\pi i \tau(3 n-1 / 2)^{2} / 3} \\
& =2 \cos \frac{\pi}{6} \sum_{n=-\infty}^{\infty}(-1)^{n} e^{3 \pi i \tau(n+1 / 6)^{2}} \tag{19}\\
& =\sqrt{3} \eta(\tau)
\end{align*}
$$

The last term on the right-hand side of (18) is

$$
I=-i \sum_{n=-\infty}^{\infty}(-1)^{n} e^{3 \pi i \tau(n+1 / 2)^{2}}
$$

When n runs through all integers, $-1-n$ also runs through all integers. We then find that

$$
I=-i \sum_{n=-\infty}^{\infty}(-1)^{n+1} e^{3 \pi i \tau(-n-1 / 2)^{2}}=i \sum_{n=-\infty}^{\infty}(-1)^{n} e^{3 \pi i \tau(n+1 / 2)^{2}}=-I
$$

Thus, $I=0$, and we conclude from (17), (18) and (19) that

$$
\eta(1 / \tau)=(-i \tau)^{1 / 2} \eta(\tau)
$$

Remark 1 Define the function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ by

$$
\begin{gathered}
\chi(1)=\chi(11)=1, \quad \chi(5)=\chi(7)=-1, \\
\chi(2)=\chi(3)=\chi(4)=\chi(6)=\chi(8)=\chi(9)=\chi(10)=\chi(12)=0,
\end{gathered}
$$

and

$$
\chi(n+12)=\chi(n) \quad \text { for all } n \in \mathbb{Z}
$$

Then $\chi(n)$ is a Dirichlet character modulo 12. It satisfies the multiplicativity property:

$$
\chi(m n)=\chi(m) \chi(n) \quad \text { for all } m, n \in \mathbb{Z}
$$

As n runs through all integers, $2 n$ and $2 n+1$ together also runs through all integers. The formula for $\eta(\tau)$ 16) shows that

$$
\begin{aligned}
\eta(\tau)= & \sum_{n=-\infty}^{\infty} e^{\pi i \tau(12 n+1)^{2} / 12}-\sum_{n=-\infty}^{\infty} e^{\pi i \tau(12 n+7)^{2} / 12} \\
= & \frac{1}{2}\left\{\sum_{n=-\infty}^{\infty} \chi(12 n+1) e^{\pi i \tau(12 n+1)^{2} / 12}+\sum_{n=-\infty}^{\infty} \chi(12 n-1) e^{\pi i \tau(12 n-1)^{2} / 12}\right. \\
& \left.+\sum_{n=-\infty}^{\infty} \chi(12 n+7) e^{\pi i \tau(12 n+7)^{2} / 12}+\sum_{n=-\infty}^{\infty} \chi(12 n-7) e^{\pi i \tau(12 n-7)^{2} / 12}\right\} \\
= & \frac{1}{2} \sum_{m=1}^{12} \chi(m) \sum_{n=-\infty}^{\infty} e^{\pi i \tau(12 n+m)^{2} / 12} \\
= & \frac{1}{2} \sum_{n=-\infty}^{\infty} \chi(n) e^{\pi i \tau n^{2} / 12}
\end{aligned}
$$

As in [3], this formula can be used to give another proof of Theorem 5 .

Second proof of Theorem 5 One can easily verify that for all integer n,

$$
\chi(n)=\frac{1}{\sqrt{12}} \sum_{m=1}^{12} \chi(m) e^{\frac{2 \pi i m n}{12}}
$$

Therefore,

$$
\eta(-1 / \tau)=\frac{1}{2 \sqrt{12}} \sum_{m=1}^{12} \chi(m) \sum_{n=-\infty}^{\infty} e^{\frac{2 \pi i m n}{12}} e^{-\pi i n^{2} /(12 \tau)}
$$

For each $1 \leq m \leq 12$, using (14) with τ replaced by $12 \tau, z=m / 12$ and $w=0$, we find that

$$
\begin{aligned}
\eta(-1 / \tau) & =\frac{(-i \tau)^{1 / 2}}{2} \sum_{m=1}^{12} \chi(m) \sum_{n=-\infty}^{\infty} e^{12 \pi i \tau(n+m / 12)^{2}} \\
& =\frac{(-i \tau)^{1 / 2}}{2} \sum_{m=1}^{12} \chi(m) \sum_{n=-\infty}^{\infty} e^{\pi i \tau(12 n+m)^{2} / 12} \\
& =(-i \tau)^{1 / 2} \eta(\tau)
\end{aligned}
$$

Thus, the transformation formula (15) is a special case of a more general transformation formula for the theta function associated with Dirichlet characters [6].

6 The Dedekind Sums

For the transformation formula for η under a general element of the modular group, we first define the Dedekind sum.

If h is an integer and k is a positive integer larger than 1 , the Dedekind sum $s(h, k)$ is defined as

$$
\begin{equation*}
s(h, k)=\sum_{r=1}^{k-1} \frac{r}{k}\left(\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor-\frac{1}{2}\right) . \tag{20}
\end{equation*}
$$

When $k=1$, we put $s(h, 1)=0$ for any integer h.
The Dedekind sums have the following properties.
Lemma 2 Let k be a positive integer and let h and h^{\prime} be integers relatively prime to k. If $h \equiv h^{\prime} \bmod k$, then

$$
s(h, k)=s\left(h^{\prime}, k\right) .
$$

Proof. The statement is obvious if $k=1$. If $k>1$, there is an integer m such that

$$
h^{\prime}=k m+h .
$$

Then for any integer r,

$$
\begin{aligned}
\frac{h^{\prime} r}{k}-\left\lfloor\frac{h^{\prime} r}{k}\right\rfloor & =\frac{(k m+h) r}{k}-\left\lfloor\frac{(k m+h) r}{k}\right\rfloor \\
& =m r+\frac{h r}{k}-\left\lfloor m r+\frac{h r}{k}\right\rfloor \\
& =m r+\frac{h r}{k}-m r-\left\lfloor\frac{h r}{k}\right\rfloor \\
& =\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor
\end{aligned}
$$

It follows from the definition (20) that $s\left(h^{\prime}, k\right)=s(h, k)$.
There is a simple relation between $s(h, k)$ and $s(-h, k)$.
Lemma 3 If k is a positive integer and h is an integer relatively prime to k, then

$$
s(-h, k)=-s(h, k) .
$$

Proof. For each $1 \leq r \leq k-1$, there is an r^{\prime} such that $1 \leq r^{\prime} \leq k-1$ and

$$
h r \equiv r^{\prime} \quad \bmod k
$$

This implies that

$$
\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor=\frac{r^{\prime}}{k}
$$

Since

$$
-h r \equiv k-r^{\prime} \quad \bmod k
$$

and $1 \leq k-r^{\prime} \leq k-1$, we have

$$
\frac{-h r}{k}-\left\lfloor\frac{-h r}{r}\right\rfloor=\frac{k-r^{\prime}}{k}=1-\frac{r^{\prime}}{k} .
$$

Therefore,

$$
\begin{aligned}
s(-h, k) & =\sum_{r=1}^{k-1} \frac{r}{k}\left(\frac{-h r}{k}-\left\lfloor\frac{-h r}{k}\right\rfloor-\frac{1}{2}\right) \\
& =\sum_{r=1}^{k-1} \frac{r}{k}\left(\frac{1}{2}-\frac{r^{\prime}}{k}\right) \\
& =-\sum_{r=1}^{k-1} \frac{r}{k}\left(\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor-\frac{1}{2}\right) \\
& =-s(h, k) .
\end{aligned}
$$

Next we establish the reciprocity relation between $s(h, k)$ and $s(k, h)$ when h and k are positive integers. The main idea is the same as in [2], where one evaluates a sum in two different ways. To make it easier to understand, we extract some identities as lemmas. Instead of using purely number theoretic argument as in [2], we give an interpretation in terms of counting lattice points, an idea that has been used in one of the proofs of the law of quadratic reciprocity.

Lemma 4 If k is a positive integer and h is an integer relative prime to k, then

$$
\sum_{r=1}^{k-1}\left\lfloor\frac{h r}{k}\right\rfloor=\frac{(h-1)(k-1)}{2}
$$

Proof. As in the proof of Lemma 3, for each $1 \leq r \leq k-1$, there is an integer r^{\prime} such that $1 \leq r^{\prime} \leq k-1$ and

$$
h r \equiv r^{\prime} \quad \bmod k
$$

This implies that

$$
\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor=\frac{r^{\prime}}{k} .
$$

As r runs through the integers from 1 to $k-1, r^{\prime}$ also runs through the integers from 1 to $k-1$. Therefore,

$$
\sum_{r=1}^{k-1}\left\lfloor\frac{h r}{k}\right\rfloor=\sum_{r=1}^{k-1} \frac{h r}{k}-\sum_{r^{\prime}=1}^{k-1} \frac{r^{\prime}}{k}=\frac{(h-1)(k-1)}{2}
$$

Lemma 5 If h and k are positive integers with $(h, k)=1$, then

$$
\sum_{r=1}^{k-1}\left(\left\lfloor\frac{h r}{k}\right\rfloor\right)^{2}=2 h s(k, h)+\frac{(2 h k-3 h-k+3)(h-1)}{6}
$$

Proof. Using Lemma 4, we find that

$$
\begin{aligned}
\sum_{r=1}^{k-1}\left(\left\lfloor\frac{h r}{k}\right\rfloor\right)^{2} & =\sum_{r=1}^{k-1}\left\lfloor\frac{h r}{k}\right\rfloor\left(\left\lfloor\frac{h r}{k}\right\rfloor+1\right)-\sum_{r=1}^{k-1}\left\lfloor\frac{h r}{k}\right\rfloor \\
& =2 \sum_{r=1}^{k-1} \sum_{s=1}^{\left\lfloor\frac{h r}{k}\right\rfloor} s-\frac{(h-1)(k-1)}{2}
\end{aligned}
$$

Consider the lattice points (r, s) with $1 \leq r \leq k-1$ and $1 \leq s \leq h-1$. Since h and k are relatively prime, none of these points lie on the line $h x=k y$. Hence,

$$
\begin{aligned}
\sum_{r=1}^{k-1} \sum_{s=1}^{\left\lfloor\frac{h r}{k}\right\rfloor} s & =\sum_{\substack{1 \leq r \leq k-1,1 \leq s \leq h-1 \\
k s \leq h r}} s \\
& =\sum_{1 \leq r \leq k-1,1 \leq s \leq h-1} s-\sum_{\substack{1 \leq r \leq k-1,1 \leq s \leq h-1 \\
h r \leq k s}} s
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{r=1}^{k-1}\left(\left\lfloor\frac{h r}{k}\right\rfloor\right)^{2}= & (k-1)(h-1) h-2 \sum_{s=1}^{h-1} \sum_{r=1}^{\left\lfloor\frac{k s}{h}\right\rfloor} s-\frac{(h-1)(k-1)}{2} \\
= & \frac{(k-1)(h-1)(2 h-1)}{2}-2 \sum_{s=1}^{h-1} s\left\lfloor\frac{k s}{h}\right\rfloor \\
= & 2 h \sum_{s=1}^{h-1} \frac{s}{h}\left(\frac{k s}{h}-\left\lfloor\frac{k s}{h}\right\rfloor-\frac{1}{2}\right)-2 h \sum_{s=1}^{h-1} \frac{s}{h}\left(\frac{k s}{h}-\frac{1}{2}\right) \\
& +\frac{(k-1)(h-1)(2 h-1)}{2} .
\end{aligned}
$$

A straightforward computation gives

$$
\sum_{r=1}^{k-1}\left(\left\lfloor\frac{h r}{k}\right\rfloor\right)^{2}=2 h s(k, h)+\frac{(2 h k-3 h-k+3)(h-1)}{6}
$$

Now, we can establish the reciprocity law for Dedekind sums.

Theorem 7 If h and k are positive integers with $(h, k)=1$, then

$$
s(h, k)+s(k, h)=\frac{h^{2}+k^{2}-3 h k+1}{12 h k} .
$$

Proof. Since there is a symmetry in h and k, we can assume that $h \geq k$. It is easy to check that the formula is true when $h=k=1$. When $k=1$ and $h>1$,

$$
\begin{aligned}
s(h, k)+s(k, h) & =s(1, h) \\
& =\sum_{r=1}^{h-1} \frac{r}{h}\left(\frac{r}{h}-\frac{1}{2}\right) \\
& =\frac{h^{2}-3 h+2}{12 h} \\
& =\frac{h^{2}+k^{2}-3 h k+1}{12 h k} .
\end{aligned}
$$

Let $h \geq k>1$. Since $(h, k)=1$, we must have $h>k$. As in the proof of Lemma 3, for each integer $1 \leq r \leq k-1$, there is a unique r^{\prime} such that $1 \leq r^{\prime} \leq k-1$ and

$$
h r \equiv r^{\prime} \quad \bmod k,
$$

which implies that

$$
\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor=\frac{r^{\prime}}{k}
$$

Hence,

$$
\begin{aligned}
\sum_{r^{\prime}=1}^{k-1}\left(\frac{r^{\prime}}{k}\right)^{2} & =\sum_{r=1}^{k-1}\left(\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor\right)^{2} \\
& =2 \sum_{r=1}^{k-1} \frac{h r}{k}\left(\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor-\frac{1}{2}\right)-\sum_{r=1}^{k-1} \frac{h^{2} r^{2}}{k^{2}} \\
& +\sum_{r=1}^{k-1}\left(\left\lfloor\frac{h r}{k}\right\rfloor\right)^{2}+\sum_{r=1}^{k-1} \frac{h r}{k}
\end{aligned}
$$

Using Lemma 5, we find that

$$
\begin{aligned}
2 h s(h, k)= & \sum_{r^{\prime}=1}^{k-1}\left(\frac{r^{\prime}}{k}\right)^{2}+\sum_{r=1}^{k-1} \frac{h^{2} r^{2}}{k^{2}}-\sum_{r=1}^{k-1} \frac{h r}{k}-2 h s(k, h) \\
& -\frac{(2 h k-3 h-k+3)(h-1)}{6}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& s(h, k)+s(k, h) \\
& =\frac{1}{2 h}\left\{\sum_{r^{\prime}=1}^{k-1}\left(\frac{r^{\prime}}{k}\right)^{2}+\sum_{r=1}^{k-1} \frac{h^{2} r^{2}}{k^{2}}-\sum_{r=1}^{k-1} \frac{h r}{k}-\frac{(2 h k-3 h-k+3)(h-1)}{6}\right\} \\
& =\frac{h^{2}+k^{2}-3 h k+1}{12 h k}
\end{aligned}
$$

7 Dedekind's Functional Equation

The main result of this section is the induction proof of the Dedekind's functional equation presented in Theorem 8 .

Theorem 8 If $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma$ and $c>0$, then

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right)=\exp \left(\frac{\pi i \omega(a, b, c, d)}{12}\right)\{-i(c \tau+d)\}^{1 / 2} \eta(\tau)
$$

where

$$
\begin{equation*}
\omega(a, b, c, d)=\frac{a+d}{c}+12 s(-d, c) \tag{21}
\end{equation*}
$$

is an integer.

Proof. We use induction on c. When $c=1, b=a d-1$. Thus,

$$
\frac{a \tau+b}{c \tau+d}=\frac{a(\tau+d)-1}{\tau+d}=a-\frac{1}{\tau+d} .
$$

It follows from Proposition 4 and Theorem 6 that

$$
\begin{aligned}
\eta\left(\frac{a \tau+b}{c \tau+d}\right) & =\eta\left(a-\frac{1}{\tau+d}\right) \\
& =\exp \left(\frac{\pi i a}{12}\right) \eta\left(-\frac{1}{\tau+d}\right) \\
& =\exp \left(\frac{\pi i a}{12}\right)\{-i(\tau+d)\}^{1 / 2} \eta(\tau+d) \\
& =\exp \left(\frac{\pi i(a+d)}{12}\right)\{-i(\tau+d)\}^{1 / 2} \eta(\tau) \\
= & \exp \left(\frac{\pi i \omega(a, b, c, d)}{12}\right)\{-i(c \tau+d)\}^{1 / 2} \eta(\tau)
\end{aligned}
$$

where

$$
\omega(a, b, c, d)=a+d
$$

is an integer. Since $s(-d, c)=s(-d, 1)=0$, this proves the statement of the theorem when $c=1$.

Now we will use principle of strong induction. Let c be an integer larger than or equal to 2. Suppose that for all $\left[\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right] \in \Gamma$ with $1 \leq c^{\prime} \leq c-1$, the statement of the theorem is proved. Consider $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c=1$. Since c and d are relatively prime, there is a unique positive integer r less than c such that $-d \equiv r \bmod c$. In other words, there is an integer q such that

$$
d=c q-r .
$$

Let

$$
u=a q-b
$$

Then

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
u & a \\
r & c
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right]
$$

Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be linear fractional transformations defined by

$$
\gamma_{1}(\tau)=\frac{u \tau+a}{r \tau+c}, \quad \gamma_{2}(\tau)=S(\tau)=-\frac{1}{\tau}, \quad \gamma_{3}(\tau)=T^{q}(\tau)=\tau+q
$$

Then

$$
\frac{a \tau+b}{c \tau+d}=\gamma_{1}\left(\tau^{\prime}\right)=\frac{u \tau^{\prime}+a}{r \tau^{\prime}+c}, \quad \tau^{\prime}=\gamma_{2}\left(\gamma_{3}(\tau)\right)=-\frac{1}{\tau+q}
$$

Since $0<r<c$, we can apply induction hypothesis and obtain

$$
\begin{aligned}
\eta\left(\frac{a \tau+b}{c \tau+d}\right) & =\eta\left(\frac{u \tau^{\prime}+a}{r \tau^{\prime}+c}\right) \\
& =\exp \left(\frac{\pi i \omega(u, a, r, c)}{12}\right)\left\{-i\left(r \tau^{\prime}+c\right)\right\}^{1 / 2} \eta\left(\tau^{\prime}\right),
\end{aligned}
$$

where

$$
\omega(u, a, r, c)=\frac{u+c}{r}+12 s(-c, r)
$$

is an integer. From the case $c=1$, we have

$$
\eta\left(\tau^{\prime}\right)=\eta\left(-\frac{1}{\tau+q}\right)=\exp \left(\frac{\pi i q}{12}\right)\{-i(\tau+q)\}^{1 / 2} \eta(\tau)
$$

Since

$$
\left(r \tau^{\prime}+c\right)(\tau+q)=c(\tau+q)-r=c \tau+d
$$

and

$$
(-i)^{1 / 2}=\exp \left(-\frac{\pi i}{4}\right)
$$

we find that

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right)=\exp \left(\frac{\pi i \omega(a, b, c, d)}{12}\right)\{-i(c \tau+d)\}^{1 / 2} \eta(\tau),
$$

where

$$
\omega(a, b, c, d)=\omega(u, a, r, c)+q-3=\frac{u+c+q r}{r}+12 s(-c, r)-3 .
$$

From the first equality, we conclude by the inductive hypothesis that $\omega(a, b, c, d)$ is an integer. Now we need to prove that $\omega(a, b, c, d)$ is given by (21). By Lemma 3 .

$$
s(-c, r)=-s(c, r)
$$

By Theorem 7, we find that

$$
s(-c, r)=s(r, c)-\frac{r^{2}+c^{2}-3 r c+1}{12 r c} .
$$

Since $-d$ is congruent to r modulo c, Lemma 2 implies that

$$
s(-c, r)=s(-d, c)-\frac{r^{2}+c^{2}-3 r c+1}{12 r c} .
$$

Hence,

$$
\omega(a, b, c, d)=\Lambda(a, b, c, d)+12 s(-d, c),
$$

where

$$
\begin{aligned}
\Lambda(a, b, c, d) & =\frac{u+c+q r}{r}-3-\frac{r^{2}+c^{2}-3 r c+1}{r c} \\
& =\frac{u c+c q r-r^{2}-1}{r c} \\
& =\frac{c(a q-b)-1+d r}{r c} \\
& =\frac{a(c q-d)+d r}{r c} \\
& =\frac{a+d}{c} .
\end{aligned}
$$

This proves (21). Hence, the theorem is proved.

Acknowlegments. This work is supported by the Xiamen University Malaysia Research Fund XMUMRF/2021-C8/IMAT/0017.

References

[1] T.M. Apostol, Introduction to analytic number theory. Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. https://doi.org/10.1007/978-1-4757-5579-4
[2] T.M. Apostol, Modular functions and Dirichlet series in number theory. Graduate Texts in Mathematics 41, Springer-Verlag, New York, 2nd ed., 1990. https://doi.org/10.1007/978-1-4612-0999-7
[3] D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, Cambridge, 1997.
[4] S. Iseki, The transformation formula for the Dedekind modular function and related functional equations. Duke Math. J., 24 (1957), pp. 653662. https://doi.org/10.1215/s0012-7094-57-02473-0
[5] N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics 97, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-0909-6_3
[6] H.L. Montgomery and R.C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge, 2007.
[7] C.L. Siegel, A simple proof of $\eta(-1 / \tau)=\eta(\tau)_{\sqrt{ } / \tau / i \text {. Mathematika, } 1110 \mid}^{1}$ (1954), no. 1, p. 4. https://doi.org/10.1112/S0025579300000462
[8] E.M. Stein and R. Shakarchi, Complex analysis. Princeton Lectures in Analysis 2, Princeton University Press, Princeton, NJ, 2003.

Ze-Yong Kong
Department of Mathematics, Xiamen University Malaysia Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia. MAM2304005@xmu.edu.my

Lee-Peng Teo
Department of Mathematics, Xiamen University Malaysia
Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia. lpteo@xmu.edu.my

Please, cite to this paper as published in Armen. J. Math., V. 16, N. 4(2024), pp. $1 \mid 22$
https://doi.org/10.52737/18291163-2024.16.4-1-22

