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Abstract

In this survey some fundamental results from the theory of generalized ana-

lytic functions are presented. Then, based on that theory, we develop the theory

of the so-called Bohr-Riemann surfaces.
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Introduction

In the beginning of the last century the works of H. Bohr laid the foundations of the theory

of analytic almost periodic functions. However, many natural problems in the theory still

remain open. This particularly applies to meromorphic almost periodic functions for which

there are just a few remarkable results obtained. Lately an intensively developing theory

of differential equations with almost periodic coefficients again raised the issue of studying

both analytic and meromorphic almost periodic functions. Quite useful and convenient tools

for such studies are the generalized analytic functions which were introduced by R. Arens

and I.M. Singer (see [1]). The method suggested by those authors not only allowed to give

a new treatment of the well-known theorems from the theory of analytic almost periodic

functions (such as the theorems of H. Bohr, A. Besicovitch, B. Levin, et al) but also enabled

to take a look at the theory of almost periodic functions and at the theory of analytic

functions in the unit disc from a unified point of view. In short, as we know the theory of

analytic functions in the unit disc considers the functions that are represented by the series
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f(z) = f(r · eiθ) =
∑

n∈Z+
anz

n =
∑

n∈Z+
anr

n · einθ, where r = |z| ≤ 1 and θ ∈ [0, 2π). Thus,

an analytic function is expressed as the power series in the variable r · eiθ over the positive

elements of an additive group of integers Z. Based on the fact that in that representation

eiθ belongs to the unit circle T of the complex plane and T is the group of characters of Z
the theory of generalized analytic functions considers the functions which are represented

in the form of the series above, where the group Z is replaced by an arbitrary additive

subgroup Γ of the group of real numbers R and the unit circle T is replaced by the group

of characters of Γ. Clearly, if Γ is isomorphic to Z then the obtained theory is identical

to the classical function theory of one complex variable but in the case when Γ is a dense

subgroup of R the theory of generalized analytic functions which will be developed in this

work significantly differs from its classical prototype. However, the search of new features

while applying the classical scenarios continues to be one of the most important aims of the

theory of generalized analytic functions. In this work we develop one of the applications of

the theory of generalized analytic functions to the classical theory of Riemann surfaces.

The work consists of three parts. In the first part the notions of a generalized plane and

generalized analytic functions are introduced. Then the structure of a generalized plane is

described in detail and the behaviour of generalized analytic functions are studied. In the

second part generalized meromorphic functions are observed and, among other results, the

theorem about the factorization of generalized meromorphic functions is proved. Note that

the results of the first two chapters are mainly taken from the works [2], [3] and [4]. The

last part is devoted to the investigation of Bohr-Riemann surfaces. Particularly, the group

structures as well as the local geometric structures of the Bohr-Riemann surfaces studied.

1 Generalized analytic functions

1.1 Basic concepts and auxiliary results

In this section we present some definitions and results from the theory of uniform algebras

and from the theory of analytic functions which will be used later in the work. They are

mainly taken from the notable books [5], [6] and [7].

A Banach algebra is an algebra A over the field of complex numbers C which is a Banach

space with ||fg|| ≤ ||f ||||g|| for f, g ∈ A. An example of a Banach algebra is the algebra

C(X), i.e., the algebra of continuous functions on a compact set X with the sup–norm. A

closed algebra A ⊂ C(X) is called uniform algebra if it contains all constant functions and

separates the points of a compact set X. The classical non–trivial example of a uniform

algebra is a disk algebra, i.e., the algebra of all continuous functions on the closed unit disc

which are analytic on the interior of unit disc. This example allows to demonstrate many of

the results from the theory of uniform algebras.

Each point x ∈ X determines a multiplicative functional on A which is given as the
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value at x. The family of all multiplicative functionals on A is denoted by MA. Obviously,

X ⊂ MA. The kernel of a multiplicative functional is a maximal ideal, and, hence, a closed

ideal of an algebra A. Therefore, each multiplicative functional is continuous. Moreover, it

can be shown that MA is contained in the unit ball of the dual space of A and is compact

in a weak* topology.

Let I be a maximal ideal of A. By Gelfand–Mazur theorem the quotient algebra A/I

is isomorphic to the field of complex numbers C. This result allows to uniquely recover a

multiplicative functional on A via maximal ideal. That is why MA is also called the space

of maximal ideals of A.

A homomorphism A → C(MA), which sends each f ∈ A to a function f̃ ∈ C(MA)

defined as f̃(m) = m(f),m ∈MA, is called the Gelfand transform. The obtained algebra Ã,

which consists of all such functions f̃ with f ∈ A, is a uniform algebra which is isometrically

isomorphic to the algebra A.

A subset E of MA is called a boundary of A if each function from Ã attains its maximum

modulus on E. By Shilov’s theorem the intersection of all closed boundaries of an algebra

A is also a boundary, the so called Shilov boundary, which is denoted by ∂A.

A point x ∈ X is called a peak point for A if there is a function f ∈ A such that f(x) = 1

and |f(y)| < 1, y 6= x. Respectively, a closed subset E of X is called a peak set if there is a

function f ∈ A such that f(x) = 1 for x ∈ E and |f(y)| < 1 for y ∈ X \ E.

If X is a compact metrizable space then the intersection of all boundaries of an algebra

A is also a boundary (the Choquet boundary). That set coincides with P (A), the set

of peak points of an algebra A. The isometricity of the Gelfand transform implies that

P (A) ⊂ ∂A ⊂ X.

In case X is not metrizable we consider generalized peak points (p–points), which are

obtained from the intersection of some family of peak sets. The intersection of peak sets is

called a generalized peak set or p–set. If F ⊂ X is a p–set for A then the restriction A|F of

an algebra A to F is a uniform algebra on F .

An important class of p–sets is formed by the maximal sets of antisymmetry of an algebra

A. A uniform algebra A on a compact set X is called antisymmetric if every real–valued

function in A is constant. A set F ⊂ X is called a set of antisymmetry of A if every function

in A that is real–valued on F is constant on F . Compact set X can be represented as disjoint

union of maximal sets of antisymmetry {Fα} where, by Bishop–Shilov theorem, each Fα is

a p–set and if f ∈ C(X) and f |Fα ∈ A|Fα then f ∈ A.

Let A⊥ be a space of regular Borel measures on X which are orthogonal to A and let S(A)

be the unit ball in A⊥. By Bishop theorem maximal sets of antisymmetry are the supports

of extremal measures from S(A). The peak sets are described via orthogonal measures as

follows: a set F ⊂ X is a peak set for an algebra A if and only if the restriction of each

measure µ ∈ A⊥ to the set F belongs to A⊥.

Each continuous functional on C(X) corresponds to a regular Borel measure which rep-



70 A. F. BEKNAZARYAN AND S. A. GRIGORYAN

resents that functional. Using Hahn–Banach theorem each multiplicative functional from

MA can be extended to a state on C(X). Therefore, there exist probability measures among

representing measures of a multiplicative functional. More precisely, by Bishop–de Leeuw

theorem for each multiplicative functional there exists a representing probability measure

concentrated on P (A).

From now on, by ”representing measure” we shall always mean representing probability

measure.

A family Mm of representing measures of a multiplicative functional m ∈ MA is a con-

vex compact set. The examples of algebras for which Mm consists of a single point are the

Dirichlet algebras, the algebras whose real parts are dense in the algebra of bounded con-

tinuous real functions on X. A measure µ ∈ Mm is called a Jensen measure if log |m(f)| ≤∫
log |f |dµ, f ∈ A. By Bishop theorem for each m ∈MA there exists at least one represent-

ing Jensen measure and, moreover, by Arens theorem, there is a Jensen measure µ ∈ Mm

concentrated on ∂A such that∫
log |f |dγ ≤

∫
log |f |dµ, γ ∈MA, f ∈ A.

The last property of the space of maximal ideals we present here concerns the group

A−1 of invertible elements of a uniform algebra A. By Arens–Royden theorem A−1/ expA =

H1(MA,Z), where H1(MA,Z) is the first integral cohomology group of MA. Recall that a

character of a group G is a continuous group homomorphism from G to the unit circle of

the complex plane. In case G is a connected compact abelian group by Bohr–van Kampen

theorem we have that C(G)−1/ expC(G) = Ĝ, where Ĝ is the group of characters of the

group G.

1.2 Topologies on the generalized plane

In this section we define the notion of a generalized plane. Then the topologies arising on

the generalized plane and its subsets are considered and their comparisons are investigated.

Let Γ be a subgroup of an additive group of real numbers R and let G be the group of

characters of Γ: G = Γ̂. By Pontryagin duality theorem we have that the group of characters

of a group G is isomorphic to Γ: Ĝ ∼= Γ. Using G we define a Cartesian product G× [0,∞)

and glue to the point the bottom layer G × {0}. The obtained space is called generalized

plane and is denoted by C(Γ). This construction is due to Arens and Singer (see [1]).

As Γ is an additive subgroup of R then by the well–known dichotomy we have that there

are two possible cases: either Γ is isomorphic to the group of integers Z or Γ is dense in R
in the Euclidean topology τ . In the first case the constructed space C(Γ) and the theory of

generalized analytic functions which we would like to develop on C(Γ) are identical to their

classical prototype, that is, to the function theory of one complex variable on the complex

plane C. That is why in what follows we assume, unless stated otherwise, that the group
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Γ is dense in R in the Euclidean topology τ . There are many examples of such subgroups,

e.g., Γ = Q, an additive group of rational numbers, Γ = Γα = {m + αn,m, n ∈ Z}, where

α is a positive irrational number, or Γ = Rd, the group of real numbers with the discrete

topology, but we will only use the density of Γ in R and hence will not be interested in the

precise structure of Γ.

For brevity of notation, we shall also denote the generalized plane C(Γ) by ∆.

Let π : G × [0,∞) → ∆ be a canonical projection. Then the elements of ∆ are the

points π(α, r) = (α, r), with α ∈ G, r > 0, and ∗ = π(G × {0}). The space ∆ can be also

canonically identified with the space C = {αr : α ∈ G, r ∈ [0,∞)} – the analogue of the

complex plane C which consists of the homomorphisms αr : Γ → C : a 7→ α(a)ra. Usually

it is more convenient to take ∆ = C, in which case the representation s = αr of an element

s ∈ ∆ is called a polar decomposition and the number r is called a modulus of s. As the null

element ∗ essentially differs from the other elements of the space ∆, it makes sense to define

a space ∆0 = ∆\{∗}, the so called punctured generalized plane. Obviously, ∆0 = G×(0,∞)

and ∆0 can be canonically identified with the space {αr : α ∈ G, r ∈ (0,∞)}.
Let us now pass to the topologies which arise on ∆. Let {T} be some basis of open sets

of the unit circle T of the complex plane C and let F be a collection of all finite subsets

of Γ. Define P (F, T ) = {χ ∈ G| χ(F ) ⊆ T}. The family {P (F, T ), F ∈ F , T ∈ {T}}, is a

basis of some topology in G, which will be denoted by k. Then the topology on ∆ would

be the standard factor topology τ∆ = {U ⊂ ∆ : π−1(U) ∈ k × τ[0,∞)}, where τ[0,∞) is a

restriction of the Euclidean topology τ to [0,∞). As a basis of the topology τ∆ could be

taken the family of sets B = {π(G× [0, r))}r>0 ∪ π(any basis in G× (0,∞)), where the first

component in this union is a basis of open neighbourhoods of the element ∗ ∈ ∆. Similarly,

we define the topology τ∆0
∼= k × τ(0,+∞) on ∆0. Canonical projection π is not open (as

the topology k is not trivial), but it is a closed mapping which induces a homeomorphism

π|G×(0,∞) : (G × (0,∞), k × τ(0,+∞)) → (∆0, τ∆0). The space ∆ is then a locally compact

Hausdorff space.

Let us now consider the mapping e : R → G : e(t) = et, where et(a) = eiat, a ∈ Γ. The

density of Γ in R implies that e is injective. Indeed, if et1 = et2 with t1, t2 ∈ R, t1 6= t2,

then eiat1 = eiat2 for all a ∈ Γ. As Γ is dense in R and eti , i = 1, 2, are both continuous on

(R, τ), we get that eiat1 = eiat2 for all a ∈ R, and, therefore, t1 = t2. This argumentation

can be also used as a justification of an equality e(R) = R̂ of two groups of characters with

different domains (Γ and R, respectively). In other words, the equality e(R) = R̂ assigns to

an element et ∈ e(R), t ∈ R, the element from R̂ which (by Pontryagin duality) corresponds

to the number t ∈ R. The proof of density of e(R) in G is similar and is based on the fact

that e(R) separates the points of a group Γ (see [8], p. 55).

The space ∆0 = G×(0,∞) which has been canonically identified with the space {αr : α ∈
G, r ∈ (0,∞)} is a locally compact abelian group under the coordinate-wise multiplication

with the unit element e0 · 1 = e(0).
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There are two topologies arising on e(R): the restriction k|e(R) of a finite-open topology

k on G and the topology τ̂ which arises as a compact-open topology on e(R) = R̂. Since

each finite set is compact we get that the topology τ̂ is stronger than k|e(R). As a basis

of neighbourhoods at the unit element e0 ∈ e(R) which defines τ̂ can be taken the family

{Pε}ε∈(0,π) of the sets Pε = {et : et([−1, 1]) ⊂ Vε}, where Vε = {ξ ∈ T : ξ = eiθ, θ ∈ (−ε, ε)}.
Clearly, Pε = e((−ε, ε)) and, therefore, τ̂ = e(τ), the homeomorphic image of the Euclidean

topology τ on R.

The obtained topologies on e(R) determine two different factorizations of the mapping

e : R→ G which are presented in the following diagram:

(R, τ̂)

(e(R), k|e(R))

(e(R) = R̂, e(τ) = τ̂)

(G, k)
e′2

e′1

e′′2

e′′1

In that diagram e′1 is a homeomorphism, e′2 is a continuous homomorphism and the

insertion e′′1 : et 7→ et|Γ, as well as the embedding e′′2, is continuous.

The group e(R) is a path-connected group in both topologies as the image of a path-

connected space under the continuous mappings e′1 and e′2. Moreover, we claim that these

path-connectedness are equivalent. Clearly, a path-connectedness of e(R) with respect to

the topology τ̂ implies the path-connectedness with respect to a weaker topology k|e(R). Let

us now prove the converse statement.

Lemma 1 Each path σ : I = [0, 1] → e(R) that is continuous with respect to the topology

k|e(R) is also continuous with respect to the topology τ̂ = e(τ).

Proof. Using the fact that the family {Pε}ε∈(0,π) is a basis of neighbourhoods of e0 in the

topology τ̂ we first prove the continuity of a path σ at the point t0 ∈ I with σ(t0) = e0. Let

us fix any ε ∈ (0, π) and consider the corresponding Pε = {et : et([−1, 1]) ⊂ Vε} = e((−ε, ε))
which is a neighbourhood of e0 in the topology τ̂ . The set Qε = {et : et(1) ⊂ Vε} =

⋃
n∈Z

e(In)

is then a neighbourhood of e0 in the topology k|e(R), where In = (2πn− ε, 2πn + ε), n ∈ Z.

Obviously, Pε ⊂ Qε.

We have that σ is continuous at t0 with respect to the topology k|e(R), therefore there

exists δ > 0 such that σ(Iδ) ⊂ Qε, where Iδ = (t0 − δ, t0 + δ) ∩ I. We want to show that

σ(Iδ/2) ⊂ Pε.

Indeed, the continuum σ(Iδ/2), which is contained in σ(Iδ), is covered by the set Q̃ε =

{et : et(1) ⊂ V ε} =
⋃
n∈Z

e(In) which is a countable union of compact and, therefore, closed
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sets e(In). By Sierpinski’s theorem (see [9]. p. 526), at most one of these sets is non-

empty. As the set σ(Iδ/2) certainly intersects with e(I0), then e(I0) is the mentioned unique

non-empty set. Hence, σ(Iδ/2) ⊂ e(I0) ∩Qε = e(I0) = Pε, as desired.

The general case is reduced to the considered situation via transitions from σ to σ̃(t) =

σ(t0)−1σ(t) and back again, using the fact that the shifts by σ(t0)−1 and σ(t0) are topological

automorphisms of e(R) in both topologies k|e(R) and τ̂ .

Lemma is proved. �

The mapping e : R→ G generates an embedding

ϕ : C→ ∆0 : z = t+ iy 7→ ϕz = et · e−y.

The transition from e to ϕ complexifies the above diagram keeping the properties of the

mappings in it.

A topology τ∆0 |ϕ(C) which is induced on ϕ(C) from a topology τ∆0
∼= k× τ(0,+∞) on ∆0 is

weaker than the topology τϕ = ϕ(τc), the homeomorphic image of the Euclidean topology τc

on C. The topology ϕ(τc) has also two other equivalent descriptions: it emerges as a product

of topologies τ̂ × τ(0,∞) with {Pε × (e−δ, eδ)}ε∈(0,π),δ>0 being the basis of neighbourhoods of

the unit element (e0, 1) ∼= ϕ(0) and as a compact–open topology on ϕ(C) with the basis of

neighbourhoods of the unit element formed by the sets Pε,δ = {ϕz : ϕz([−1, 1]) ⊂ Vε,δ} =

ϕ(Kε,δ), ε ∈ (0, π), δ > 0, where Vε,δ = {w = ρeiθ : e−δ < ρ < eδ, eiθ ∈ Vε}, and the sets

Kε,δ = {z = t + iy : |t| < ε, |y| < δ} obviously form the basis of neighbourhoods of the zero

element z = 0 of a group C.

Note that since e(R) is dense in G the image ϕ(C) is dense in both ∆0 and ∆.

Definition 1 For a point s ∈ ∆0 the set of the form Cs = sϕ(C) is called a plane in ∆0

passing through s.

Obviously, Cs is dense in ∆0 for any s ∈ ∆0. We also define C0 := Cϕ(0) = ϕ(C). Define

a mapping ϕs : C → Cs : z 7→ sϕz. Again there are two topologies on each plane Cs: the

topology τs := τ∆0|Cs which is induced from ∆0 and the stronger topology τsϕ = sτϕ = {sU :

U ∈ τϕ} which is inherited from C by the mapping ϕs.

The theory of Bohr-Riemann surfaces which will be developed in the third chapter con-

siders the so called thin sets K in ∆ and investigates the finite sheeted coverings of the space

∆∗ = ∆0 \K. So we now pass to the situation which often arises in that theory.

Let s ∈ ∆0 and let K be a closed nowhere dense subset of ∆0 such that the intersection

K ∩ Cs is a discrete set. Define ∆∗ = ∆0 \K and C∗s = Cs ∩∆∗ = Cs \K. Let us consider

the preimage π−1(C∗s) under unfolded, finite-sheeted covering π : X → ∆∗, where X is a

topological space. There are two topologies that arise on π−1(C∗s): the topology τs,X which

is induced from a topology τX of the space X and is locally homeomorphic to τ ∗s = τs|C∗s ,
and the topology τs,C base of which is consisted of the path–connected components of the
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sets from τs,X . Thus, using the characterization of τsϕ as a topology with a base consisted

of the path–connected components of the sets from τs we get that the restriction π|π−1(C∗s)

induces two coverings of the punctured plane C∗s: πs,X : τs,X → τ ∗s and πs,C : τs,C → τ ∗sϕ.

Theorem 1 The path–connected components of a subspace π−1(C∗s) in the topology τs,X

coincide with the path–connected components of a Riemann surface π−1(C∗s) in τs,C.

Proof. Let x ∈ π−1(C∗s) and let Cx and Dx be the path-connected components of a pre–

image π−1(C∗s) containing x in the topologies τs,C and τs,X respectively. Since τs,C is stronger

than τs,X it follows that Cx ⊂ Dx. Let us proof the converse inclusion. Fix an arbitrary

point y ∈ Dx and connect it with x by a path γ : I = [0, 1] → X which lies in Dx and

which is continuous with respect to the topology τs,X . Then λ = π ◦ γ : I → C∗s is a

continuous path from τ |I to τ ∗s . Temporarily forgetting about the stars we get that λ is a

continuous path from τ |I to τs, and, therefore, s−1λ : I → C0 is a continuous path from τ |I to

τ0 = τ∆0|C0
∼= k|e(R)× τ(0,+∞). Using the interpretation of a space ∆0 as a Cartesian product

G × (0,∞) we get that the mapping s−1λ : I → C0 is comprised of the pair of mappings

s−1λ(t) = (β(t), r(t)), t ∈ I, with β : I → e(R) and r : I → (0,+∞). But then the mapping

s−1λ is continuous if and only if β is a continuous mapping from τ |I to k|e(R) and r is a

continuous mapping from τ |I to τ(0,+∞) (see e.g. [9]. pp. 129,131). By Lemma 1 we get that

the path β : I → e(R) is then continuous with respect to the topology τ̂ = e(τ) as well. This,

together with the arguments above, shows that the mapping s−1λ(t) = (β(t), r(t)), t ∈ I, is

continuous with respect to the topology τ̂ × τ(0,+∞)
∼= τϕ, i.e. the path λ is a continuous

path from τ |I to τsϕ, and, therefore, to τ ∗sϕ as well. The continuity of the path γ with

respect to the topology τs,C is obtained from the local homeomorphity of π as a covering

πs,C : π−1(C∗s)→ C∗s from τs,C to τ ∗sϕ. Thus, y ∈ Cx. This completes the proof of the theorem.

�

1.3 Generalized analytic functions

Let us remind that given a dense subgroup Γ of an additive group of real numbers R the

generalized plane ∆ = C(Γ) is obtained from the Cartesian product G × [0,∞) by gluing

to the point the layer G × {0} where G = Γ̂ is a group of characters of Γ. By Pontryagin

duality theorem we have that Ĝ ∼= Γ. Let χa ∈ Ĝ be a character corresponding to an element

a ∈ Γ. Obviously, χa · χb = χa+b. Also for a character χa, a ∈ Γ, the conjugate character

χ a is defined as χ a(α) = χa(α), α ∈ G. Each function f ∈ L1(dσ), where σ is a normalized

Haar measure of a group G, has the following Fourier series representation

f ∼
∑
a∈Γ

ca(f)χa, where ca(f) =

∫
G

f · χ a dσ.

The set of all a ∈ Γ such that ca(f) 6= 0 is called the spectrum of f and is denoted by

S(f). Similarly, the spectrum of a regular Borel measure µ on G is the set of all a ∈ Γ
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such that
∫
G
χ a dµ 6= 0. Define Γ+ = {a ∈ Γ : a ≥ 0}. A function f ∈ L1(dσ) is called

generalized analytic or just analytic function if S(f) ⊂ Γ+ and the measure µ is called

analytic if S(µ) ⊂ Γ+. With the sup-norm the space A of all continuous analytic functions

on G is a uniform Dirichlet algebra. The space of maximal ideals of an algebra A coincides

with the generalized unit disc Ω = {s ∈ ∆, |s| ≤ 1} which is the group of semi-characters

of a semigroup Γ+. Recall that a semi-character on a semigroup is a non-zero continuous

homomorphism from a semigroup to the unit disc of the complex plane.

Each character χa, a ∈ Γ+, can be extended to a continuous function ϕa on ∆ which acts

as follows:

ϕa(s) = χa(α)ra, s = αr,

where χa(α) = α(a), α ∈ G (we assume 0a = 0, a ∈ Γ+). The family {ϕa}a∈Γ+ thus obtained

separates the points of a space ∆.

Definition 2 Let D be an open set in ∆. Continuous function f on D is called a generalized

analytic function if for any s ∈ D there is a neighbourhood U ⊂ D, s ∈ U , such that the

restriction of f to U can be uniformly approximated by linear combinations of the functions

ϕa, a ∈ Γ+.

The set of all generalized analytic functions on D will be denoted by O(D). A function

from O(∆) will be called entire function. Finite linear combinations of the functions from

{ϕa}a∈Γ+ will be called polynomials and the ratio of two polynomials will be called a rational

function.

Let K be a compact set in ∆ and let P be the family of all polynomials. Then the

polynomially convex hull of K is defined as follows:

K0 = {s ∈ ∆, |p(s)| ≤ sup
K
|p|, p ∈ P}.

The set

K0 = {s ∈ ∆, |p1(s)/p2(s)| ≤ sup
K
|p1/p2|, p1, p2 ∈ P},

where p2 does not vanish on K, is called a rationally convex hull of K. Obviously, K ⊂
K0 ⊂ K0.

Proposition 1 Let K be a compact set in ∆. Then

1. K0 is the space of maximal ideals of the uniform algebra P (K) generated by polynomials

on K;

2. K0 is the space of maximal ideals of the uniform algebra R(K) generated by rational

functions of the form p1/p2, where p2 does not vanish on K.
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Proof. If s0 ∈ K0 then the point–evaluation at s0 is a multiplicative functional on P (K),

and, therefore, s0 ∈MP (K), where MP (K) is the space of maximal ideals of P (K). Conversely,

as the norm of each multiplicative functional m ∈ MP (K) (which is a point–evaluation) is 1

then MP (K) is contained in K0.

Second statement is proved similarly. �

The question naturally arises as whether a compact set K is always rationally convex.

It is known that if Γ = Z then for any compact set K ⊂ C we have K = K0. However, if

Γ = Γα = {m + αn,m, n ∈ Z}, where α is a positive irrational number, then it is possible

to construct a compact set in ∆ which is not rationally convex. Nevertheless, the following

proposition holds.

Proposition 2 Suppose that Γ is isomorphic to some subgroup of the group of rational

numbers. Then each compact set in ∆ is rationally convex.

Proof. Let K be a compact set in ∆ and suppose s0 ∈ ∆ \K. Choose a1, ..., an ∈ Γ+ and

ε > 0 such that an intersection of the set U = {s ∈ ∆, |ϕai(s) − ϕai(s0)| < ε, i = 1, ..., n}
with K is empty. Since Γ is isomorphic to a subgroup of the group of rational numbers then

there exists an element a0 ∈ Γ+ such that ai = mia0,mi ∈ Z+, i = 1, ..., n. Therefore, for

sufficiently small ε′ > 0, the set V = {s ∈ ∆, |ϕa0(s) − ϕa0(s0)| < ε′} is contained in U .

Hence, the function 1/(ϕa0(s)−ϕa0(s0)) belongs to R(K) which means that s0 /∈ K0. Thus,

K = K0. �

We now describe the local structure of the algebras of generalized analytic functions. Let

us remind that we assume, unless stated otherwise, that the group Γ is dense in R. Also recall

that for each t ∈ R a character et ∈ G of a group Γ acts as et(a) = eiat, a ∈ Γ, and the family

{et}t∈R is dense in G. Let W ⊂ C be a compact set and let P (W ) be the uniform algebra

on W generated by polynomials. For a fixed a ∈ Γ+, a 6= 0, the set Ga = {α ∈ G,α(a) = 1}
is a subgroup of G.

Theorem 2 Each point from ∆0 = ∆ \ {∗} has a closed neighbourhood F which is homeo-

morphic to the Cartesian product Ga×W such that the uniform algebra P (F ) is isometrically

isomorphic to the uniform algebra on Ga ×W generated by the functions of the form f · g,
where f ∈ P (W ), g ∈ C(Ga).

Proof. Let ω = {eiθ : |θ| ≤ π/2} be an arc on the unit circle. Fix a ∈ Γ+, a 6= 0 and

consider the sets K = {α ∈ G,α(a) ∈ ω} and l = {t ∈ R, |t| ≤ π/2a}. Define a mapping

h : Ga × l → K by h(α, t) = α · et. Let us show that h is a homeomorphism. Suppose

β ∈ K and β(a) = eiθ, |θ| ≤ π/2. Then t = −θ/a ∈ l and α = et · β ∈ Ga which means

that β = h(α, t) ∈ h(Ga × l). Therefore, we can assume that K = Ga × l. Now consider the

neighbourhood F = K × [r1, r2], r1 < r < r2 of a point e0 · r ∈ ∆0. Obviously, F = Ga ×W
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where W = l × [r1, r2] ∼= {z ∈ C,Rez ∈ l, Imz ∈ [− log r2;− log r1]}. Since α(a) = 1 for

all α ∈ Ga, the function ϕa(α, z) = α(a) · et(a) · e−ay = eiaz, where z = t + iy, does not

depend on α, is an analytic function of z and separates the points of the polynomially convex

compact set W . Therefore, by Mergelyan’s theorem each continuous function on W that

is analytic on intW can be approximated by the polynomials on eiaz. Thus, P (W ) can be

embedded in P (F ). Let us show that C(Ga) can be also embedded in P (F ). Indeed, since

ϕb(α, z) = α(b)eibz, (α, z) ∈ Ga ×W, and the functions f(z) = eibz and f(α, z) = eibz are

invertible in P (W ) and in P (F ), respectively, then the function gb(α, z) = α(b) belongs to

P (F ). Since F is the set of maximal ideals of P (F ) (see Proposition 1) and the family

{gb}b∈Γ+ separates the points of a group Ga, by Stone-Weierstrass theorem we get that

C(Ga) ⊂ P (F ). Now suppose that g ∈ P (F ). Since g can be locally approximated by the

linear combinations of ϕb, b ∈ Γ+, then for every fixed α ∈ Ga the function g(α, z) belongs to

P (W ). Therefore, by Bishop-Shilov theorem (see Section 1.1) g(α, z) belongs to the uniform

algebra P (W ) · C(Ga). �

Thus, the space ∆0 locally has a structure of the form Ga ×W , i.e., each point s ∈ ∆0

has a neighbourhood of the form V ×W , V ⊂ Ga,W ⊂ C.

Definition 3 An open bounded set D in ∆ is called a set of uniqueness if each function

f ∈ O(D) vanishes on some open subset of D.

We finish this section with the following theorem.

Theorem 3 (see [10]) An open bounded set D in ∆ is a set of uniqueness if and only if

∗ ∈ D.

1.4 Endomorphisms of the algebra A

The normalized Haar measure σ of a group G can be naturally extended to a measure σ on

Tr = G×{r}, r > 0. Denote A = P (Ω), the uniform algebra on Ω generated by polynomials,

where Ω = {s ∈ ∆, |s| ≤ 1} is a generalized unit disc. Each function f ∈ A has a formal

series

f ∼
∑
a∈Γ+

ca(f)ϕa, (1)

where ca(f) =
∫
Tr
f/ϕadσ does not depend on the choice of r > 0. The converse is also true:

a function f ∈ C(Ω) which has a formal series of the form (1) belongs to A (see [11]).

Denote Ω(r1, r2) = G× [r1, r2] and B = R(Ω(r1, r2)), the uniform algebra on Ω generated

by rational functions, where 0 < r1 < r2 ≤ 1. Each function f ∈ B also has a formal series

f ∼
∑
a∈Γ

ca(f)ϕa

on Ω(r1, r2), where ϕ−a = 1/ϕa, a ∈ Γ+.
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Lemma 2 Suppose that a function f ∈ B does not vanish on Ω(r1, r2). Then there exist

a ∈ Γ and g ∈ B such that f = ϕa exp g.

Proof. From Proposition 1 we have that Ω(r1, r2) is the space of maximal ideals of the

algebra B. Therefore, by Arens-Royden’s theorem H1(Ω(r1, r2);Z) = B−1/ expB (see

Section 1.1). But H1(Ω(r1, r2);Z) = H1(G;Z). Hence, by Bohr-van Kampen’s theorem

H1(Ω(r1, r2);Z) = Γ. �

The next lemma is a variant of the Phragmén–Lindelöf principle for generalized analytic

functions.

Lemma 3 Let f be a generalized analytic function on the set Ω0 \ {∗}, where Ω0 = {s ∈
Ω, |s| < 1}. Suppose that Re f(s) < c log |s| for all s ∈ Ω0 \ {∗}. Then f can be extended to

an analytic function from O(Ω0).

Proof. Note that the statement of the Lemma is obvious if f is an analytic function of one

complex variable. Indeed, let us show that if a function f(z) is analytic in a punctured unit

disc and satisfies the conditions of the Lemma then zero is a removable singularity. We have

that

exp f(z) < |z|c < 1/|z|n for n > |c|.

Therefore, the function g(z) = zn exp f(z) can be analytically extended to the whole disc.

Hence g(z) = zm exp k(z), where k(z) is an analytic function in the unit disc. Thus, n = m

and k(z)− f(z) = const.

In general case the proof goes as follows. Since f is analytic on Ω0 \ {∗} then it can be

represented by the series
∑

Γ ca(f) · ϕa. Let us show that ca(f) = 0 if a /∈ Γ+, which would

mean that f ∈ O(Ω0). Assume to the contrary that ca(f) 6= 0 for some a /∈ Γ+. As before,

denote Ga = {α ∈ G,α(a) = 1} and let γ be the Haar measure of the group Ga. Then the

function g(α · r) =
∫
Ga
f(α · β · r)dγ(β) is also analytic on Ω0 \ {∗} and has a series of the

form
∑

n∈Z cna(f) · ϕna, ca(f) 6= 0. Hence the function g could be considered as an analytic

function of ϕ−a. Clearly Re g ≤ c log |ϕ−a|. Therefore, g can be analytically continued to

the whole Ω0, i.e., ca(f) = 0. �

Theorem 4 Suppose that a function f ∈ A does not vanish on Ω \ {∗}. Then there exist

a ∈ Γ+ and g ∈ A such that f = ϕa exp g.

Proof. Since the set Ω, which is the space of maximal ideals of the algebra A, can be

shrunk to the point ∗ ∈ Ω then H1(Ω;Z) is trivial. Therefore, if f does not vanish on Ω

then by Arens–Royden theorem f = exp g for some g ∈ A. Now suppose that f(∗) = 0.

By Lemma 2 there exist a ∈ Γ+ and generalized analytic function g on Ω \ {∗} such that

f = ϕa · exp g on Ω \ {∗}. Boundedness of f implies that there exists a constant c > 0 such

that Re g(s) < c log s for all s ∈ Ω \ {∗}. Applying Lemma 3 we get that g ∈ A. �
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Corollary 1 Suppose that for a function f ∈ A there exists a number r ≤ 1 such that f does

not vanish on Ωr \ {∗}, where Ωr = {s ∈ Ω, |s| ≤ r} is a generalized disk of radius r. Then

there exist a ∈ Γ+ and g ∈ A, g(∗) 6= 0, such that f = ϕa · exp g.

Corollary 2 Suppose that a function f ∈ A does not vanish on Ω0. Then there exists a

function k ∈ O(Ω0) such that f = exp k on Ω0.

Definition 4 A mapping H : Ω → Ω is called holomorphic if for each f ∈ A the function

f ◦ H belongs to A.

Let us remind that unless stated otherwise, we suppose that the group Γ is not isomorphic

to Z.

Theorem 5 Suppose that H is a holomorphic mapping and H(∗) = ∗. Then there exists a

number b ∈ Γ+, b 6= 0, such that |H(s)| < |s|b.

Proof. If H is a trivial mapping then the statement of the theorem is obvious. Suppose that

H is a non–trivial mapping. Let us show that if s0 6= ∗, |s0| < 1, then H(s0) 6= ∗. Assume

to the contrary that there exists s0 6= ∗, |s0| < 1, such that H(s0) = ∗. Let F = Ga ×W be

a neighbourhood of s0. Then for each a ∈ Γ+, a 6= 0, the function ga(α, z) = ϕa ◦ H(α, z)

is an analytic function of z which vanishes at the point s0 = (α0, z0) ∈ F . Since for every

n ∈ Z+ there exist a1, ..., an ∈ Γ+ \ {0} such that ga =
∏n

i=1 g
ai we get that the order of zero

of a function ga at s0 is infinite which is impossible. Therefore, H(s0) 6= ∗. Now applying

the Corollary 1 to the function ϕa ◦ H we get that

|H(s)|a = |ϕa ◦ H(s)| ≤ |ϕd(s)| = |s|d,

where d ∈ Γ+, d 6= 0. It remains to take b = d/a ∈ Γ+ to complete the proof. �

Remark. Each holomorphic mapping from the unit disc of the complex plane to itself

is determined by some function from a disc algebra A(D) with modulus not exceeding 1.

Therefore, if a function f ∈ A(D) satisfies the conditions of the Schwarz lemma then it can

be considered both as a holomorphic mapping and as a function from A(D) that vanishes

at the origin. Theorem 5 is a direct generalization of Schwarz’s lemma with assumption

that f is a holomorphic mapping. And if f is regarded as a function we can again get a

generalization of Schwarz’s lemma (H.Bohr’s approach). Indeed, let f ∈ A, f(∗) = 0, |f | ≤ 1

and b ≤ inf S(f), where S(f) is the spectrum o f . Then |f(s)| ≤ |ϕb(s)|. Indeed, we have

that S(f/ϕb) ∈ Γ+. Therefore, there exists g ∈ A, g ≤ 1 such that f = ϕb · g. Hence

|f(s)| ≤ |ϕb(s)|.
Now we pass to the description of the endomorphisms of an algebra A. Note that there

exists one-to-one correspondence between endomorphisms and holomorphic mappings: each

endomorphism H0 that acts on A generates a holomorphic mapping and vice versa.

Recall that if σ(Γ+) ⊂ Γ+ then the endomorphism σ on a group Γ is an order–preserving

endomorphism.
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Theorem 6 Each endomorphism of the algebra A is given by a triple (σ, Vα, k) where σ

is an order–preserving endomorphism of Γ, Vα is the operator of a shift by α ∈ G and

k ∈ O(Ω0) with Re k ≤ 0 and exp k ∈ A. Conversely, every such triple (σ, Vα, k) determines

an endomorphism of A.

Proof. Let H0 be an endomorphism of A and let H be the corresponding holomorphic

mapping. Assume first that H(∗) = ∗. Since H(s) 6= ∗ for s ∈ Ω, 0 < |s| < 1 (see the proof

of previous theorem) then, from the Corollary 1 we have that

H0(ϕa) = ϕσ(a) · ga, a ∈ Γ+. (2)

Since H0(ϕa · ϕb) = H0(ϕa) · H0(ϕb) then σ is an endomorphism of Γ+ which can be

continued to an order–preserving endomorphism of Γ and ga ∈ A does not vanish on Ω0,

with ga+b = ga · gb. Hence, for every fixed s ∈ Ω0 the function ψ(a) = ga(s) determines a

semi-character of a semigroup Γ+. Since the family of semi-characters of a semigroup Γ+

coincides with Ω there exist α ∈ G and r > 0 such that ga(∗) = α(a)ra for all a ∈ Γ+. The

function fa = α(a) · ga, a ∈ Γ+, does not vanish on Ω0, hence, by Corollary 2, there exists

a function k ∈ O(Ω0) such that fa = exp ak, a ∈ Γ+. Thus, H0ϕa = ϕσ(a) · α(a) · exp ak,

i.e., H0 is determined by the triple (σ, Vα, k). In case H(∗) 6= ∗ an endomorphism σ in (2) is

identically zero (i.e. σ(a) ≡ 0 for all a ∈ Γ+). Therefore, H0 is determined by (0, Vα, k).

Now suppose that we are given a triple (σ, Vα, k). For any fixed s ∈ Ω define a character

τs of a semigroup Γ+ as follows: τs(a) = ϕσ(a)(s) · α(a) · exp ak(s). Since Re k(s) < 0 and

the space of semi–characters of Γ+ coincides with Ω then there exist βs ∈ G and rs ∈ [0, 1]

such that τs(a) = βs(a) · ras , a ∈ Γ+. Define a mapping H : Ω→ Ω with H(s) = βs · rs, s ∈ Ω.

Obviously, the function ϕa ◦ H(s) = βs(a) · ras = ϕσ(a)(s) · α(a) · exp ak(s) belongs to A. As

the family {ϕa}, a ∈ Γ+, generates A we get that H is a holomorphic mapping. �

Corollary 3 Each isometric endomorphism of A is determined by a triple (σ, Vα, 0), where

σ is an order–preserving endomorphism of Γ and Vα is the operator of a shift by α ∈ G.

Proof. As H0 is isometric then H(T1) = T1, where T1 = G × {1}. Hence the function

exp ak(s) ∈ A does not vanish on Ω and | exp ak(s)| ≡ 1 on T1. Since H1(Ω;Z) is trivial we

get that k(s) ∈ A with Re k(s) ≡ 0 on T1. Therefore, k ≡ 0. �

Corollary 4 (see [12]) Each automorphism of A is determined by a pair (σ, Vα), where σ

is an order–preserving endomorphism of Γ and Vα is the operator of a shift by α ∈ G.

1.5 Differentiation of generalized analytic functions

In this section we introduce the notion of differentiation of generalized analytic functions

and prove that it is well-defined.
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Let D ⊂ Ω be an open set and let O(D) be the algebra of generalized analytic functions

on D. Define a Frechet topology on O(D) as follows: for a compact set F ⊂ D let ||f ||F =

supF |f |, f ∈ O(D). In this topology O(D) is a Frechet algebra.

Definition 5 Continuous linear functional Ds on O(D) is called a point differentiation at

s ∈ D if Ds(f · g) = Ds(f) · g(s) + f(s) · Ds(g) for any f, g ∈ O(D).

Let Es be the linear space of all point differentiations at s ∈ D on a Frechet algebra

O(D).

Theorem 7

dimEs =

{
1, s 6= ∗,
0, s = ∗.

Proof. Suppose that Ds is a point differentiation at s ∈ D on O(D). If s 6= ∗ define an

additive function ks on Γ+ by ks(a) = Ds(ϕ
a)/ϕa(s). The continuity of Ds implies that

|ks(a)| < c · na · |s|−a for some c > 0 and n ∈ Z+. Therefore, if we define a natural topology

on Γ that is induced from R, then ks can be extended to an additive, continuous function

on the whole Γ. But all such functions are linear. Hence, there exists zs ∈ C such that

ks(a) = zs · a, a ∈ Γ.

Suppose now that s = ∗. Obviously, D∗(ϕ0) = 0. Furthermore, since for any a ∈ Γ+ \{0}
there exist b, c ∈ Γ+\{0} such that a = b+c we get that D∗(ϕa) = D∗(ϕb·ϕc) = 0, a ∈ Γ+\{0}.
Therefore, D∗ ≡ 0. �

Definition 6 Continuous linear operator D : O(D) → O(D) is called differentiation if

D(f · g) = D(f) · g + f · D(g) for any f, g ∈ O(D).

Clearly, if f ∈ O(D) and D is an operator of differentiation then Df = f · D is also a

differentiation. Therefore, the space of all differentiations on O(D) is an O(D)-module. Let

us find the O(D)-dimension of that module. If D = Ga × W , where W ⊂ C is an open

set and Ga = {α ∈ G,α(a) = 1}, a ∈ Γ0, then O(Ga ×W ) is the algebra of all functions

continuous on Ga×W that are analytic as functions of z ∈ W . Therefore, for each function

f ∈ O(Ga ×W ) we can define a derivative

f ′(α, z) =
1

2πi

∫
Λ

f(α, ξ)

(ξ − z)2
dξ, (3)

where Λ is a smooth contour around the point z ∈ W . Since ϕa(α, z) = α(a)eiaz, a ∈ Γ+,

then (ϕa)′ = iaϕa. We then define a derivative D(f) of a function f ∈ O(D) as

D(f) = −if ′

on D \ {∗} and D(f)(∗) = 0. From (3) it follows that D is a linear operator on O(D).
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Theorem 8 The operator D : O(D)→ O(D) is continuous in Frechet topology.

Proof. Suppose that a sequence {fn}∞1 ⊂ O(D) converges in a Frechet topology to a func-

tion f ∈ O(D) and F ⊂ D is a compact set. Without loss of generality, assume that there

exists an open set W ⊂ C with a smooth boundary Λ = ∂W such that F ⊂ Ga ×W ⊂
Ga ×W ⊂ D. Now if E ⊂ W is a compact set such that F ⊂ Ga × E then

||D(fn)−D(fm)||F = sup
F
|f ′n−f ′m| ≤

1

2π
sup
Ga

sup
E

∣∣∣∣∫
Λ

fn(α, ξ)− fm(α, ξ)

(ξ − z)2
dξ

∣∣∣∣ ≤ d||fn−fm||Ga×E,

where d = sup
z∈Λ

sup
ξ∈E

∣∣∣ 1
(ξ−z)2

∣∣∣ . �
Theorem 9 Suppose that D̃ : O(D)→ O(D) is a differentiation. Then D̃ = g · D for some

g ∈ O(D).

Proof. Let s ∈ D, s 6= ∗. Then D̃s(f) := D̃(f)(s) as well as Ds(f) := D(f)(s) is a point

differentiation at s on O(D). By Theorem 7 there exists a number zs ∈ C such that

D̃s = zs ·Ds. Define a function g(s) = zs. Then D̃(ϕa)(s) = g(s) ·D(ϕa)(s) = a · g(s) · ϕa(s),
a ∈ Γ. Hence, g(s) ∈ O(D \ {∗}) and the theorem is proved for the case ∗ /∈ D. In case

∗ ∈ D we have that Ωr ⊂ D for some r > 0. Let us show that ∗ ∈ Ωr is a removable

singularity for a function ψ = g|Ωr\{∗}. It is sufficient to show that the spectrum S(ψ) of a

function ψ is contained in Γ+ (see Theorem 20). Indeed, since for any a ∈ Γ+ we have that

S(a · ψ · ϕa) ⊂ Γ+ and S(a · ψ · ϕa) = {b ∈ Γ, b = a+ c, c ∈ S(ψ)} then S(ψ) ⊂ Γ+. �

Theorem 10 Suppose that a function f ∈ O(Ω0) has formal series of the form f ∼∑
a∈Γ+

ca(f)ϕa. Then the formal series of D(f) is of the form
∑

a∈Γ+
a · ca(f) · ϕa.

Note that if Γ = Z then for every f ∈ O(Ω) the operator equation D(g) = f has a

solution

g(z) =

∫ z

z0

f(ξ)dξ, z0 ∈ Ω.

In case Γ 6= Z this is not true. Indeed, let {an} be a sequence of elements from Γ such that

0 < an · 2n < 1/2n. Then f =
∑

(1/2n)ϕan is an entire function but the operator equation

D(g) = f has no solution.

In conclusion of this section we note that for any positive integer n the n-th derivative

of a function f ∈ O(D) can be defined inductively by Dn(f) = D(Dn−1(f)).

1.6 Jensen’s formula

In this section we suggest a method to count the number of zeros of a generalized analytic

function. Let A = P (Ω). The representing measure of a point ∗ ∈ Ω concentrated on

T1 = G× {1} coincides with the normalized Haar measure σ of a group G.



ON THE SURFACES GENERATED BY GENERALIZED ANALYTIC FUNCTIONS 83

Theorem 11 (see [13]) Suppose f ∈ A is not identically zero and let ms be a representing

measure of a point s ∈ Ω, |s| < 1, concentrated on T1. Then
∫
Tr

log |f |dms > −∞.

Proof. Since the restriction A|T1 is a Dirichlet algebra then ms is the unique representing

measure of s ∈ Ω concentrated on T1. Assume first that s 6= ∗. Let F = Ga × W be a

closed neighbourhood of a point s = (α0, z0). Since for a fixed α ∈ Ga f(α, z) is analytic

as a function of z then we can choose W such that f(α0, z) does not vanish on {α0} × ∂W .

Hence
∫
{α0}×∂W log fdm̃s > −∞, where m̃s is a representing measure (for the algebra A) of

a point s concentrated on {α0} × ∂W . Therefore, by Arens Theorem (see Section 1.1),∫
log |f |dms >

∫
log |f |dm̃s > −∞. (4)

The group G naturally acts on Ω by β · s = (α · β) · r, where β ∈ G and s = α · r. Since

G is compact and
∫

log |f |dms is continuous as a function of s then (4) implies that

d = inf
α∈G

∫
log |f |dmα·s > −∞.

Hence, for ε > 0 ∫
log(|f |+ ε)dσ =

∫
log(|f(α · β)|+ ε)dσ(α)

=

∫∫
(log |f(α · β)|+ ε)dσ(α)dms(β)

=

∫∫
log(|f(β)|+ ε)dmα·s(β)dσ(α) ≥ d.

�

Definition 7 We say that a function f(r) on R is a convex function of log r if for any

r0 ∈ R and any r1, r2 ∈ R such that r2
0 = r1r2 we have that f(r0) ≤ 1

2
(f(r1) + f(r2)).

Theorem 12 Suppose f ∈ A. Then Φ(r) =
∫
G

log |f(α · r)|dσ(α) is a convex function of

log r.

Proof. Fix r0 ∈ (0, 1). Let r1, r2 ∈ (0, 1), r1 < r2, be such that r2
0 = r1r2. Define a

homeomorphism τ on Ω(r1, r2) by τ(α · r) = α−1 · r2
0/r. Obviously, s0 = e0 · r0 ∈ Ω(r1, r2)

is the unique fixed point of that homeomorphism. Since ϕa ◦ τ = r2a
0 · ϕ−a then τ generates

an automorphism on R(Ω(r1, r2)). If ms0 is a representing Jensen measure of a point s0 for

R(Ω(r1, r2)) concentrated on Tr1 ∪ Tr2 then ms0 ◦ τ is a representing Jensen measure of s0

as well. Therefore, the measure m̃ = (ms0 +ms0 ◦ τ)/2 is a τ -invariant representing Jensen

measure. Hence, ||m̃Tr1
|| = ||m̃Tr2

|| = 1/2. Thus,

Φ(r0) =

∫
G

log |f(α · r0)|dσ(α) ≤
∫
G

∫
Tr1∪Tr2

log |f(α · s)|dm̃(s)dσ(α).

As for s ∈ Tri
∫
G

log |f(α · s)|dσ(α) = Φ(ri), i = 1, 2, then, using Fubini’s theorem, we get

that Φ(r0) ≤ Φ(r1)/2 + Φ(r2)/2 and, therefore, Φ(r) is a convex function of log r. �
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Convexity of Φ(r) implies the existence of a positive non-decreasing function n(r, f) such

that

Φ(r2)− Φ(r1) =

∫ r2

r1

n(r, f)

r
dr.

Definition 8 The number n(r, f) = r ·Φ′(r + 0) will be called a measure of the set of zeros

of a function f on Ωr.

Let us discuss the given definition. Fix a ∈ Γ+, a 6= 0, and denoteGa = {α ∈ G,α(a) = 1}
and W = {z ∈ C, 0 < Rez ≤ 2π/a, b1 ≤ Imz ≤ b2}. Consider a mapping h : Ga ×W →
Ω(r1, r2) : h(α, z) = α · et · e−y, where r1 = − log b2, r2 = − log b1 and z = t + iy. As in the

proof of Theorem 2 it can be shown that h is a one-to-one mapping and ϕa◦h(α, z) is analytic

as a function of z ∈ intW . Suppose that f ∈ R(Ω(r1, r2)) does not vanish on h(Ga × ∂W ).

Then, by the argument principle, the number of zeros of a function f(α, z) = f ◦ h(α, z) on

{α} ×W coincides with

na(f, α) =
1

2π

{∫ 2π/a

0

d arg f(α, t+ ib1)

dt
dt−

∫ 2π/a

0

d arg f(α, t+ ib2)

dt
dt

−Im

∫ b2

b1

f ′(α, 0 + iy)

f(α, 0 + iy)
dy + Im

∫ b2

b1

f ′(α, 2π/a+ iy)

f(α, 2π/a+ iy)
dy

}
.

Since e2π/a ∈ G and h(α · e2π/a, 0) = h(α, 2π/a) then

f(α · e2π/a, 0 + iy) = f(α, 2π/a+ iy)

which means that the last two terms in the above equation cancel each other out.

Furthermore, the Cauchy–Riemann conditions give

d arg f(α, t+ iy)

dt
= −d log |f(α, t+ iy)|

dy
.

Therefore, ∫
Ga

na(f, α)dγ =
1

2π

{∫
Ga

∫ 2π/a

0

d log |f(α, t+ iy)|
dy

∣∣∣∣
y=b1

dγdt

−
∫
Ga

∫ 2π/a

0

d log |f(α, t+ iy)|
dy

∣∣∣∣
y=b2

dγdt

}
,

where γ is the normalized Haar measure of a group Ga.

Since h(Ga × l) = G × {e−b} ⊂ Ω, where l = {z ∈ C, 0 < Rez ≤ 2π/a, b1 ≤ Imz = b},
then the pre-image of the Haar measure σ of a group G under the mapping h is a measure

a/2πdγ × dt on Ga × l. Therefore,

a

2π

∫
Ga

∫ 2π/a

0

d log |f(α, t+ iy)|
dy

∣∣∣∣
y=b1

dγdt = − dΦ(r)

d log r

∣∣∣∣
r=r1

= −Φ′(r1) · r1.
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Hence,

Φ′(r2)r2 − Φ′(r1)r1 = a ·
∫
Ga

na(f, α)dγ. (5)

This formula implies the following theorem.

Theorem 13 Suppose that for some f ∈ R(Ω(r1, r2)) Φ(r) is a linear function of log r.

Then there exist a ∈ Γ and g ∈ R(Ω(r1, r2)) such that f = ϕa · exp g.

Proof. Since Φ(r) = c log r + d then the left side of (5) is zero which means that the

right side of (5) is also zero. Therefore, f does not vanish on R(Ω(r1, r2)). Now applying

Arens–Royden’s theorem to the algebra R(Ω(r1, r2)) and noting that Ω(r1, r2) is the space

of maximal ideals of R(Ω(r1, r2)) and H1(Ω(r1, r2));Z) = H1(G;Z) = Γ we get the desired

expression for f . �

Theorem 14 Let f ∈ P (Ω). Then

1. n(r, f) is a positive non–decreasing function;

2. if n(r, f) = const, r ∈ (0, 1], then a = n(r, f) ∈ Γ+ and there exists a function g ∈ P (Ω)

such that f = ϕa · exp g;

3. if f does not vanish on Tr, 0 < r < 1, then n(r, f) =
∫
Tr

D(f)
f
dσ;

4. if g ∈ P (Ω) is such that |f | > |g| on Tr then n(r, f + g) = n(r, f).

Proof. (1) is obvious. (2) follows from Theorem 13. (3) If the function f does not vanish

on Tr then f = ϕa · exp g on some neighbourhood of Tr, where a = n(r, f). Therefore,∫
Tr

D(f)

f
dσ =

∫
Tr

ϕa · D(g) · exp g + aϕa · exp g

ϕa · exp g
dσ = a

as
∫
Tr
D(g)dσ = 0. (4) Since |f | > |g| on Tr then |(f + g)/f −1| < 1 on some neighbourhood

of Tr. Therefore, there exists h ∈ R(Ω(r−ε, r+ε)) such that (f +g)/f = exph. This means

that Φ(r1, f+g) = Φ(r1, f)+
∫
Tr1

Rehdσ. But
∫
Tr1

Rehdσ = Re c0(h), where c0(h) is the zero

Fourier coefficient of a function h which does not depend on r1. Hence, n(r, f + g) = n(r, f).

�

Let f be a generalized analytic function. Jensen’s formula allows to calculate the modulus

of the first Fourier coefficient of f . So it is natural to assume that a = inf S(f) ∈ S(f). Let

N(r, f) =

∫ r

0

n(t, f)− a
t

dt.

Theorem 15

log |ca(f)| =
∫
Tr

log |f |dσ −N(r, f)− a log r.
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Proof. Since a ∈ S(f) there exists r0 > 0 such that f does not vanish on Ωr0\{∗}. Therefore

on Ωr we have that f = ϕa · exp g = ca(f)ϕa · exp(g − g(∗)) with g ∈ P (Ωr). Hence,

Φ(r0) = log |ca(f)|+ a log r0.

Now to complete the proof it remains to note that N(r, f) = Φ(r)− Φ(r0). �

2 Generalized meromorphic functions

2.1 On the singularities of generalized analytic functions

In this section we state the theorems on analytic continuation of generalized analytic func-

tions.

Theorem 16 Let D be an open set in Ω and let s ∈ D, s 6= ∗. Then every analytic function

on D \ {s} can be analytically continued to some function from O(D).

Proof. Let F = V ×W ⊂ D be a closed neighbourhood of a point s = (α0, z0) with V ⊂ Ga

and W ⊂ C. Then the function f ∈ O(D \ {s}) is continuous on ∂F = V × ∂W and by the

maximum principle for the functions of one complex variable we have that

sup
{α}×W

|f | = sup
{α}×∂W

|f | ≤ sup
V×∂W

|f | = M <∞, α ∈ V, α 6= α0.

Since Ga is a perfect set then for any z 6= z0 and any ε > 0 there exists α ∈ V such

that |f(α0, z)− f(α, z)| < ε. Therefore, |f(α0, z)| ≤ M, z 6= z0. Thus, f(α0, ·) is a bounded

analytic function of one complex variable on W \z0 and, hence, f can be analytically extended

to {α0} ×W . Thus, f can be extended to some function from O(D). �

In case s = ∗ = G× {0} the previous theorem does not hold. However we still have the

following result.

Theorem 17 Let D 3 ∗ be an open set in Ω. Then every bounded analytic function on

D \ {∗} can be analytically continued to some function from O(D).

Proof. Let r0 > 0 be such that the set Ωr0 = {s ∈ Ω, |s| < r0} is contained in D. For any

a ∈ Γ and 0 < r < r0 the Fourier coefficient ca(f) =
∫
Tr
f · ϕ−adσ of a function f satisfies

the inequality |ca(f)|ra ≤ supTr |f | where Tr = G × {r}. Boundedness of f implies that if

a < 0 then ca(f) = 0. Thus, the spectrum S(f) does not contain any negative element from

Γ. Therefore (see Theorem 20), f can be continued to a function from O(Ωr). �

Let us now introduce the notion of a thin set, which is an analogue of sets of zeros and

poles of analytic functions of one complex variable. Here we again use the fact that each

point from ∆ \ {∗} has a neighbourhood U of the form U = V ×W where V ⊂ Ga and

W ⊂ C.
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Definition 9 Let D be an open set in ∆. A subset F ⊂ D is called a thin set if it is closed

in D and the following conditions hold:

1. for each s ∈ D, s 6= ∗, there exist a neighbourhood U ⊂ D,U = V ×W, and a function

f ∈ O(U), f 6≡ 0, such that f = 0 on F ∩ U and f is not identically zero on each

Wα = {α} ×W,α ∈ V ;

2. if ∗ ∈ D then there exists a function f ∈ O(Ωr),Ωr ⊂ D, f 6≡ 0, such that f = 0 on

Ωr ∩ F .

Remark. Clearly, if F is a thin set in D and D1 is an open subset of D then F ∩D1 is a

thin set in D1.

Slightly modifying the proof of Theorem 16 one can prove the following theorem.

Theorem 18 Let D ⊂ Ω be an open set and suppose F is a thin subset of D. Then every

bounded function from O(D \ F ) can be uniquely extended to some function from O(D).

Theorem 19 Let F be a thin subset of an open set D ⊂ Ω and let f be an analytic function

on D \ F . Then the behaviour of the function f near each point s0 ∈ F can be one of the

following:

1. f(sλ) tends to a finite limit as sλ → s0;

2. |f(sλ)| tends to ∞ for any sλ → s0;

3. in every neighbourhood of s0 the function f takes on values arbitrarily close to any

number.

A point satisfying 1), 2) or 3) will be called, respectively, removable singularity, pole or

essential singularity.

Behaviour of a function f near ∗ ∈ Ω is determined by the following property of a

spectrum.

Theorem 20 Suppose f ∈ O(Ω0 \ {∗}) and a0 = inf S(f). Then

1. if a0 > 0 then ∗ is a removable singularity;

2. if a0 < 0 and a0 ∈ S(f) then ∗ is a pole;

3. if a0 < 0 and a0 /∈ S(f) then ∗ is an essential singularity.

Proof. 1) If S(f) ⊂ Γ+ then on Tr, 0 < r < 1, f can be uniformly approximated by

polynomials. But Tr is the Shilov boundary of an algebra P (Ωr). Therefore, ∗ is a removable

singularity of f . 2) The spectrum of a function g = ϕa0 · f is contained in Γ+ and 0 ∈ S(g).

Hence, g(∗) 6= 0. Therefore, ∗ is a pole of f . 3) Assume that ∗ is not an essential singularity
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of f . Let z /∈ f(Ω0
r \ {∗}), 0 < r < 1. Then the function 1/(f − z) is bounded on Ω0

r \ {∗}
and does not vanish there. By Theorem 4 there exist g ∈ O(Ω0

r) and a ∈ Γ+ such that

1/(f − z) = ϕa · exp g. Hence, f = ϕ−a · exp(−g) + z and as 0 ∈ S(exp(−g)) ⊂ Γ+ then

−a ∈ S(f) and −a = inf S(f). We have thus arrived at a contradiction with (3), which

means that ∗ is an essential singularity of f . �

2.2 Auxiliary results

In this section, based on the function theory of one complex variable, we elaborate the

methods for further investigations of generalized analytic functions.

Without loss of generality, assume that 2π ∈ Γ. On a locally compact group K × R,

where K = {α ∈ G,α(2π) = 1}, consider an algebra B of bounded continuous functions

which for any fixed α ∈ K can be continuously extended to a bounded analytic function in

the upper half–plane. Let us describe some properties of that algebra.

1. We begin with the measures which are orthogonal to B. Let A be a trace of the disk

algebra on the unit circle and let H1 be a Hardy space which is a closure of A in L1 norm

with respect to the Lebesgue measure. Also let H1
0 be the family of functions from H1 whose

analytic continuations vanish at the origin. By F. and M. Riesz theorem the space of all

measures on the unit circle which are orthogonal to disk algebra coincides with H1
0 . Here we

present an analogue of that theorem for the algebra B.

Note that the conformal mapping w(z) = i−z
i+z

of an upper half–plane to the unit disc

generates a mapping from the Hardy space H1 to H1 – the space of integrable functions on

R with respect to the measure dx
1+x2 . Each function from H1 can be analytically continued

to an analytic function in the upper half–plane. The image of H1
0 in H1 under the mapping

w will be denoted by H1
0.

Let H1
0(K × R) be a space of measures of the form f(α, x) · ν × dx

1+x2 , where ν is some

probability measure on K and the function f(α, x) ∈ L1(ν× dx
1+x2 ) for almost all fixed α ∈ K

(with respect to the measure ν) belongs to H1
0.

Lemma 4 Suppose µ ∈ H1
0(K × R). Then for any g ∈ B

∫
K×R g dµ = 0.

Proof. We have ∫
K×R

gdµ =

∫
K

(∫
R
g(α, x) · f(α, x)

dx

1 + x2

)
dν.

Since 1
π(1+x2)

is the Poisson kernel of the point i ∈ C+ and for almost all fixed α ∈ K an

analytic continuation of f to the upper half–plane vanishes at i then the inner integral is

zero for almost all α ∈ K with respect to the measure ν. �

By the Phragmén–Lindelöf principle B is a Banach algebra (even uniform) with respect

to the uniform norm on K × R. Each point from K × R is a generalized peak point for B,

therefore, K × R is contained in ∂B, the Shilov boundary of an algebra B. Let B⊥ be a

space of all regular Borel measures on ∂B which are orthogonal to the algebra B.
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Lemma 5 Suppose µ ∈ B⊥. Then there exist mutually singular measures µ1, µ2 ∈ B⊥ such

that

1. µ = µ1 + µ2

2. µ1 ∈ H1
0(K × R) and suppµ2 ⊂ ∂B \K × R.

Proof. The algebra C(K) of all continuous functions on K can be embedded into B by

assigning to a function g ∈ C(K) the function g(α, x) = g(α). Therefore the set Fα, α ∈ K,

which is obtained as a closure of the set {α}×R = Rα in ∂B, is a maximal set of antisymmetry

of an algebra B. Hence, by Bishop theorem, the support of each extremal measure from the

unit ball S0 ⊂ B⊥ is contained in some Fα, α ∈ K (see Section 1.1). Let B⊥α be a set of the

measures from S0 whose support lie in Fα, α ∈ K. Obviously, B⊥α is a compact set in a weak*

topology. Since Fα ∩ Fβ = ∅, α 6= β, then for any measure µ ∈ B⊥ there is a probability

measure ν on K such that

µ =

∫
K

µα dν, µα ∈ B⊥α . (6)

Indeed, convex combination of extremal measures from S0 is contained in the convex

combination of the measures from B⊥α , α ∈ K. Therefore, using the Krein–Milman theorem

and the fact that Fα is a set of antisymmetry we get that (6) holds. By F. and M. Riesz

theorem (see [5], pp. 66-67) the measure µα can be represented as the sum of two measures

ζα and ξα from B⊥α where ξα = f · dx
1+x2 , with f ∈ H1

0, and supp ζα ⊂ Fα \ Rα. It remains to

take

µ1 =

∫
K

ξαdν and µ2 =

∫
K

ζαdν.

�

Corollary 5 Let F be a compact subset of K ×R. Then the restriction of the algebra B to

F coincides with C(F ) if and only if for each α ∈ K the set Fα∩Rα has a Lebesgue measure

zero.

2. Here we prove some facts about the zero sets of the algebra B that will be used below in

this chapter.

Let MB be the set of maximal ideals of the algebra B. Obviously, K ×C+ ⊂MB, where

C+ = {z ∈ C, Imz ≥ 0}. For n ∈ Z define Cn = {z ∈ C+, n < Rez ≤ n+ 1}.
Hereafter the algebra B will be identified with its extension on K × C+.

Lemma 6 Let V and W be open sets in K and C0, respectively, and let f be a continuous

function on V ×W which is analytic as a function of z ∈ W . Suppose that there exists an

open convex set W0 b W such that the set N(f) = {s ∈ V ×W, f(s) = 0} is contained in

K ×W0. Then for each s ∈ N(f) there exist a neighbourhood U = V ×W and a function

g ∈ B such that N(g) ⊂ K ×W0 and N(f) ∩ U = N(g) ∩ U .
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Proof. Let us denote by N(fα) the set of zeros of a function fα(z) = f(α, z) (counting

multiplicities). Then N(fα) is finite and N(fα) ⊂ W0. Also, if two elements α, β ∈ V are

”close” to each other then, since f continuous, Rouche’s theorem implies that the sets N(fα)

and N(fβ) are also ”close” to each other. Therefore, if N(fα) = {z1(α), ..., zn(α)(α)} then

the function p = p(α, z) =
n(α)∏

1

(z − zi(α)) is continuous on V ×W with N(p) = N(f).

Fix a point s = (α, zi(α)) ∈ N(p) and let h be a positive continuous function on K with

0 ≤ h ≤ 1 such that h = 1 on a neighbourhood V0 b V of α ∈ K and h = 0 on K \V . Then,

since W0 is convex, the function

g = g(α, z) =

∏n(α)
1 (z − (1− h(α))z0 − h(α)zi(α))∏n(α)
1 (z − (1− h(α))z0 − h(α)zi(α))

, z0 ∈ W0,

belongs to the algebra B. Now taking U = V0 × W we get that N(g) ⊂ K × W0 and

N(g) ∩ U = N(p) ∩ U . �

Corollary 6 Under the conditions of the previous lemma, for any s ∈ N(f) there exist a

neighbourhood U = V ×W and a family of functions {gλ} ⊂ B such that N(gλ) ⊂ K ×W0,

N(f) ∩ U = N(gλ) ∩ U and
⋂
λN(gλ) = N(f) ∩ U .

As K = {α ∈ G,α(2π) = 1} then for every n ∈ Z the element en ∈ G with en(a) =

eian, a ∈ Γ, belongs to K. The subgroup F = {(en,−n), n ∈ Z} of a group K × R acts on

K ×C+ in the following way: (en,−n) · (α · z) = (α · en, z−n). Given a set F ⊂ K ×C0 the

set F · (en,−n) we will be denoted by Fn. Obviously, Fn ⊂ K × Cn.

Lemma 7 Suppose that the zero set N(g) of a function g ∈ B is contained in K×W0, where

W0 b C0. Then there exists a function b ∈ B such that |b||K×R = 1 and N(b) =
⋃+∞
−∞N(g)n.

Proof. Again if we consider the function gα(z) = g(α, z) then the zero set N(gα) is finite.

Suppose that N(gα) = {z1(α), ..., zn(α)(α)}. Consider two functions p(α, z) =
∏n(α)

1 (z −
zi(α)) and p(α, z) =

∏n(α)
1 (z − zi(α)). For n ∈ Z define

pn(α, z) = p(α · en, z − n), pn(α, z) = p(α · en, z − n),

cn(α) = pn(α, 0)/pn(α, 0), bn(α, z) = cn(α)pn(α, z)/pn(α, z).

Then, obviously, bn(α, z) ∈ B,N(bn) = N(g)n, bn(α, 0) = 1 and |bn(α, x)| = 1, x ∈ R. Let us

show that b(α, z) =
∞∏
−∞

bn(α, z) is the desired function. Indeed, let Wn = {z ∈ Cn, z − n ∈

W0}, n ∈ Z, and define V =
∞⋃
−∞

Wn. Since cardN(gα) = n(α) < ∞ then, as K is compact

and n(α) is continuous, there exists a natural number m such that

sup
K
n(α) < m.
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For any set E ⊂ V with card (E ∩Wn) ≤ m, n ∈ N, there exists a Blaschke product on

C+ whose zero set, counting multiplicities, is E (see [7], p. 62). Let {b(z)}(n), b(0) = 1,

be the family of all Blaschke products in upper half-plane which have no more than m

zeros, counting multiplicities, all being contained in W n. Fix δ > 0 and denote εn(δ) =

sup{b}n supx∈[−δ,δ] |1− b(x)|. Since W n is compact then for any n ∈ Z there exists a function

bn ∈ {b}n such that εn(δ) = supx∈[−δ,δ] |1−bn(x)|. As the Blaschke product
∏∞
−∞ bn exists we

have that
∑∞
−∞ εn(δ) <∞ and since for every fixed α ∈ K the function bn(α, z) belongs to

the family {b}n then supK×[−δ,δ] |1 − bn(α, z)| < εn(δ). Therefore, b(α, z) =
∏∞
−∞ bn(α, z) ∈

B. �

2.3 Analytic A–measures

Denote A = P (Ω). Since the uniform algebra on G generated by the characters χa, a ∈ Γ, is

isometrically isomorphic to the algebra A we will then identify those two algebras.

Let M(G) be a space of regular Borel measures on G. A measure µ ∈M(G) is orthogonal

to A (µ ∈ A⊥) if and only if the spectrum S(µ) of a measure µ is contained in Γ+. Such

measures are called analytic A–measures. They have been studied in the works [14], [15],

[16]. In this section we explore the measures on Ω\{∗} which are orthogonal to A. Consider

a group homomorphism Φ : K × R → G, Φ(α, t) = α · et. If β ∈ G and β(2π) = eiθ0 then

β · et ∈ K where t = (2π − θ0)/2π. Therefore, Φ is a surjection and for every n ∈ Z the

set Fn = K × [n, n + 1) is a fundamental region of Φ. The mapping Φ can be extended

to a mapping Φ : K × C+ → Ω \ {∗} with Φ(α, z) = α · et · e−y. Then, obviously, for

every n ∈ Z the set K × Cn is a fundamental region of the extended mapping Φ, where

Cn = {z ∈ C+, n ≤ Rez < n+ 1}, and a group F = {(en,−n)}n∈Z ⊂ K ×R is a kernel of Φ.

Let M be a space of locally finite measures on K × C+ which are invariant under shifts

by the elements of F . The space M is uniquely determined by the measures with supports

contained in K × C0 – the fundamental region of Φ. Hence, the following lemma holds.

Lemma 8 Let M∗ be the space of measures on Ω \ {∗}. Then the mapping Φ generates a

linear bijective operator Φ∗ : M∗ →M with Φ∗(µ∗)(·) = µ∗(Φ(·)), µ∗ ∈M∗.

Let C(K ×C+) be a space of bounded continuous functions on K ×C+ with dual space

M(K × C+) which is the space of measures on K × C+. Define a mapping ψ : M∗ →
M(K × C+) by ψ(ξ) = 1/(i+ z)2 · Φ∗(ξ), ξ ∈M∗, z ∈ C+.

Theorem 21 Suppose µ ∈ A⊥ and suppµ ⊂ Ω(r, 1) = G× [r, 1]. Then ψ(µ) ∈ B⊥.

To prove this theorem we need the following lemmas.

Lemma 9 Assume that a net of measures {ξ} ⊂M∗ with supp ξ ⊂ Ω(r, 1) converges weak*

to a measure ζ ∈ M∗. Then the net of measures {ψ(ξ)} converges weak* to the measure

ψ(ζ). Furthermore, ||ξ||/(1 − log r)2 ≤ ||ψ(ξ)|| ≤ 2||ξ|| where the norms || · || are taken in

the corresponding spaces.
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Proof. Since Fn = K × Cn, n ∈ Z, is a fundamental region of the mapping Φ then for

any ξ ∈ M∗ we have that ||ξ|| = ||Φ∗(ξ)|Fn||. As Ω(r, 1) = Φ(K ×W ), where W = {z ∈
C+, Imz ≤ − log r}, then

||Φ∗(ξ)|Fn||/((n+ 1)2 + (1− log r)2) ≤ ||ψ(ξ)|Fn|| ≤ ||ψ(ξ)|| ≤ 2||ξ||.

But K × C+ =
∞⋃
−∞

Fn. Hence, ||ξ||/(1 − log r)2 ≤ ||ψ(ξ)|| ≤ 2||ξ||. The first part of the

lemma follows from Lemma 4. �

Let {Uλ}λ∈Λ be a basis of neighbourhoods of the unit element of a group G and let

{ψδ,λ} δ>0
λ∈Λ

be a system of positive continuous functions onG such that the following conditions

hold:

1. the spectrum S(ψδ,λ) of a function ψδ,λ is finite;

2. ψδ,λ(α) < δ if α /∈ Uλ;

3.
∫
G
ψδ,λdσ = 1, where σ is the normalized Haar measure of a group G.

Using the system {ψδ,λ} we define a family of Bochner-Fejer operators {Kδ,λ} as follows:

Kδ,λ(f)(α) =

∫
G

f(α · β−1)ψδ,λ(β)dσ(β).

4. Kδ,λ is a continuous operator on C(G) with ||Kδ,λ|| = sup||f ||≤1 ||Kδ,λ(f)|| = 1, infδ,λ ||Kδ,λ(f)−
f || = 0 and S(Kδ,λ) is finite and is contained in S(f).

Since M(G) is a dual space of C(G), the operator Kδ,λ generates an adjoint operator

K∗δ,λ : M(G)→M(G) with ∫
G

Kδ,λ(f)dµ =

∫
G

fdK∗δ,λ(µ).

On the family of pairs {(δ, λ)} δ>0
λ∈Λ

one can define an order in the following way:

(δ1, λ1) < (δ2, λ2) if δ2 < δ1 and Uλ2 ⊂ Uλ1 . Having this order a family of opera-

tors {K∗δ,λ} becomes a net.

From the conditions 1)–4) it follows that for any µ ∈M(G) that:

5. the spectrum S(K∗δ,λ(µ)) of a measure K∗δ,λ(µ) ∈ M(G) consists of finite number of

elements and is contained in S(µ);

6. ||K∗δ,λ(µ)|| ≤ ||µ|| and the net of measures {K∗δ,λ(µ)} converges weak* to the measure

µ;



ON THE SURFACES GENERATED BY GENERALIZED ANALYTIC FUNCTIONS 93

From (5) and (6) it follows that the measure K∗δ,λ(µ) is absolutely continuous with respect

to σ and, therefore, each measure from M(G) can be approximated in the weak* topology

by equibounded net of measures which are absolutely continuous with respect to σ.

Let γ be the normalized Haar measure of a compact group K. Let us show that

Φ∗(σ) = γ × dx = µ. (7)

Since Φ∗(σ) and µ are invariant under shifts by the elements of a group F then it is sufficient

to show that their restrictions to K × [0, 1) coincide. If χb, b ∈ Γ, is a character of a group

G then ∫
K×[0,1)

χ0 ◦ Φdµ =

∫
K

dγ

∫
[0,1)

dx = 1 and∫
K×[0,1)

χb ◦ Φdµ =

∫
K

χb(α)dγ(α)

∫
[0,1)

eibxdx = 0 if b 6= 0.

Indeed, first equality is obvious, second equality is also obvious if b = 2πn, n ∈ Z \ {0}. In

case b 6= 2πn since K = {α ∈ G,α(2π) = 1}, then χb is a non–trivial character of a group K.

Hence,
∫
K
χb(α)dγ(α) = 0. The measure Φ∗(σ) also satisfies the above equations, therefore,

the uniqueness of Haar measure implies (7).

Lemma 10 Let µ ∈ A⊥ with suppµ ⊂ G. Then ψ(µ) ∈ H1
0(K × R).

Proof. Since µ ∈ A⊥, suppµ ⊂ G, then S(µ) ⊂ Γ+. Therefore µδ,λ ∈ A⊥, where µδ,λ =

K∗δ,λ(µ) (see part (5.) above). As the set S(µδ,λ) is finite, then there exists a polynomial

p =
m∑
i=1

ciϕ
bi ∈ A such that µδ,λ = p · σ. The function

p(α, x) = p ◦ Φ(α, x) =
m∑
i=1

cn · α(bn) · eibnx

belongs to B. Therefore, for every fixed α 1+x2

(i+x)2p(α, x) ∈ H1
0 (see Section 2.2). Hence, from

(7) we have ψ(µδ,λ) ∈ H1
0(K×R). A net of equibounded measures {µδ,λ} converges weak* to

the measure µ ∈ A⊥. Therefore, the net of measures {ψ(µδ,λ)} is also equibounded (Lemma

9) and converges weak* to ψ(µ) ∈ H1
0(K × R). �

Let ξ be a representing measure of a point (α0, z0) ∈ K × C0 concentrated on Rα0 =

{α0} × R. Then ξ is of the form of the Poisson kernel for the upper half–plane: ξ =
y0dx

π((x−x0)2+y2
0)
, z0 = x0 + iy0. Denote by ξn a measure on K ×R which is obtained by shifting

ξ by (en,−n) ∈ F . Then the measure ζ =
∑∞
−∞ ξn is locally finite on K ×R and belongs to

the space M of measures which are invariant under shifts by the elements of F .

Lemma 11 Let µs ∈M(G) be a representing measure of a point s = Φ(α0, z0) ∈ Ω0. Then

Φ∗µs = ζ.
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Proof. Since Φ∗µs ∈M then it suffices to prove that ζ|F0 = Φ∗µs|F0 , where F0 = K× [0, 1).

For a ∈ Γ+ we have∫
F0

ϕa ◦ Φ dΦ∗µs =

∫
G

ϕa dµs = ϕa ◦ Φ(α0, z0) = α0(a)eiaz0 .

On the other hand ∫
F0

ϕa ◦ Φ dζ =

∫
K×R

ϕa ◦ Φ d

∞∑
−∞

χF0 · ξn,

where χF0 is a characteristic function of a set F0. Since χF0 · ξn = χFn · ξ the last integral

above is equal to α0(a) ·eiaz0 . To complete the proof it remains to note that as the restriction

of A to G is a Dirichlet algebra then each point s ∈ Ω0 has only one representing measure

concentrated on G (see Section 1.1). �

Proof of Theorem 21. Denote τ(s) = µs−δs, where δs is an atomary measure concentrated

at the point s ∈ Ω0 and µs is a representing measure of s concentrated on G. Since for

f ∈ A δs(f) = f(s) =
∫
fdµs then τ(s) ∈ A⊥. Let s = Φ(α0, z0). Since the measure

ξ = y0dx
π((x−x0)2+y2

0)
, z0 = x0 + iy0, concentrated on Rα0 , is a representing measure of the point

(α0, z0) ∈ K×C+ then θ = ξ− δ(α0,z0) ∈ B⊥. Therefore, θn = ξn− δ(α0·en,z0−n) ∈ B⊥. Hence,

ψ(τ(s)) = 1/(i+ z)2
∑∞
−∞ θn ∈ B⊥. Let µ be a probability measure on ∆0(r, 1) = G× (r, 1),

0 < r < 1. Let us show that there exists a measure µ̃ on G = T1 such that µ− µ̃ ∈ A⊥. By

Krein–Milman theorem there exists a net of measures {
∑
c(s)δs} with c(s) > 0,

∑
c(s) = 1,

which converges weak* to µ. But AG is a Dirichlet algebra. Therefore, the net of measures

{
∑
c(s)µs} converges weak* to some probability measure µ̃ on G. Hence, the net of measures

{
∑
c(s)τ(s)} ⊂ A⊥ converges weak* to the measure µ̃−µ ∈ A⊥. Since ψ(

∑
c(s)τ(s)) ∈ B⊥

then ψ(µ̃− µ) ∈ B⊥ (see Lemma 9). Now suppose µ ∈ A⊥ with suppµ ⊂ Ω(r, 1) and µ1 =

µ|Ω0 , µ2 = µ|G. Then there exist probability measures γ1, ..., γ4 such that µ1 =
∑4

i=1 ciγi.

Taking µ̃1 =
∑4

i=1 ciγ̃i we get that ψ(µ̃1 − µ1) ∈ B⊥ and since µ = µ1 − µ̃1 + µ2 + µ̃1 then

µ2 + µ̃1 ∈ A⊥ and ψ(µ2 + µ̃1) ∈ B⊥ (see Lemma 10). Therefore, ψ(µ) ∈ B⊥.

2.4 Null sets and interpolation sets of the algebra A

In this section we establish a connection between thin sets, zero sets and interpolation sets

of the algebra A.

Lemma 12 Let F ⊂ Ω0 be a thin set. Then for any point s0 ∈ Ω0, s0 6= ∗, there exist a

neighbourhood U ⊂ Ω0 and a function g ∈ A, g 6≡ 0, such that F ∩ U ⊂ N(g) ∩ U .

Proof. Let U = V ×W with V ⊂ K,W ⊂ C0, be a neighbourhood of a point s0 ∈ Ω0

such that some function f ∈ O(U) vanishes on F ∩ U and satisfies the Definition 9. We

can choose U and f ∈ O(U) such that the conditions of Lemma 6 will be satisfied as
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well. Then, by Lemma 6, there exists a function h ∈ B with N(h) ⊂ K × C0 such that

N(f) ∩ U = N(h) ∩ U . By Lemma 7 there exists a function b ∈ B such that |b||K×R = 1

and N(b) = ∪∞−∞N(h)n. Let L be a weak*–closed space of measures on G generated by

the linear combinations of representing measures µs, s ∈ N(h), and by the measures from

A⊥. Since b
(i+z)2 · Φ∗(µs) =

∑∞
−∞

b
(i+z)2 · ξn (see Lemma 11) and Φ−1(s) ⊂ N(b) then

b
(i+z)2 ·Φ∗(µs) ∈ H1

0(K×R) ⊂ B⊥. By Lemma 10 we have that ψ(M(G)∩A⊥) ⊂ H1
0(K×R).

Therefore, b
(i+z)2 ·Φ∗(L) ⊂ H1

0(K ×R) (see Lemma 9). Hence, L 6= M(G) which means that

there exists a function g ∈ C(G), g 6≡ 0, which is orthogonal to L. Since A⊥ ⊂ L and

µs ∈ L, s ∈ N(h), then g ∈ A and
∫
g dµs = 0. Thus, the function g ∈ A vanishes on N(h)

and, in particular, on F ∩ U . �

Let I be the set of all continuous functions on G that are orthogonal to L. The above

arguments imply that I ⊂ A.

Given an ideal J of the uniform algebra A the set
⋂
f∈J N(f) is called the hull of I and

is denoted hull J .

Lemma 13 I is an ideal of the algebra A and hull I coincides with N(h).

Proof. From the definition of I we have that I ⊂ J = {f ∈ A, f(s) = 0, s ∈ N(h)}.
But J⊥ ⊃ L = I⊥. Hence, I = J . Now suppose s0 /∈ N(h). Since the function b ∈ B

vanishes only on the set N(b) = ∪∞−∞N(h)n (see the proof of the previous lemma) and

Φ−1(s) ∩ N(b) = ∅ then b
(i+z)2 · Φ∗(µs0) /∈ B⊥. Therefore, µs0 /∈ L. Hence, there exists a

function f ∈ I such that f(s0) 6= 0. �

Theorem 22 Let F ⊂ Ω0 be a compact thin set such that ∗ /∈ F . Then the hull of an ideal

I = {f ∈ A, f(s) = 0, s ∈ F} is F .

Proof. For a fixed s ∈ F there exist an open neighbourhood U ⊂ Ω0 of s and a family of

functions {fλ} ⊂ O(U) such that F ∩ U =
⋂
λN(fλ) (see Definition 9 and the subsequent

remark). Let {hλ} ⊂ B be a family of functions such that N(hλ) ∩ U = N(fλ) ∩ U (see the

proof of Lemma 6). By Corollary 6 the family {hλ} can be chosen such that
⋂
λN(hλ) =⋂

λN(fλ). If J is an ideal of A generated by the ideals Iλ = {f ∈ A, f(s) = 0, s ∈ N(hλ)}
then hull J =

⋂
λN(hλ) = F ∩ U . Therefore, since F is compact, there exists a finite family

I1, ..., In of ideals of the algebra A such that F =
⋃n
i=1 hull Ii. Hence, hull J = F , where

J = I1 · I2 · ... · In. But J ⊂ I = {f ∈ A, f(s) = 0, s ∈ F}. Therefore, hull I = F . �

Theorem 23 Let F ⊂ Ω0 be a thin set such that ∗ /∈ F . Then there exists a non–zero

function f ∈ O(Ω0) such that F ⊂ N(f).

Proof. For an increasing sequence rn → 1 denote Ωn = {s ∈ Ω, |s| ≤ rn}, Ω(rn−1, rn) =

G × [rn−1, rn] and Fn = F ∩ Ω(rn−1, rn). Each Fn is a compact thin set in Ω0. Therefore,

the hull of an ideal In = {f ∈ A, f(s) = 0, s ∈ Fn} is Fn. Hence, the restriction of In
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to Ωn−2 is dense in P (Ωn−2). Thus, there exists a function fn ∈ In, n = 2, 3, ..., such that

supΩn−2
|1 − fn| < 1/2n. Last inequality implies that f =

∏∞
n=2 fn ∈ O(Ω0). Obviously,

F ⊂ N(f). �

Let us now describe the interpolation sets of the algebra A. Recall that a closed set

F ⊂ Ω is called interpolation set if A|F = C(F ).

Theorem 24 Let F ⊂ G be a compact set. Then the following conditions are equivalent:

1. F is a peak set for A;

2. A|F = C(F );

3. for each α ∈ K the Lebesgue measure of the set Fα = {t ∈ [0, 1],Φ(α, t) ∈ F} is zero.

Proof. 1) ⇒ 2) If F is a peak set for A then µ|F = µF ∈ A⊥ for any measure µ ∈ A⊥

(see Section 1.1). But suppµ = G. Therefore, µF = 0. Hence, A|F = C(F ). 2) ⇒ 3) Let

ψ : A → C(F ) be the operator of restriction. Clearly, ψ is continuous. As F 6= G, then for

any ε > 0 there exists a function f ∈ A with ||f || = supG |f | = 1 and |f |F | < ε. Hence, from

2), using Banach–Steinhaus theorem, we get that the ideal I = {f ∈ A, f(s) = 0, s ∈ F} of

the algebra A is non–trivial. Since ϕa ◦ Φ(α, z) = α(a)eiaz ∈ B and A is generated by the

family of functions {ϕa}a∈Γ+ then A ◦ Φ ⊂ B and, therefore, I ◦ Φ ⊂ B. Now if for some

α ∈ K the Lebesgue measure of a set Fα is not zero then, by Fatou’s theorem (see [7], p.

127), I ◦Φ|Rα ≡ 0. But Φ(Rα) = G, and, therefore, I = 0, a contradiction. 3)⇒ 1) Suppose

µ ∈ A⊥. Then the theorem of F. and M. Riesz (see [7], p. 127) and Lemma 10 imply that

the restriction of the measure Φ ◦ µ to the set E = Φ−1(F ) ∩ (K × [0, 1)) is a null measure.

And since K × [0, 1) is a fundamental region of Φ we get that µF = 0, i.e., A|F = C(F ). �

Let F ⊂ K × C+ be a closed set. We say that F is an interpolation set for the algebra

B if the restriction of B to F is closed in the uniform norm on F . The interpolation sets

of the uniform algebras are described by the orthogonal measures. In particular, a closed

set F ⊂ K × C+ is an interpolation set for B if and only if there exists d < 1 such that

||µ|F || < d||µ|| for any µ ∈ B⊥. The interpolation sets for an algebra A are defined similarly.

Theorem 25 Suppose F ⊂ Ω(r, 1) is a compact set. The set F is an interpolation set for

A if and only if Φ−1(F ) is an interpolation set for B.

Proof. If F is not an interpolation set for A then for any n > 0 there exists µ ∈ A⊥ such

that ||µF || ≥ n||µΩ\F ||. Hence, if we denote E = Φ−1(F ) and E0 = (K × C+) \ E, then,

applying Lemma 9, we get ||ψ(µ)|E|| ≥ n/2(1− log r)2||ψ(µ)|E0|| and as ψ(µ) ∈ B⊥ then E

is not an interpolation set for B.
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Conversely, assume that the set E = Φ−1(F ) is not an interpolation set for B. Then

for any m > 0 there exists a measure µ ∈ B⊥ such that suppµ ⊂ Cα = {α} × C, α ∈ K,
and ||µEα|| ≥ m||µE0

α
||, where Eα = Cα ∩ E and E0

α = Cα ∩ E0. Let µn be a measure on

K×C+ obtained by shifting the measure µ by an element (en,−n) ∈ F and let ξ = ∪∞−∞µn.

Obviously, ξ ∈ M and by Lemma 8 there exists ζ ∈ M∗ such that ξ = Φ∗(ζ). Since∫
G
fdζ =

∫
K×C0

f ◦ Φ(α, z)dζ =
∫
K×C0

f ◦ Φ(α, z)dµ = 0 then ζ ∈ A⊥. Furthermore,

||ζ|F || = ||ξ|E∩K×C0|| = ||µ|Eα|| > m||µ|E0
α
|| = m||ξ|(K×C0)\E|| = m||ζ|Ω\F ||

which means that F is not an interpolation set for A. �

2.5 Generalized meromorphic functions

Let D ⊂ Ω be an open set. For each point s ∈ D the notion of an order of a function f ∈
O(D) at s is introduced in the following way: ord f(s) = inf{n ∈ Z+, f

(n)(s) = 0, f (n+1)(s) 6=
0}, where f 0 = 1 and f (n) = Dn(f) is the n-th derivative of f (see Section 1.5). From the

definition of derivative it follows that if U = V ×W ⊂ D, V ⊂ K,W ⊂ C, is a neighbourhood

of a point s = (α0, z0) then ord f(s0) = ord fα0(z0), where fα0(z) = f(α0, z).

Definition 10 An integer–valued, non–negative, continuous from above function ∂(s) de-

fined on an open neighbourhood D is called a divisor if there exists a thin set F ⊂ D such

that ∂(s) = 0 on D \ F .

For example, the function ord f with f ∈ O(Ω0), f 6≡ 0, is a divisor.

Theorem 26 Suppose ∂(s) is a divisor on Ω0 with ∂(∗) = 0. Then there exists f ∈
O(Ω0), f 6≡ 0, such that ord f(s) ≥ ∂(s).

Proof. ¿From the Definition 10 and the condition of theorem we have that the set F =

{s ∈ Ω0, ∂(s) > 0} is a thin set in Ω0 and ∗ /∈ F . For an increasing sequence rn → 1

denote Ωn = {s ∈ Ω, |s| < rn}, Ω(rn−1, rn) = G × [rn−1, rn] and Fn = F ∩ Ω(rn−1, rn).

As F is a thin set in Ω0 then Fn is a compact thin set in Ω0 and the hull of an ideal

In = {f ∈ A, f(s) = 0, s ∈ Fn} is Fn. Denote kn = supFn |∂(s)| and let {εn}∞1 be a sequence

of positive numbers such that
∏∞

1 (1+εn)kn <∞. Since for n ∈ Z+ the restriction of A to Ωn

is dense in P (Ωn) and Fn+2∩Ωn = ∅ then the restriction of In+2 to Ωn is also dense in P (Ωn).

Therefore, for any n ∈ Z+ there exists a function fn ∈ In+2 such that supΩn |1 − fn| < εn.

Hence, the function f = g ·
∏∞

1 fknn , g ∈ I1, belongs to O(Ω0) and ord f(s) ≥ ∂(s). �

We now give the definition of generalized meromorphic function.

Definition 11 Let D ⊂ Ω0 be an open set. A function f will be called generalized mero-

morphic function (or just meromorphic function) on D if
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1. f is a generalized analytic function on D \ F , where F is a thin set in D,

2. f cannot be continued analytically to any point of F ,

3. for any point s ∈ F there exist a neighbourhood U of s and a function g ∈ O(Ω0) such

that N(g) is a thin set in U and f · g can be continued to some function from O(U).

Let f be a meromorphic function on Ω0. For s ∈ Ω0 let O(s) be a germ of generalized an-

alytic functions at s, i.e., O(s) consists of the functions that are analytic on some neighbour-

hood of s, and let O(s, f) be the set of all functions g ∈ O(s) such that f ·g can be extended

to a generalized analytic function from O(s). Define a divisor ∂−f (s) = infg∈O(s,f) ord g(s)

which represents the poles of a function f . If ∂−f (s) = 0 then, obviously, f ∈ O(s).

Theorem 27 Let f be a generalized meromorphic function on Ω0 such that ∗ ∈ Ω0 is either a

removable singularity or an isolated pole of f . Then there exists a function g ∈ O(Ω0), g 6≡ 0,

such that f · g can be extended to some function from O(Ω0).

Proof. Assume first that ∗ ∈ Ω0 is a removable singularity for a meromorphic function

f , i.e., ∂−f (∗) = 0. By Theorem 26 there exists a function g ∈ O(Ω0) such that ∂−f (s) ≤
ord g(s), s ∈ Ω0. Let us show that g ∈ O(s, f) for all s ∈ Ω0. Indeed, let U = V ×W ⊂ Ω0,

with V ⊂ K and W ⊂ C0 be a neighbourhood of a point s0 ∈ F = {s ∈ Ω0, ∂−f (s) = 0}.
For each fixed α ∈ V the restriction of a function f to Wα = {α} ×W is a meromorphic

function which orders of poles do not exceed ∂−f (s). Therefore, f · g can be analytically

continued to Wα. Denote by ψ the function on U obtained by such continuations. Obviously,

ψ ∈ O(U \ F ) and, by the maximum principle for the functions of one complex variable,

we have that supV×W |ψ| = supV×∂W |ψ|. The sets V and W can be chosen such that the

functions f and g would be bounded. Hence, ψ is a bounded function on U \F . By Theorem

18 ψ ∈ O(U). Therefore, g ∈ O(s, f), s ∈ Ω0, and f · g can be extended to some function

from O(Ω0).

Suppose now that ∗ ∈ Ω0 is an isolated pole of f . Then the function 1/f is bounded

on the set Ωr \ ∗ where Ωr = {s ∈ Ω, |s| < r}. By Theorem 17 the function 1/f can be

extended to a function from O(Ω0
r) which vanishes at ∗. By Theorem 4 there exist a ∈ Γ+

and g ∈ O(Ωr), g(∗) 6= 0, such that 1/f = ϕa ·g. Therefore, ∗ ∈ Ω0 is a removable singularity

for a meromorphic function f · ϕa.
Since each function f ∈ O(Ω0(r1, r2)), Ω0(r1, r2) = G × (r1, r2), can be represented in

the form of formal series
∑

a∈Γ ca(f)ϕa then the Frechet algebra O(Ω0(r1, r2)) contains two

following subalgebras: the algebra of functions whose spectrum lies in Γ+ and the algebra of

functions whose spectrum lies in−Γ+. First subalgebra is implemented by the algebraO(Ωr2)

and the second is implemented by Õ(Ω̃r1) which is the algebra of functions f ∈ O(Ω̃r1), with

Ω̃r1 = ∆\Ωr1 , for which lim|s|→∞ |f(s)| is finite. Obviously, the Frechet algebras O(Ωr2) and

Õ(Ω̃r1) are isomorphic. �
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Theorem 28 Let f be a generalized meromorphic function on Ω0(r1, r2). Then there exists

a generalized analytic function g ∈ O(Ω0(r1, r2)), g 6≡ 0, such that f · g can be extended to a

function from O(Ω0(r1, r2)).

Proof. As the function ∂−f (s) is a divisor on Ω0(r1, r2) then the functions

ψ1(s) =

0 if s ∈ Ω0
r0
, r1 < r0 < r2,

∂−f (s) if s ∈ Ω0(r1, r2) \ Ω0
r0

and ψ2(s) =

0 if s ∈ Ω0(r1, r2) \ Ω0
r0
,

∂−f (s) if s ∈ Ω0
r0

are divisors on Ω0
r2

and Ω̃r1 respectively. Therefore, there exist the functions ϕ1 ∈ O(Ω0
r2

)

and ϕ2 ∈ Õ(Ω̃0
r1

) such that ψ1 ≤ ordϕi, i = 1, 2. Hence, the function f ·ϕ1·ϕ2 can be extended

to a function from O(Ω0(r1, r2)). �

Theorem 29 Let f, g ∈ O(Ω0(r1, r2)) be such that ord g(s) ≤ ord f(s), s ∈ Ω0(r1, r2). Then

the meromorphic function f/g can be uniquely extended to some function from O(Ω0(r1, r2)).

Proof. ¿From the condition of the theorem we have that the set F = {s ∈ Ω0(r1, r2), ord g(s) ≥
1} is a thin set in Ω0(r1, r2) and each point s ∈ F has a neighbourhood U = V ×W such

that f/g is bounded on U \F . Therefore, f/g can be extended to some function from O(U).

Hence, f/g can be extended to a function from O(Ω0(r1, r2)). �

3 Bohr-Riemann surfaces

3.1 Unbranched coverings of the generalized plane

In this part of the work we develop the theory of Bohr–Riemann surfaces. Recall that

a mapping π : Y → X between two topological spaces Y and X is called (in general,

branched) covering if it is continuous, open and discrete, i.e. for each x ∈ X the set π−1(x)

is a discrete set in Y (see [17], p. 25). A mapping π : Y → X between topological spaces

Y and X is called unbranched covering if each point x ∈ X has a (so called evenly–covered)

neighbourhood U 3 x such that

π−1(U) =
⋃
i∈A

Ui

is a disjoint union of open sets in Y , and each restriction π|Ui : Ui → U, i ∈ A is a home-

omorphism. If the set A is finite then π is called an unbranched, finite-sheeted (or n-fold,

where n = cardA) covering.

Definition 12 Topological space X is called a Bohr-Riemann surface over the generalized

plane ∆ if there exist a thin set K ⊂ ∆ and a covering π : X → ∆ such that the restriction of

π to the set X∗ = X\π−1(K) is an unbranched, finite-sheeted covering of the set ∆∗ = ∆\K.
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Note that as the set K = {∗} is obviously a thin set then the existence of a covering

π : X → ∆ such that the restriction of π to the set X∗ = X\π−1(∗) is an unbranched,

finite-sheeted covering of ∆0 implies that the space X is a Bohr-Riemann surface over ∆.

The above definition can be extended to open subsets of ∆ as follows.

Definition 13 Let D be an open subset of ∆. Topological space X is called a Bohr-Riemann

surface over D if there exist a thin set K ⊂ D and a covering π : X → D such that the

restriction of π to the set X∗ = X\π−1(K) is an unbranched, finite-sheeted covering of the

set D∗ = D\K.

We now turn to a study of main properties of unbranched coverings of ∆0. Let us first

define the notion of a cylindrical neighbourhood of a continuous path in ∆0.

Definition 14 Let γ : I → ∆0 be a continuous mapping that determines a continuous path

γ(I) in ∆0 and let U be an arbitrary neighbourhood of the unit element e0 ∈ ∆0. Then

an open set W = U · γ(I) will be called cylindrical neighbourhood of a path γ(I) or just a

cylinder. The sets U · γ(0) and U · γ(1) will be called, respectively, the beginning and the

ending of the cylinder W .

The above definition implies that if W is a cylindrical neighbourhood of a path γ(I)

then for any s ∈ U, W is a cylindrical neighbourhood of the path γs(I) as well, where

γs(t) = s · γ(t), t ∈ I.

Now suppose that π : X0 → ∆0 is an unbranched, n–fold covering and γ(I) ⊂ ∆0 is

some non– self–intersecting path with γ(0) 6= γ(1). By path lifting theorem there exist n

non–intersecting paths

γ̂i(I) ⊂ X0, i = 1, ..., n,

which cover the path γ(I), that is, γi(I) = π ◦ γ̂i(I), i = 1, ..., n (see [17], §4). Moreover, let

us show that each path γ̂i(I), i = 1, ..., n, has a neighbourhood Wi ⊃ γ̂i(I) such that

π(Wi) = π(Wj), 1 ≤ i, j ≤ n,

and the restriction of π to Wi is a homeomorphism between Wi and the set V = π(Wi).

Indeed, as X0 is a Hausdorff space then for compact sets γ̂i(I) there exist mutually disjoint

open sets Ŵi ⊂ X0 such that γ̂i(I) ⊂ Ŵi, i = 1, ..., n (see [9], p. 197). Then, obviously, the

path γ(I) lies in each π(Ŵi) and, therefore, γ(I) lies in the intersection ∩ni=1π(Ŵi) := V .

Denote Wi = Ŵi ∩ π−1(V ). Then for i = 1, ..., n, we have that π(Wi) = π(Ŵi ∩ π−1(V )) ⊂
π(π−1(V )) = V . Let us now show the converse inclusion. Assume g ∈ V then from the

construction of V it follows that there exists xi ∈ Ŵi such that π(xi) = g, that is, xi ∈
π−1(g) ⊂ π−1(V ) and g = π(xi) ∈ π(Ŵi ∩ π−1(V )) = π(Wi). Hence, π(Wi) = V, i = 1, .., n.

Since the sets Ŵi (and, therefore, the sets Wi as well) are disjoint, then again from the

construction of V it follows that for each i, 1 ≤ i ≤ n, the mapping π|Wi
: Wi → V is a
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bijection (surjectivity and injectivity of the restriction of an n–fold covering π to each of the

sets Wi, i = 1, .., n, immediately follow from the established equalities π(Wi) = V, i = 1, .., n,

and ∩ni=1Wi = ∅) and since π is open then it is a homeomorphism (see [9], pp. 64-65).

Using the compactness of γ(I) it can be shown that each neighbourhood of the path γ(I)

contains cylindrical neighbourhood of γ(I). Clearly, if U ⊂ V is a cylindrical neighbourhood

of the path γ(I) then W i := Wi ∩ π−1(U) is a neighbourhood of the path γ̂i(I), which will

be called cylindrical neighbourhood as well. Thus, the following lemma holds.

Lemma 14 Let γ(I) ⊂ ∆0 be a non-self-intersecting path with γ(0) 6= γ(1). Then γ(I) has

a cylindrical neighbourhood U such that the set W = π−1(U) is representable as a disjoint

union

W =
n⊔
i=1

Wi

of cylindrical neighbourhoods Wi of the paths γ̂i(I), where each Wi is homeomorphic to the

set U .

The above lemma and the continuity of π imply that if γ′(I) is a path in U then each

lifting of γ′(I) is contained in some Wi, 1 ≤ i ≤ n.

Next theorem presents a method of defining a group structure on the covering spaces

of the group ∆0 and describes the structures of the obtained groups up to a topological

isomorphism.

Theorem 30 Let π : X0 → ∆0 be an n-fold, unbranched covering of the punctured gen-

eralized plane ∆0 by a connected topological space X0. Then there can be defined a group

structure on X0 turning π into a group homomorphsim between X0 and ∆0. The group X0 is

then topologically isomorphic to the Cartesian product G1 × (0,+∞) where G1 is a compact

subgroup of X0.

Proof. Assume (x, t) ∈ X0 × (0,+∞) with t > 1. Consider a path π(x) · ξ, ξ ∈ [1, t], in

∆0. Let π̂(x) · ξ, ξ ∈ [1, t], be a path in X0 starting at the point x and lifting π(x) · ξ, i.e.,

π̂(x) = x and π(x) · ξ = π ◦ π̂(x) · ξ, ξ ∈ [1, t]. Define T1(x) = π̂(x) = x and Tt(x) = π̂(x)t –

the end–point of the path π̂(x) · ξ, ξ ∈ [1, t]. Then

π(x)t = π ◦ Tt(x). (8)

For t ∈ (0, 1) the path π̂(x) · ξ and, therefore, the function Tt(x) is defined similarly by

considering the liftings of a path π(x) · ξ, ξ ∈ [t, 1]. Let us consider the mapping

T : X0 × (0,+∞)→ X0 : (x, t) 7→ Tt(x).

Later on we will indicate the sheet of the pre–image of the neighbourhood of a point π(x)t ∈
∆0 under the n–fold covering π : X0 → ∆0 that we are interested in, and, therefore, from
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(8) using the homeomorphism which is locally inverse to π we will get more explicit form of

the function Tt(x) = π̂(x)t.

Define G1 = π−1(G) ⊂ X0 and consider the restriction p = T |G1×(0,+∞), i.e., the mapping

p : G1 × (0,+∞)→ X0 : p(u, r) = Tr(u).

Note that from the definition of the set G1 3 u we have π(u) ∈ G which means that

|π(u)| = 1, and, therefore, using (8) we get that |π(Tr(u))| = |π(u)r| = r. It is easy to check

that last equality implies that the inverse of the mapping p has the following form

q : X0 → G1 × (0,+∞) : q(x) = (T|π(x)|−1(x), |π(x)|).

Let us show that p is a homeomorphism from G1× (0,+∞) to X0. Fix an arbitrary (x, t) ∈
G1 × (0,+∞) with t > 1. Then, by Lemma 14, the path π(x) · ξ, ξ ∈ [1, t], has a cylindrical

neighbourhood U = U0 ·π(x) · ξ, ξ ∈ [1, t], such that π−1(U) =
n⊔
i=1

Wi, where each cylindrical

neighbourhood Wi is homeomorphic to U (U0 is a neighbourhood of the unit element e0 ∈ ∆0

which determines the cylindrical neighbourhood U). Denote the set Wi that contains the

path π̂(x) · ξ, ξ ∈ [1, t], by W . Then π̂(x) · ξ ⊂ W and π : W → U is a homeomorphism.

Also, denote φ : U → W the inverse of π : W → U : φ ◦ π = idW . By definition of the

topology τ∆0
∼= k × τ(0,+∞) on ∆0 there exist a neighbourhood Ũ ∈ k of the unit element e0

in G and a number δ > 0 such that the neighbourhood ρ(Ũ × (e−δ, eδ)) = Ũ(e−δ, eδ) of e0

in ∆0 lies in U0, where ρ is the natural topological isomorphism between ∆0 and the space

{α · r : α ∈ G, r ∈ (0,∞)}.
Therefore, ρ(π(x) · Ũ × (te−δ, teδ)) = π(x) · Ũ · (te−δ, teδ) ⊂ π(x) · U0 · t ⊂ U , i.e.,

the set π(x) · Ũ · (te−δ, teδ) lies in a domain of the homeomorphism φ : U → W . The

constructions above imply that (x, t) ∈ φ(π(x)Ũ)× (te−δ, teδ), that is, φ(π(x)Ũ)× (te−δ, teδ)

is a neighbourhood of the point (x, t) in X0× (0,+∞). Let us now investigate the mapping

p on that neighbourhood. Suppose that ũ ∈ Ũ and r ∈ (te−δ, teδ). Then, from the definition

of a mapping p, p(φ(π(x)ũ), r) = Tr(φ(π(x)ũ)). From (8) we have that π ◦ Tr(φ(π(x)ũ)) =

π(φ(π(x)ũ))r = π(x)ũr. Since π(x)ũr ∈ π(x) · Ũ · (te−δ, teδ) ⊂ U then we can apply φ = π−1

to the equation derived above, and, thus, we get: Tr(φ(π(x)ũ)) = φ(π(x)ũr). Therefore,

p maps the set φ(π(x) · Ũ) × (te−δ, teδ), which is a neighbourhood of the point (x, t), to

φ(π(x)·Ũ ·(te−δ, teδ)). Since (x, t) was arbitrary and p is bijective then the desired conclusion

is established by the following local factorization of p:

(π(x)Ũ)× (te−δ, teδ)

φ(π(x)Ũ)× (te−δ, teδ) φ(π(x)Ũ(te−δ, teδ))

π(x)Ũ(te−δ, teδ)
ρ

π × idR

p

φ

where all the mappings composing p are continuous and open. The case t ∈ (0, 1] is

considered similarly.
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Thus, p is a homeomorphism. Since G is compact and π is open and continuous then

G1 is also compact. Let us show that G1 is connected. Indeed, as X0 is connected and

p is a homeomoprhsm (and, therefore, so is q), then G1 × (0,+∞) = q(X0) is connected

which means that G1 is connected as well. Thus, for the restriction ϕ = π|G1 : G1 → G the

conditions of the Theorem from [18] are satisfied. By that theorem there can be defined a

group structure on G1 turning ϕ = π|G1 into a group homomorphism from G1 to G. Clearly,

having a group structure on G1 we can define a group structure on G1 × (0,+∞) as well.

Denote by ’�’ the operation of multiplication in the group G1 × (0,+∞). Now define a

multiplication in X0 as follows:

x1x2 := p(q(x1)� q(x2)),

for x1, x2 ∈ X0. Then it is easy to check that X0 becomes a group with unit element being

p(e, 1), where e is the unit element of G1, and x−1 := p(q(x)−1) being an inverse of the

element x ∈ X0. It follows from definition of multiplication that

p(q(x1))p(q(x2)) = x1x2 = p(q(x1)� q(x2)),

for x1, x2 ∈ X0, that is, p is a homomorphism, which means that X0 is topologically iso-

morphic to G1 × (0,+∞). Finally, let us show that π is a homomorphism. Let x ∈ X0 and

x = p(ξ, r), ξ ∈ G1, r ∈ (0,+∞). Then from (8) we get π(x) = π(p(ξ, r)) = π(Tr(ξ)) = π(ξ)r,

hence, for x1, x2 ∈ X0 with x1 = p(ξ1, r1), x2 = p(ξ2, r2), since p and the restriction π|G1 are

homomorphisms, we get that

π(x1x2) = π(p(ξ1, r1)· p(ξ2, r2)) = π(p(ξ1ξ2, r1r2)) = π(ξ1ξ2)r1r2 =

= π(ξ1)r1π(ξ2)r2 = π(x1)π(x2).

Thus π is a group homomorphism. The theorem is proved.

�

3.2 Algebraic coverings

Definition 15 Bohr–Riemann surface X is called algebraic over an open subset D ⊂ ∆

if there exist polynomials Pj(x, s) = xkj + f1,j(s)x
kj−1 + ... + fkj ,j(s) with fm,j ∈ O(D),

1 ≤ m ≤ kj, j = 1, N , such that X is homeomorphic to the subspace XN = {(s, z1, ..., zN) ∈
D × CN : Pj(zj, s) = 0, 1 ≤ j ≤ N}.

We don’t know whether each Bohr–Riemann surface is algebraic but we claim that the

unbranched coverings over the punctured generalized plane ∆0 are algebraic.

Lemma 15 Suppose that a group homomorphism ϕ : G1 → G implements an unbranched n-

fold covering of a (compact solenoidal) group G by a connected group G1. Then the group G1
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is commutative and there exist a1, ..., am ∈ Γ+ and n1, ..., nm ∈ N, such that G1 is isomorphic

to the algebraic covering of a group G by the algebraic equations

ynii − χai = 0, i = 1,m.

Proof. By definition of an unbranched covering there exist the neighbourhoods V 3 e0

and W 3 e of the unit elements of the groups G and G1 respectively, such that on W

ϕ is a homeomorphism between W and V . Let W0 ⊂ G1 be a neighbourhood of e such

that W 2
0 ⊂ W . Then, as G ⊂ ∆ is a commutative group, for any α, β ∈ W0 we have

ϕ(αβ) = ϕ(α)ϕ(β) = ϕ(β)ϕ(α) = ϕ(βα), therefore, since ϕ is homeomorphic and, hence, is

injective on the set W ⊃ W 2
0 3 αβ, βα then αβ = βα. The connectivity of G1 implies the

representation G1 = ∪∞n=1W
n
0 which allows to extend the commutativity to the whole group

G1. In particular, this means that the group K = kerϕ is a finite abelian group and since

ϕ is an n–fold covering we have |K| = n. Denote by ϕ̃ : Ĝ → Ĝ1 the dual mapping of ϕ,

where Ĝ and Ĝ1 are the groups of characters of G and G1 respectively. From definition of

dual mapping we have that ϕ̃(ĝ) = ĝ ◦ ϕ ∈ Ĝ1 for each ĝ ∈ Ĝ. For k ∈ K we have that

ĝ◦ϕ(k) = ĝ(e0) = 1, which implies that the image ϕ̃(Ĝ) under the dual mapping ϕ̃ : Ĝ→ Ĝ1

has the following form

ϕ̃(Ĝ) = {χ ∈ Ĝ1 : χ(K) = 1}. (9)

The surjectivity of ϕ implies that the mapping ϕ̃ is injective and, therefore, ϕ̃ is a

topological isomorphism from Ĝ to a subgroup {χ ∈ Ĝ1 : χ(K) = 1} of a group Ĝ1 (ϕ̃

inherits continuity and openness from ϕ (see [20], p.498)). Consider the homomorphisms

e : R → G : e(t) = et and σ : e(R) → G1 : σ(e(t)) = Tt(e), where Tt(e) = ê(t) is a

path in G1 which starts at the point e and lifts the path e(t) = et, t ∈ R, in G. Denote

Re = {Tt(e) : t ∈ R} = σ(e(R)) ⊂ G1. Since Re = G1 (see [18]), then the image of the

homomorphism κ = σ ◦ e : R→ G1 is dense in G1: κ(R) = G1, and, therefore, dual mapping

κ̃ : Ĝ1 → R̂ ∼= R is injective. Denote further Γ1 := κ̃(Ĝ1). Then Γ1 is an algebraic subgroup

of R and Γ1
∼= Ĝ1 is an algebraic isomorphism and, hence, it is a topological isomorphism of

discrete groups which means that Γ̂1
∼= G1 is a topological isomorphism of compact groups.

The above arguments together with (9) and the fact that G is a group of characters of the

group Γ imply the following equality

Γ = {b ∈ Γ1 : χb(K) = 1}, (10)

where b 7→ χb is the standard parametrization of the groups Ĝ⊂̃Ĝ1 by the groups Γ ⊂ Γ1

which follows from the Pontryagin duality theorem. Let us find the explicit form of Γ1.

Finite abelian group K is isomorphic to the direct product K1...Km where each group Ki is

a cyclic group of order ni, i = 1,m (obviously, n1n2...nm = n). It is known that the group of

characters K̂i is also cyclic group of the same order: K̂i = {ê, γi, ..., γni−1
i }, i = 1,m, where ê
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is the unit element of a group Ĝ1. Since K is compact, each character from K̂ ∼= K̂1...K̂m can

be extended to a character of a group G1 (see [8], p. 56). Therefore, for every i, 1 ≤ i ≤ m,

there exists ci ∈ Γ1+ such that χci |Ki = γi and χci |Kj = ê1, j 6= i, 1 ≤ i, j ≤ m. Then for

0 < k < ni we have that χkci(K) 6= 1, hence, from (10) we get that kci /∈ Γ, 0 < k < ni, and

for ai := nici we have χai(K) = 1 which means that ai ∈ Γ+. Thus, presented arguments

imply that the group Γ1 has the following form:

Γ1 = {k1c1 + ...+ kmcm + d : d ∈ Γ, 0 ≤ ki < ni, i = 1, ...,m}, (11)

and, again by definition of ci, i = 1,m, we have k1c1 + ... + kmcm /∈ Γ. To construct the

required algebraic covering isomorphic to G1 let us consider the set

G0 = {(α, z1, ..., zm) ∈ G× Tm : znii = χai(α), i = 1, ...,m},

where T is the unit circle of the complex plane. Then G0 is a compact abelian group under

the coordinate–wise multiplication

(α, z1, ..., zm)(β, w1, ..., wm) = (αβ, z1w1, ..., zmwm).

A mapping ψ : G0 → G : (α, z1, ..., zm) 7→ α is a group homomorphism which implements

an n–fold algebraic covering of a group G. Indeed, the homomorphity of ψ directly follows

from the definition of multiplication on G0, and since for given α the equation znii = χai has

precisely ni solutions, i = 1, ...,m, and n1n2...nm = n we get that ψ is an n–fold covering.

Thus, it remains to prove that G1
∼= G0. Let us find a dual group of G0. The group G0 is a

subgroup of the Cartesian product G× Tm. By Theorem 54 from [6] (p.283), we have

Ĝ0
∼= Ĝ× Tm/A(Ĝ× Tm, G0), (12)

where A(Ĝ× Tm, G0) = {χ ∈ Ĝ× Tm : χ(G0) = 1} is an annihilator of G0 in a group

Ĝ× Tm ∼= Γ×Zm. Note that since G0 is compact each character from Ĝ0 can be continued

to a character from Ĝ× Tm, hence, we may assume that Ĝ0 ⊂ Γ×Zm. Using the topological

isomorphism of duality Γ× Zm ∼= Ĝ× Tm the action of a group Γ× Zm on Ĝ× Tm can be

described in the following way:

Γ× Zm 3 (c, q1, ..., qm) 7→ [χ(c,q1,...,qm) : (α, z1, ..., zm) 7→ χc(α)zqmm ...zq11 ] ∈ Ĝ× Tm.

Using this description, since znii = χai(α) ⇔ χ−ai(α)znii = 1, i = 1,m, the group G0 is

represented in the following form:

G0 = {(α, z1, ..., zm) ∈ G× Tm : χi(α, z1, ..., zm) = 1, i = 1, ...,m}, (13)

where χi := χ(−ai,0,...,0,ni,0,...,0), i = 1,m. We use this representation to describe the annihilator

A(Ĝ× Tm, G0). We claim that the characters χ1, ..., χm form the system of generators of

the annihilator, that is,

A(Ĝ× Tm, G0) = {χp1

1 · · · χpmm : p1, ..., pm ∈ Z}. (14)
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Indeed, the inclusion ”⊃” follows from (13), and to prove the inclusion ”⊂” suppose that

χ(c,q1,...,qm)(G0) = 1. (15)

Representing qi = pini + ki, 0 ≤ ki < ni, i = 1,m, we get

χ(c,q1,...,qm) = χ(c,p1n1+k1,...,pmnm+km) = χ(c+p1a1−p1a1+...+pmam−pmam,p1n1+k1,...,pmnm+km) =

= χ(c+p1a1+...+pmam,k1,...,km)χ(−p1a1,p1n1,0...,0) · · · χ(−pmam,0...,0,pmnm) =

= χ(c+p1a1+...+pmam,k1,...,km)χp1

1 · · · χpmm . (16)

Consider gj = (e0, 1, ..., 1, e
2πi/nj , 1, ..., 1), j = 1,m (e0 is the unit element of G). Obviously,

χi(gj) = 1, i = 1, ...,m, and, therefore, all gj, j = 1,m, belong to G0. We have

χ(c+p1a1+...+pmam,k1,...,km) = e2πikj/nj ,

which must be equal to 1 by (15), hence kj = 0, j = 1,m. Then, by (15) and (16) (using the

fact that χi(G0) = 1, i = 1,m) we get

χ(c+p1a1+...+pmam,0,...,0)(G0) = 1,

which means that

χ(c+p1a1+...+pmam)(G) = 1, .

Therefore, c+ p1a1 + ...+ pmam = 0, and (16) gives us (14). Thus, by (12), we get

Ĝ0
∼= Ĝ× Tm/A(Ĝ× Tm, G0) =

= {χ(c,q1,...,qm)A(Ĝ× Tm, G0) : c ∈ Γ, qi = pini + ki, 0 ≤ ki < ni, i = 1,m} =

= {χ(c+p1a1+...+pmam,k1,...,km)χp1

1 · · · χpmm A(Ĝ× Tm, G0) : c ∈ Γ, 0 ≤ ki < ni, i = 1,m},

hence, since ai ∈ Γ, i = 1,m (and, therefore, piai ∈ Γ, i = 1,m) and χi ∈ A(Ĝ× Tm, G0), i =

1,m, we get that

Ĝ0
∼= {χ(d,k1,...,km)A(Ĝ× Tm, G0) : d ∈ Γ, 0 ≤ ki < ni, i = 1,m}

From (11) we get that the right hand side of the last expression is isomorphic to the group

Γ1, hence, Ĝ0
∼= Γ1 and, therefore, G0

∼= Γ̂1
∼= G1.

Lemma 15 is proved. �

Definition 16 Let π : Y → X be a covering of a topological space X by a topological space

Y . A homeomorphism f : Y → Y such that π ◦ f = π is called a covering transformation of

π. An unbranched covering π : Y → X is called a Galois covering if for any y1, y2 ∈ Y with

π(y1) = π(y2) there exists a covering transformation f : Y → Y such that f(y1) = y2.
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Using the theorem 30 and the lemma 15 we get the following statement.

Theorem 31 Each n-fold covering π : X0 → ∆0 is an algebraic Galois covering.

Proof. Let us consider the space

Y 0 = {(s, w1, ..., wm) ∈ ∆0 × Cm : wnii = ϕai(s), i = 1,m}

and the corresponding algebraic covering σ : Y 0 → ∆0 : (s, w1, ..., wm) 7→ s of the space

∆0. From lemma 15 we have G0
∼= G1, therefore G0 × (0,+∞) ∼= G1 × (0,+∞) ∼= X0

(Theorem 30). Now the isomorphity of the covering π : X0 → ∆0 to the algebraic covering

σ : Y 0 → ∆0 follows from the following topological group isomorphism:

η : G0 × (0,+∞)→ Y 0 : (α, z1, ..., zm, r) 7→ (αr, rc1z1, ..., r
cmzm, r)

with inverse being

η−1 : Y 0 → G0 × (0,+∞) : (s, w1, ..., wm) 7→ (s|s|−1, w1|s|−c1 , ..., wm|s|−cm , |s|),

where the numbers ci are determined by ni and ai: cini = ai, i = 1,m. Finally, let us show

that

π1 : G1 × (0,+∞)→ G× (0,+∞) : π1(ξ, r) = π(ξ)r

is a Galois covering and, since G1 × (0,+∞) ∼= X0 and G × (0,+∞) ∼= ∆0, this will imply

that the covering π : X0 → ∆0 is also a Galois covering. For θ ∈ Kerπ|G1 define a mapping

fθ : G1 × (0,+∞) → G1 × (0,+∞) : fθ(ξ, r) = (θξ, r). As π(θ) = e0, the unit element of

a group G, then π1 ◦ fθ(ξ, r) = π1(θξ, r) = π(θξ)r = π(θ)π(ξ)r = π(ξ)r = π1(ξ, r), that is,

π1 ◦ fθ = π1. Therefore, fθ is a covering transformation. Finally, if π1(ξ, r) = π1(ω, r) then

π(ξ) = π(ω) and, therefore, θ = ωξ−1 ∈ kerπ|G1 , and for a covering transformation fθ we

have that fθ(ξ, r) = (θξ, r) = (ω, r), hence π1 is a Galois covering, and, therefore, so is π.

Theorem is proved. �

3.3 Analytic paths

Let C0 be a plane in ∆0 passing through the unit element e0 of a group ∆0 defined in the

Section 1.2. As we have already seen in the Section 1.2, the set C0, which is the image of

the additive group of complex numbers C under the group homomorphism ϕ : C → ∆0, is

a dense subgroup of the group ∆0. As e0 ∈ C0 then for any s ∈ ∆0 the set s · C0 = Cs is a

plane in ∆0 passing through s. The set of all planes of this form break up into the cosets of

a subgroup C0 in a group ∆0.

Consider a path in ∆0, that is, a mapping γ : I = [0, 1] → ∆0 which is continuous with

respect to the topology τ∆0 in ∆0.
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Definition 17 A path γ(I) ⊂ ∆0 is called analytic if it is entirely contained in some plane

Cs0 , s0 ∈ ∆0.

Let γ(I) be an analytic path in ∆0 which lies in a plane Cs0 , s0 ∈ ∆0. Then for any

s ∈ ∆0 the path γs(I) with γs(t) = sγ(t), t ∈ I, lies in a plane Css0 and, therefore, γs(I) is

an analytic path as well.

Let X be a Bohr–Riemann surface over ∆ and let K be a thin set of ”critical points”

of a covering π : X → ∆ in ∆. Let us now define the notion of an analytic path on the

set X∗ = π−1(∆∗) ⊂ X, where ∆∗ = ∆\K (we assume that ∗ ∈ K and consider the initial

covering π : X → ∆ over the punctured generalized plane ∆0 = ∆\{∗}).
Recall that by the path lifting property for each analytic path γ(I) in ∆∗ and for each

point w ∈ π−1(γ(0)) there is a unique path γ̂(I) ⊂ X∗ starting at the point w and lifting

γ(I), i.e., γ̂(0) = w and γ(t) = π ◦ γ̂(t), t ∈ I.

Definition 18 A path in X∗ is called analytic if it is a lifting of some analytic path from

∆∗.

Thus, the path γ̂(I) ⊂ X∗ is an analytic path if it is a lifting of some analytic path

γ(I) ⊂ C∗s, s ∈ ∆0, where C∗s = Cs\K.

We now introduce the notion of equivalent points on the sets π−1(s), s ∈ ∆∗.

Definition 19 Two points w1, w2 ∈ π−1(s) will be called equivalent if there exists an analytic

path γ̂(I) ⊂ X∗ such that w1 = γ̂(0) and w2 = γ̂(1).

Equivalence of the points w1 and w2 will be denoted as w1 ∼ w2. It is easy to check that if

w1 ∼ w2 and w2 ∼ w3 then w1 ∼ w3. Thus, the set π−1(s) = {w1, ..., wn} breaks up into the

finite number of equivalence classes. Define a function ν : X∗ → Z+ on X∗ as

ν(w0) = card {w ∈ π−1(π(w0)) : w ∼ w0}

for w0 ∈ X∗. Thus, the function ν acts on the set X∗ and assigns to each point w0 ∈ X∗ the

number of its equivalent points.

3.4 Local constantness of a function ν

The main result of this section is a proof of local constantness of a function ν : X∗ → Z+.

We first prove this result on the sets π−1(C∗s), s ∈ ∆∗. Let s ∈ ∆∗. Denote by µ(s)

the number of equivalence classes (in terms of definition 19) over s, i.e., the number of

equivalence classes on the set π−1(s):

µ(s) = card {C(w) : w ∈ π−1(s)},
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where

C(w) = {u ∈ π−1(π(w)) : u ∼ w}.

Thus, the mapping C acts on X∗ and assigns to each point w ∈ X∗ the set of its equivalent

points, and, therefore, cardC(w) = ν(w). We now pass to the proof of local constantness of

a function ν on π−1(C∗s), s ∈ ∆∗.

Lemma 16 Let s ∈ ∆∗. Then the function µ : ∆∗ → Z+ is constant on C∗s and the function

ν : X∗ → Z+ is constant on the connected components of a pre–image π−1(C∗s).

Proof. Note first that since a continuous mapping πs := π|π−1(C∗s) : π−1(C∗s) → C∗s is a

covering of a path connected space C∗s by a non–connected, in general, Riemann surface

π−1(C∗s), then its restriction πs|L to any path connected component L of a surface π−1(C∗s) is

a covering of a space C∗s as well. In particular, since π is a finite–sheeted covering, the number

of such components is finite and for any σ ∈ C∗s the quantity m(L) = card (π−1(σ) ∩ L) is

constant which does not depend on σ and which is equal to the number of sheets of a covering

πs|L of the space C∗s. Obviously, the sum of all numbers m(L) by all connected components

L gives n – the number of sheets of a covering π.

Fix an arbitrary σ ∈ C∗s and consider a partition π−1(σ) = C(w1) ∪ ... ∪ C(wm) of a

set π−1(σ) into the disjoint union of equivalence classes over σ. By definition of equivalent

points we have that for any i, 1 ≤ i ≤ m, all the points of the class C(wi) are connected by

analytic paths and, therefore, for any i, 1 ≤ i ≤ m, the class C(wi) lies in some connected

component Li of a space π−1(C∗s) containing a point wi ∈ Li, and π−1(σ) ∩ Li = C(wi)

because all the points from π−1(σ), which are contained in the same connected component

with wi, are obviously equivalent to wi. As the restriction of a covering πs to each connected

component of a surface π−1(C∗s) is a covering of a space C∗s then π−1(C∗s) does not have any

other connected components besides Li, i = 1,m, because the existence of one more such

component would mean that there are points in C∗s which are covered more times than σ

which contradicts the fact that π is a covering. Therefore, m coincides with the number of

connected components of π−1(C∗s), and, hence, does not depend on σ. Thus, for any σ ∈ C∗s
we have that µ(σ) = m.

Now suppose that w ∈ π−1(C∗s) and L is a connected component of π−1(C∗s) containing

w ∈ L. As we have shown, C(w) = π−1(π(w)) ∩ L. Therefore, ν(w) = cardC(w) = m(L).

Lemma is proved. �

To prove the local constantness of ν on X∗ we need the following lemma which can be

considered as a version of the homotopy lifting property for a covering π : X∗ → ∆∗.

Lemma 17 Suppose that we are given a point s ∈ ∆∗ and a closed path γ ⊂ ∆∗ which begins

and ends at s: γ(0) = γ(1) = s. Assume that π−1(s) = {x1, x2, ..., xn} and let γ̂ : I → X∗ be
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a lifting of γ in X∗, γ(t) = π◦γ̂(t), t ∈ I, with initial point γ̂(0) = x1 and endpoint γ̂(1) = x2,

where x1, x2 ∈ π−1(s), x1 6= x2. Assume further that there is a fixed decomposition

π−1(U) =
n⋃
i=1

Vi, (17)

of the pre–image π−1(U) of an open evenly–covered neighbourhood U of the point s into a

disjoint union of open sets Vi which are homeomorphic to U under the mappings π|Vi : Vi → U

with inverses ϕi = (π|Vi)−1 : U → Vi, and ϕi(s) = xi, i = 1, n, i.e., the numeration in (17) is

chosen so that x1 ∈ V1 and x2 ∈ V2. Then there exists an open neighbourhood W0 of the unit

element e0 of a group ∆0 such that sW0 ⊂ U and for any σ ∈ W0 the lifting γ̂σ : I → X∗ of

a path γσ(t) = σγ(t), t ∈ I, with initial point ϕ1(σs) ∈ V1 has an endpoint at ϕ2(σs) ∈ V2.

In other words, if there is a lifting of the path γ with initial point and endpoint lying on the

sheets V1 and V2 respectively, then the lifting of ”perturbed” path γσ with initial point lying

on the sheet V1 also terminates on the sheet V2.

Proof. Let us use the standard scheme of a construction of the path γ̂ with γ̂(0) = x1,

which will be adapted to the case we consider.

First of all, let us cover the compact set γ(I) by evenly–covered sets of special form.

Specifically, let us establish the existence of an open neighbourhood W ⊂ s−1U of the unit

element e0 of a group ∆0 such that for any t ∈ I the set γ(t)W is evenly–covered.

Since the open evenly–covered sets form a base for a space ∆∗ then there exists a finite

covering of a compact set γ(I) by such sets:

γ(I) ⊂
l⋃

i=1

Ui.

Let {Wj}j∈J be an open base of locally compact space ∆0 at the point e0 such that for any

j ∈ J the closure W j is compact. For every j ∈ J define a set

Kj = {t ∈ I : γ(t)W j ⊂ Ui for some i, 1 ≤ i ≤ l}.

Since all W j are closed and each set Ui, i = 1, l, is open then Kj is also open, j ∈ J .

Furthermore, we have that γ(I) ⊂
l⋃

i=1

Ui, therefore for any t ∈ I there exists i such that

γ(t) ⊂ Ui and as {Wj}j∈J is a base at the point e0 then there exists j ∈ J such that

γ(t)W j ⊂ Ui, and, hence, t ∈ Kj. Thus, the family {Kj}j∈J forms an open cover of

the compact set I, therefore, we can choose a finite number of indices j1, .., jd, such that

I ⊂
d⋃

k=1

Kjk . Let us now consider the set W =
d⋂

k=1

Wjk ∩ s−1U ⊂ s−1U . Since the sets

{Wjk}dk=1 and s−1U are open neighbourhoods of the unit element e0, then the set W is non–

empty and is an open neighbourhood of e0 as well. Now choose an arbitrary point t ∈ I. As

I ⊂
d⋃

k=1

Kjk then there exists jm such that t ∈ Kjm , which by definition of the set Kjm implies
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the existence of i, 1 ≤ i ≤ m such that γ(t)W jm ⊂ Ui, hence, since all Ui are evenly–covered,

we get that the set γ(t)W ⊂ γ(t)W jm is also evenly–covered. We have thus established the

existence of a set W with desired properties.

Let us now recall main concepts of the construction of path–lifting.

Open sets γ(t)W, t ∈ I, obviously cover the compact set γ(I), therefore, there exist finite

number of points {t′k}mk=1 such that the sets γ(t′k)W,k = 1,m cover γ(I) and the intersections

of ”adjoining” sets γ(t′k)W ∩ γ(t′k+1)W,k = 1,m− 1 are non–empty. Moreover, the points

{t′k}mk=1 can be chosen such that t′1 = 0 and t′m = 1. Then there exists a partition of the

interval I = [0, 1] by the points 0 = t0 < t1 < ... < tm = 1, such that for each k, k ∈ 1,m,

the image γ([tk−1, tk]) is entirely contained in open, evenly–covered set γ(t′k)W . Clearly,

γ(tk) ∈ γ(t′k)W ∩ γ(t′k+1)W,k ∈ 1,m− 1. Denoting γk := γ(t′k), k = 1,m, for the pre–image

of an open, evenly–covered set γkW we get the following representation:

π−1(γkW ) =
n⋃
i=1

V k
i ,

where for each i, i = 1, n, the restriction π|V ki : V k
i → γkW is a homeomorphism with inverse

ϕki := (π|V ki )−1 : γkW → V k
i , i = 1, n, k = 1,m. Let us now pass to stepwise construction

of a path γ̂. We have that γ = π ◦ γ̂, therefore, on the initial interval [t0, t1] = [0, t1] ⊂ I

there are n possible ways to construct the initial part of the path γ̂, namely: γ̂([0, t1]) =

ϕ1
i ◦ γ([0, t1]), i = 1, n. As for the lifting γ̂ we have γ̂(0) = x1, we choose that i for which

ϕ1
i (γ(0)) = x1. Denote the chosen i by i1. The construction of a continuous path γ̂ goes on

by cohesion of continuous on [tk−1, tk] parts γ̂ = ϕkik ◦ γ, k = 1,m at the points tk due to

the choice of the following ϕkik by preceding ϕk−1
ik−1

such that ϕkik(bk−1) = ϕk−1
ik−1

(bk−1), where

bk−1 = γ(tk−1) ∈ γk−1W ∩ γkW . A chain of homeomorphisms

ϕkik : γkW → V k
ik

provides the continuity of a path γ̂ on the sequence of sheets V k
ik
, k = 1,m on which it lies.

Since the path γ̂ with γ̂(0) = x1 is uniquely determined by γ (uniqueness of path–lifting),

then it does not depend on the presented construction which has been chosen to be in line

with the conditions of lemma.

Furthermore, we have that γ1 = γ(t′1) = γ(0) = s = γ(1) = γ(t′m) = γm and, therefore,

γ1W = sW ⊂ U and the first obtained homemorphism ϕ1
i1

: sW → V 1
i1

satisfies the condition

ϕ1
i1

(γ(0)) = x1 ∈ V1. Hence, ϕ1
i1

is a restriction of a mapping ϕ1 : U → V1 to the set sW :

ϕ1
i1

= ϕ1|sW (because both homeomorphisms ϕ1 and ϕ1
i1

are local inverses of π). Then,

using the ordering of numeration given in the condition of the lemma (γ̂(1) = x2 ∈ V2), we

similarly get that ϕmim = ϕ2|sW .

So we have presented the construction of lifted path in our case. The problem is to show

that small perturbation of an initial point x1 ∈ V1 does not divert the lifted path from the

given sheets and, therefore, its endpoint is again in V2. To solve this problem let us prove

the existence of the sets Uk and Ũk with following properties.
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First, for any k, 1 ≤ k ≤ m, the compactness of γ([tk−1, tk]) ⊂ γkW and openness of

γkW imply that there exists an open neighbourhood Uk of the unit element e0 such that

Ukγ([tk−1, tk]) ⊂ γkW . Secondly, for any k, 2 ≤ k ≤ m, there exists a neighbourhood Ũk of

e0 such that ϕkik(β) = ϕk−1
ik−1

(β) for all β ∈ bk−1Ũk. Indeed, we have that bk−1 = γ(tk−1) ∈
γk−1W ∩ γkW and ϕk−1

ik−1
(bk−1) = ϕkik(bk−1). As γk−1W and γkW are open then the set

γk−1W ∩γkW 3 bk−1 is also open, therefore, there exists a neighbourhood Ũk of e0 such that

bk−1Ũk ⊂ γk−1W ∩ γkW , hence, ϕk−1
ik−1

(β) = ϕkik(β), β ∈ bk−1Ũk, as both homeomorphisms

ϕk−1
ik−1

and ϕkik are local inverses of π.

Finally, let us prove that if the above conditions are satisfied then for any σ from an open

neighbourhood W0 =
m⋂
k=2

(Uk ∩ Ũk) ∩ U1 of e0 the lifting γ̂σ of a path γσ with initial point

ϕ1(σs) has an endpoint at ϕ2(σs). To this purpose let us consider a mapping

v(t) = ϕkik(σγ(t)), t ∈ [tk−1, tk], k = 1,m,

and let us show that v is a continuous path that coincides with γ̂σ. Clearly, it is sufficient

to prove the continuity of v at the points tk, k = 1,m− 1. We have

v(t) =

{
ϕkik(σγ(t)), t ∈ [tk−1, tk],

ϕk+1
ik+1

(σγ(t)), t ∈ [tk, tk+1]

Since σ ∈ W0 ⊂ Ũk+1 then bkσ ∈ bkŨk+1, therefore, ϕkik(bkσ) = ϕk+1
ik+1

(bkσ), that is,

ϕkik(γ(tk)σ)) = ϕk+1
ik+1

(γ(tk)σ) and the continuity of v at tk is proved. Thus, v(t), t ∈ I,

is a continuous path. As every ϕkik , k = 1,m, on its domain is an inverse of π then, from defi-

nition of the mapping v, we get π ◦v(t) = σγ(t) = γσ(t), t ∈ I, hence v is a lifting of the path

γσ. Furthermore, v(0) = ϕ1
i1

(σγ(0)) = ϕ1
i1

(σs). As σ ∈ W0 ⊂ Um then from definition of the

set Um we get that σγ([tm−1, tm]) ⊂ γmW = sW , and, in particular, σs = σγ(tm) ∈ sW and

since ϕ1
i1

= ϕ1|sW we get v(0) = ϕ1
i1

(σs) = ϕ1(σs). Thus, v actually coincides with lifted

path γ̂σ from the condition of the Lemma. Let us now show that the endpoint of the path

γ̂σ lies on the sheet V2. We have γ̂σ(1) = v(1) = ϕmim(σγ(1)) = ϕmim(σs), and, since σs ∈ sW
and ϕmim = ϕ2|sW , we get that γ̂σ(1) = ϕmim(σs) = ϕ2(σs) ∈ V2. Lemma is proved. �

Corollary 7 Each element w ∈ X∗ has a neighbourhood V such that ν(z) ≥ ν(w) for any

z ∈ V .

Proof. Suppose w ∈ X∗ and π(w) = s ∈ ∆∗. Let U be an evenly–covered neighbourhood of

a point s such that π−1(U) =
n⋃
i=1

Vi and each restriction π|Vi : Vi → U is a homeomorphism

whose inverse is ϕi : U → Vi. Suppose that w ∈ V1. Choose some u 6= w from C(w). Then

π(u) = s and the homeomorphity of π on each Vi implies that u /∈ V1. Let us say u ∈ V2.

Since u ∈ C(w) then by definition of the set C(w) there exists an analytic path starting at

w and ending at u, that is, there exists an analytic path γ ⊂ ∆∗ with γ(0) = γ(1) = s, such

that for its lifting γ̂ ⊂ X∗ we have γ̂(0) = w, γ̂(1) = u. Let W
(2)
0 be the set W0 from the
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previous lemma for the case we now consider (we add an index 2 because we assume that

u ∈ V2). Denote V
(2)

1 = V1 ∩ π−1(sW
(2)
0 ) = ϕ1(sW

(2)
0 ). Then, by the previous lemma, for

any x ∈ V (2)
1 there exists an analytic path which starts at x and ends at a point from the

set ϕ2(sW
(2)
0 ) ⊂ V2. Therefore, on a sheet V2 the points from V

(2)
1 have as many equivalent

points as w (namely, each of those points has precisely one equivalent point on V2). Then

considering one after another the sets V3, ..., Vn and taking into account the fact that w can

have equivalent points only on the sheets Vi, i = 2, n (with no more than one equivalent point

on each sheet), we similarly get the sets V
(3)

1 , ..., V
(n)

1 . Then the set V =
n⋂
i=2

V
(i)

1 obviously

satisfies the condition of the corollary. �

We are now ready to prove the main result of this section.

Theorem 32 The function ν : X∗ → Z+ is locally constant on X∗.

Proof. Let us first prove that the function µ : ∆∗ → Z+ is constant on ∆∗. We have

µ(σ) = card {C(w), w ∈ π−1(σ)}. By Corollary 7 for w1 ∈ π−1(σ) there exists a neigh-

bourhood V1 such that ν(z) ≥ ν(w1), z ∈ V1, i.e., each point z ∈ V1 has at least as many

equivalent points as w1. Suppose π−1(σ) = (w1, ..., wn) and let V1, ..., Vn be the correspond-

ing neighbourhoods of those points. Define U =
n⋂
i=1

π(Vi). Assume that ξ ∈ U and consider

µ(ξ) = card {C(z), z ∈ π−1(ξ)}. Choose an arbitrary z ∈ π−1(ξ) and assume that z ∈ Vi for

some i, 1 ≤ i ≤ n. Then by definition of the set Vi we have that the number of equivalent

points of a point z ∈ π−1(ξ) is not less than the number of equivalent points of wi ∈ π−1(σ):

ν(z) ≥ ν(wi), and, therefore, the number of equivalence classes of the points from π−1(ξ)

is not greater than the number of equivalence classes of the points from π−1(σ), that is,

µ(ξ) ≤ µ(σ).

Thus, for any σ ∈ ∆∗ there exists a neighbourhood U of a point σ such that

µ(ξ) ≤ µ(σ), ξ ∈ U. (18)

Denote µ = minσ∈∆∗ µ(σ) and D = {σ ∈ ∆∗ : µ(σ) = µ}. Since the function µ takes values

from Z+ then, obviously, D 6= ∅. Let us show that D = ∆∗, i.e., µ(s) = µ on ∆∗.

Fix an arbitrary s ∈ ∆∗ and any σ ∈ D. Then by (18) there exists a neighbourhood

U 3 σ such that µ|U ≤ µ(σ) = µ ≤ µ(s). Since the set C∗s is dense in ∆∗ then U ∩ C∗s 6= ∅
and, from Lemma 16 we get that

µ|C∗s = µ|U∩C∗s ≤ µ(σ) = µ ≤ µ(s) = µ|C∗s ,

i.e., µ(s) = µ(σ) = µ and, therefore, s ∈ D. Thus, D = ∆∗ and the function µ is constant

∆∗.

The constantness of µ on ∆∗ immediately implies the equality ν(z) = ν(w) for any z

from a neighbourhood V of a point w (see Corollary 7), because otherwise there would exist
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z ∈ V with ν(z) > ν(w) and, by the first part of the proof, this leads to a strict inequality

µ(π(z)) < µ(π(w)) which is a contradiction. Thus, ν is locally constant on X∗.

Theorem is proved. �

3.5 Local constantness of a function ν: algebraic version

In the previous section it was shown that the Corollary 7 implies the local constantness of a

function ν on X∗ (see Theorem 32), and the Corollary 7 has been obtained by constructive

lifting of the path from ∆∗ (see Lemma 17). In this section we present an algebraic proof of

the result stated in the Corollary 7 for an algebraic version of the theory.

Let us first prove one technical result.

Lemma 18 Let K be a compact set and let p(t, x) = xn+g1(t)xn−1+...+gn−1(t)x+gn(t), t ∈
K, be a polynomial with continuous coefficients: gi ∈ C(K), i = 1, n. Suppose further that a

function f ∈ C(K) satisfies the condition p(t, f(t)) = 0, t ∈ K, and let C = max1≤i≤n{||gi||}.
Then ||f || := supt∈K |f(t)| < 1 + C.

Proof. If C = 0 then all the functions gi, i = 1, n, are 0 which means that p(x, t) = xn and,

hence, f = 0. Thus, ||f || = 0 < 1 + 0 = 1 + C.

In case C > 0 and ||f || ≤ 1 the conclusion is obvious: ||f || < 1 + C.

Suppose now that C > 0 and ||f || > 1. Then there exists t0 ∈ K such that |f(t0)| =

||f || > 1. Since f(t0)n = −g1(t0)f(t0)n−1 − ...− gn(t0) then

|f(t0)| ≤ C(1 +
1

|f(t0)|
+ ...+

1

|f(t0)|n−1
) < C

|f(t0)|
|f(t0)| − 1

,

hence, ||f || = |f(t0)| < 1 + C.

Lemma is proved. �

Note that as the example of a polynomial q(x) = x2 − C shows for sufficiently small C

(C < 1/4) the obtained estimate can not be improved to ||f || ≤ 2C.

The next lemma apparently belongs to mathematical folklore.

Lemma 19 Let K = [0, 1] and let p(t, x) = xn + g1(t)xn−1 + ... + gn(t) be a polynomial

with continuous coefficients gi ∈ C(K), i = 1, n, and with discriminant not equal to zero

on K: dp(t) 6= 0, t ∈ K. Then there exist exactly n functions hi ∈ C(K), i = 1, n, which

mutually does not coincide at any point of K and represent the set of solutions of the equation

p(t, x) = 0 on K:

p(t, hi(t)) = 0, t ∈ K, i = 1, n.

Remark. Note that as for every point t0 ∈ K the equation p(t0, x) = 0 has exactly n

solutions then the mutually distinct values hi(t0), i = 1, n, represent all the solutions of the

equation p(t0, x) = 0, i.e., the values {hi(t)}ni=1, t ∈ K, represent the whole set of solutions

of the equations p(t, x) = 0, t ∈ K.
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Proof. Define a set

Kp := {(t, x) ∈ K × C : p(t, x) = 0}.

We want to find continuous functions hi ∈ C(K), i = 1, n, which mutually does not coincide

at any point of K such that

Kp = {(t, x) ∈ K × C : p(t, x) = 0} =
n⋃
i=1

{(t, hi(t)) : t ∈ K}.

By Hurwitz–Rouche’s theorem the projection to fist coordinate π : Kp → K, π(t, x) = t, is

an unbranched n–fold covering and continuity of the functions gi ∈ C(K), i = 1, n implies

that the projection to second coordinate η : Kp → C, η(t, x) = x is a continuous mapping.

Consider a path u : I → K, u(t) = t, t ∈ I(= K) and a set π−1(0) = {(0, x1), ..., (0, xn)}
of the pre–images of a point 0 ∈ K. By path–lifting theorem there exist n liftings ûi : I →
Kp, i = 1, n, of a path u such that u = π ◦ ûi and ûi(0) = (0, xi), i = 1, n.

Define hi = η ◦ ûi, i = 1, n, and let us show that the family hi, i = 1, n, satisfies the

desired conditions.

Note first that the functions hi are continuous as they are compositions of continuous

functions η and ûi, i = 1, n. Furthermore, by definition of the mapping η we have that hi(t)

is the second ”coordinate” of a point ûi(t). From π ◦ ûi(t) = u(t) = t we get that the first

”coordinate” of a point ûi(t) is t. Thus,

ûi(t) = (t, hi(t)), t ∈ K, (19)

i.e., (t, hi(t)) ∈ Kp, t ∈ K, i = 1, n.

Let us now show that for any t ∈ K the points hi(t), i = 1, n, are mutually distinct.

Assume to the contrary that there exist a point t0 ∈ K and the indices i 6= j such that

hi(t0) = hj(t0).

Consider the set T = {t ∈ K : hi(t) = hj(t)}. By our assumption T is not empty. From

continuity of functions hi and hj it follows that T is a closed set. Let us show that T is also

open in K.

Let t′ ∈ T . Then by (19) we have that ûi(t
′) = ûj(t

′). Since π is a covering then there

exist an open set U 3 π(ûi(t
′)) = t′ in K and an open set V 3 ûi(t′) = ûj(t

′) in Kp such

that π : V → U is a homeomorphism and, hence, a bijection on V . On the other hand, as

ûi and ûj are continuous then there exists δ > 0 such that for t ∈ K, |t − t′| < δ we have

that ûi(t) and ûj(t) belong to V . Since on the set V π is a bijection, then the equalities

π(ûi(t)) = t = π(ûj(t)) imply that for t ∈ K, |t − t′| < δ we have the following equality of

the liftings:

ûi(t) = ûj(t), (20)

that is, hi(t) = hj(t), and, therefore, K ∩ (t′ − δ, t′ + δ) ⊂ T which means that the set T is

open. As K is connected we get that T = K. This means that the equality 20 holds on the
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whole K which is impossible since ûi(0) = (0, xi) 6= (0, xj) = ûj(0). Thus, we have shown

that the values hi(t), i = 1, n are mutually different on t ∈ K. Lemma is proved. �

Note that the last statement proved in the lemma can be reformulated as follows: there

is no continuous function g 6= hi, i = 1, n on K which at any point of K coincides with one

of the functions hi.

Our main tool in this part of the work is the following lemma.

Lemma 20 Under the conditions of the previous lemma, for any δ > 0 there exists ε =

ε(δ) > 0 such that for every collection of the functions εi ∈ C(K), εi : K → C with ||εi|| <
ε, i = 1, n there are n functions h̃i ∈ Bδ(hi), i = 1, n such that for each t ∈ K the points

h̃i(t), i = 1, n represent n distinct zeros of ”perturbed” polynomial

pε(t, x) := xn +
n∑
i=1

(gi(t) + εi(t))x
n−k. (21)

Here Bδ(h) = {f ∈ C(K) : ||f − h|| < δ}.

Proof. Let us first prove the existence of ε0 > 0 such that for every ε ≤ ε0 each polynomial

of the form (21) with ||εi|| < ε, i = 1, n, satisfies the conditions of Lemma 19, i.e., has a non–

zero discriminant everywhere on K. For this purpose we use the well–known interpretation

of Cn as a space of the coefficients of the polynomials over the field C. Let D = {w ∈ Cn :

d(w) = 0} be a set of zeros of a discriminant mapping d : Cn → C which assigns to each

vector w ∈ Cn of the coefficients of a polynomial the value d(w) of its discriminant.

Consider a mapping

G : K → Cn : t 7→ (g1(t), ..., gn(t)) ∼= xn + g1(t)xn−1 + ...+ gn(t) = p(t, x).

Then the image G(K) = g1(K)× ...× gn(K) is a compact set, and, by the condition of the

lemma, G(K) ∩ D = ∅, as the discriminant of a polynomial p(t, x) does not vanish on K.

Denote by d0 = d(G(K), D) the distance between the sets G(K) and D. Since those sets

are closed and, moreover, G(K) is compact then d0 > 0. Let us show that ε0 may be taken

to be the constant number d0/2
√
n. Indeed, for any collection of functions G̃ = (g̃1, ..., g̃n)

with ||g̃i − gi|| < ε ≤ ε0, i = 1, n, we have d(G̃(t), G(t)) < ε0

√
n = d0/2 for any t ∈ K. The

inequality |d(G(t), D)−d(G̃(t), D)| < d(G(t), G̃(t)), t ∈ K (see, e.g., [9], p. 377), then implies

that for any t ∈ K the following inequalities hold: d(G̃(t), D) ≥ d(G(t), D)−d(G̃(t), G(t)) >

d0 − d0/2 > 0, which ensure that the desired condition G̃(K) ∩D = ∅ is fulfilled.

Thus, under the established conditions for any polynomial of the form (21) by Lemma

19 there exist n functions h̃i, i = 1, n, which (for each fixed t ∈ K) represent the zeros

of that polynomial with εi = g̃i − gi. Let us now show the existence of ε > 0 such that

for ||εi|| < ε, i = 1, n continuous solutions of the equations pε(t, x) = 0 are contained in

Bδ(hi), i = 1, n.
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First, for any choice of G̃ with ||g̃i − gi|| < ε0 we have ||g̃i|| < ||gi|| + ε0, i = 1, n.

Then C̃ := maxi ||g̃i|| < C + ε0, where C = maxi ||gi||. By Lemma 18 we have that

||h̃i|| < 1 + C̃ < 1 + C + ε0 for all i = 1, .., n.

Define further δ0 = min
1≤i<j≤n

inf
t∈K
|hi(t) − hj(t)|. By Lemma 19 we have that δ0 > 0.

Since for δ1 < δ2 obviously Bδ1(h) ⊂ Bδ2(h), then, without loss of generality, we may

assume that our arbitrary chosen δ satisfies the condition δ < δ0/2. Then, by Hurwitz–

Rouche’s theorem, there exists a constant ε1 > 0 such that if |bi − gi(0)| < ε1, i = 1, n

the polynomial P (x) = xn + b1x
n−1 + .. + bn has exactly one zero (of order 1) in each disk

|x− hi(0)| < δ, i = 1, n.

Now fix an arbitrary ε > 0 with following conditions:

a) ε < ε0; then, by definition of ε0, the inequality ||g̃i − gi|| < ε implies the existence

of mutually non–coinciding functions h̃i ∈ C(K), i = 1, n, which represent the zeros of a

polynomial (21),

b) ε < ε1; then, by definition of ε1, if |g̃i(0)−gi(0)| < ε the functions h̃i can be enumerated

so that |h̃i(0)− hi(0)| < δ, i = 1, n, and, finally,

c) ε[(1 + C + ε0)n − 1]/(C + ε0) < δn; then for each i ∈ {1, .., n}, using the equality

pε(t, h̃i(t)) = 0 we get that

|p(t, h̃i(t))| = |p(t, h̃i(t))− pε(t, h̃i(t))| =

= |(h̃i(t)n + gi(t)h̃i(t)
n−1 + ..+ gn(t))− (h̃i(t)

n + g̃i(t)h̃i(t)
n−1 + ..+ g̃n(t))| =

= |ε1(t)h̃i(t)
n−1 + ...+ εn(t)| < δn (22)

on K for ||εi|| < ε, where εi = g̃i − gi.
Let us now show that for such ε the following implication holds:

||εi|| < ε⇒ h̃i ∈ Bδ(hi), i = 1, ..., n.

Choose an arbitrary i0 ∈ {1, ..., n} and consider the number

t0 := sup{τ ∈ [0, 1] : |hi0(t)− h̃i0(t)| < δ for t ∈ [0, τ ]}.

Then t0 > 0 as the modulus |hi0(t) − h̃i0(t)| := r(t) is continuous and is strictly less than

δ when t = 0 (see b)). Obviously, t0 ≤ 1. Assume that t0 < 1. By definition of t0 we

have r(t) < δ for t ∈ [0, t0). Furthermore, we have that r(t0) = δ. Indeed, an assumption

r(t0) < δ contradicts the fact that t0 < 1 is a supremum defined above and the assumption

r(t0) > δ contradicts the continuity of a function r(t). Finally, for any j 6= i0 using the

definition of δ0 we get

|hj(t0)− h̃i0(t0)| = |hj(t0)− hi0(t0) + hi0(t0)− h̃i0(t0)| ≥

≥ |hj(t0)− hi0(t0)| − r(t0) ≥ δ0 − δ > 2δ − δ = δ. (23)
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As the pairs (t0, hj(t0)), j = 1, n, are roots of a polynomial p(t, x) then we can write p(t0, x) =
n∏
j=1

(x− hj(t0)), hence, by (22) and (23) we get

δn > |p(t0, h̃i0(t0))| = r(t0)
n∏

j=1,j 6=i0

|h̃i0(t0)− hj(t0)| > δδn−1 = δn. (24)

The obtained contradiction shows that t0 must be 1.

However, taking t0 = 1 in (23) and in (24) we see that the assumption r(1) = δ also

leads to a contradiction. Thus, |hi0(t) − h̃i0(t)| < δ for t ∈ K, and since the functions hi0
and h̃i0 are continuous then ||h̃i0 − hi0|| < δ, that is, h̃i0 ∈ Bδ(hi0). Since i0 was arbitrary

the Lemma 20 is proved. �

We now pass to the algebraic version of this theory.

Let

p(s, x) = xn + f1(s)xn−1 + ...+ fn(s)

be a polynomial with generalized analytic coefficients fi ∈ O(∆0), i = 1, n and with discrim-

inant dp. Then, obviously, dp is also a generalized analytic function: dp ∈ O(∆0). Let us

denote Np = N(dp) – the set of zeros of discriminant dp. Then either Np is a nowhere dense

(discrete) set in ∆0 or Np = ∆0. We assume that Np is nowhere dense in ∆0 in which case

the zero set Np will play a role of a thin set. Consider a space

∆0
p = {(s, x) ∈ ∆0 × C : p(s, x) = 0},

and a covering

π : ∆0
p → ∆0 : (s, x) 7→ s.

The restriction π|∆∗p : ∆∗p = π−1(∆∗)→ ∆∗ is then an unbranched covering over ∆∗ = ∆0\Np

which will also be denoted by π. Thus, ∆0
p becomes a Bohr–Riemann surface. Denote

C∗s = Cs ∩∆∗ = Cs \Np, C∗p,s = π−1(C∗s) and Cp,s = π−1(Cs).

Recall that a path u : I → ∆0 is called analytic if u(I) ⊂ Cs for some s ∈ ∆0 (we can

take s equal to u(0)).

Definition 20 A path û : I → ∆∗p in ∆∗p is called analytic if its projection u = π ◦ û under

a covering π is analytic.

The following lemma immediately follows from the above definitions.

Lemma 21 The following conditions are equivalent:

1. û : I → ∆∗p is an analytic path

2. there exists s ∈ ∆0 such that û(I) ⊂ C∗p,s.
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As we have already seen, the structure of a locally compact abelian group on ∆0 enables

for each s ∈ ∆0 and each analytic path u : I → ∆0 to define an analytic path us : I → ∆0

setting us(t) = s · u(t), t ∈ I.

Lemma 22 Let u : I → ∆∗ be an (analytic) path. Then there exists a neighbourhood U of

the unit element of a group ∆0 such that for each s ∈ U the (analytic) path us(I) is contained

in ∆∗.

Proof. We have that u(I) ⊂ ∆∗, therefore, u(I) does not contain points from Np. As the set

Np is discrete then there exists a neighbourhood of a path u(I) which does not intersect Np,

that is, there exists a neighbourhood U of the unit element e0 such that u(I) · U ∩Np = ∅.

Then, obviously, for any s ∈ U the path us(I) = s·u(I) does not intersectNp, i.e., us(I) ⊂ ∆∗.

Lemma is proved. �

As before, two points w,w′ ∈ ∆∗p will be called equivalent (w ∼ w′), if π(w) = π(w′)

and there exists an analytic path û : I → ∆∗p such that û(0) = w and û(1) = w′. Again,

if w ∼ w′ and w′ ∼ w′′ then w ∼ w′′. Suppose, as before, that C(w) is the set of all

points (including w) which are equivalent to w. As we have an n–fold covering then, clearly,

cardC(w) ≤ n. Also, transitivity of the equivalence relation implies that for any w ∈ ∆∗p
there exists an analytic path û(I) such that û(0) = w and C(w) ⊂ û(I). Let us now pass

to investigation of local behaviour of a function ν : ∆∗p → Z+, ν(w) = cardC(w) on ∆∗p. As

we have already noted, the Corollary 7 implies the proof of local constantness of a function

ν on a Bohr–Riemann surface (see Theorem 32). In the next theorem we give an algebraic

proof of the statement of Corollary 7 for our case, which will imply the local constantness

of a function ν on ∆∗p.

Theorem 33 Each element w ∈ ∆∗p has a neighbourhood V such that ν(z) ≥ ν(w) for any

z ∈ V .

Proof. Let us fix an arbitrary w0 ∈ ∆∗p with π(w0) = s0 ∈ ∆∗. Suppose ν(w0) = k. Suppose

further that C(w0) = (w0, w1, ..., wk−1) and û : I → ∆∗p is an analytic path with û(0) = w0

and C(w0) ⊂ û(I). Then there exists 0 = t0 < t1 < ... < tk−1 ≤ 1 such that û(ti) = wi and

π◦û(ti) = π(wi) = s0, i = 0, k − 1. Consider a path u(t) = π◦û(t), t ∈ I which is a projection

of an analytic path û ⊂ ∆∗p. We have that u(I) ⊂ ∆∗ and u(ti) = π ◦ û(ti) = s0, i = 0, k − 1.

Clearly, to prove the theorem it is sufficient to show that for any sequence wλ → w0 there

exists λ0 such that if λ > λ0 then ν(wλ) ≥ ν(w0) = k.

From wλ → w0 it follows that sλ := π(wλ) → s0. Denote s0
λ = s−1

0 · sλ. Then s0
λ → e0,

where e0 is the unit element of ∆0. Define the paths uλ : I → ∆0 as uλ(t) = s0
λ · u(t), t ∈ I.

Then, by Lemma 22, there exists λ1 such that for λ > λ1 the paths uλ(I) are contained in

∆∗.
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Let us now consider the polynomials

p(u(t), x) = xn + f1(u(t))xn−1 + ...+ fn(u(t))

and

p(uλ(t), x) = xn + f1(uλ(t))x
n−1 + ...+ fn(uλ(t)).

Since the path u(t), t ∈ I, is contained in the set ∆∗ then, by Lemma 19, the equation

p(u(t), x) = 0, t ∈ I, has exactly n continuous mutually non–coinciding solutions. Obviously,

for any ε > 0 there exists λε such that for λ ≥ λε the following inequality holds

max
1≤i≤n

||fi(u(t))− fi(uλ(t))||C(I) < ε.

Applying Lemma 20 we get that for λ > max{λ1, λε} the equation p(uλ(t), x) = 0, t ∈ I,

also has exactly n distinct continuous solutions, which are (uniformly on [0,1]) close to the

solutions of the equations p(u(t), x) = 0, t ∈ I.

Let û(t) = (ŝ(t), x̂(t)), t ∈ I. From definition of the covering π we have u(t) = π ◦ û(t) =

ŝ(t), t ∈ I, that is, û(t) = (u(t), x̂(t)), t ∈ I, and, in particular, wi = û(ti) = (u(ti), x̂(ti)) =

(s0, x̂(ti)), i = 0, k − 1. Since û(t) ⊂ ∆∗p, t ∈ I, then from definition of a set ∆∗p we get that

x̂n(t) + f1(u(t))x̂n−1(t) + ...+ fn(u(t)) = 0, t ∈ I,

i.e., the function x̂(t) is one of the solutions of the equation p(u(t), x) = 0. Therefore, by

Lemma 20, for λ > λε(δ) among the solutions of an equation p(uλ(t), x) = 0 there exists x̂λ(t)

such that

||x̂λ − x̂||C(I) < δ, (25)

where

δ < min
1≤i<j≤k−1

|x̂(ti)− x̂(tj)|/2, (26)

with wi = (s0, x̂(ti)), i = 0, k − 1. As the path u is analytic then a path uλ is also analytic,

hence, from uλ = π(uλ, x̂λ) we get that a path ûλ : I → ∆∗p with ûλ(t) = (uλ(t), x̂λ(t)), t ∈ I,
is analytic as well. By construction we have that uλ(ti) = s0

λ · u(ti) = s−1
0 · sλ · s0 = sλ, i =

0, k − 1. Thus, the points ûλ(ti) = (sλ, x̂λ(ti)), i = 0, k − 1, lie on a path ûλ(I). Since

π(ûλ(t0)) = sλ = π(wλ) and wλ → w0 = (s0, x̂(t0)), sλ → s0, then choosing δ in (25)

sufficiently small and λ sufficiently large (λ > λ0 > max{λ1, λε(δ)}), we get that wλ = ûλ(t0).

Moreover, using (25) and (26), for i 6= j we get |x̂λ(ti)− x̂λ(tj)| = |(x̂(ti)− x̂(tj))− (x̂(ti)−
x̂λ(ti))−(x̂λ(tj)−x̂(tj))| ≥ |(x̂(ti)−x̂(tj))|−|(x̂(ti)−x̂λ(ti))|−|x̂λ(tj)−x̂(tj)| > 2δ−δ−δ = 0,

that is, x̂λ(ti) 6= x̂λ(tj), and, therefore, ûλ(ti) 6= ûλ(tj), i 6= j. Thus, we have constructed

an analytic path ûλ in ∆∗p such that ûλ(0) = ûλ(t0) = wλ, π(ûλ(ti)) = sλ, i = 0, k − 1, and

ûλ(ti) 6= ûλ(tj), i 6= j. This means that wλ has at least k equivalent points ûλ(ti), i = 0, k − 1,

and, therefore, ν(wλ) ≥ k = ν(w0). Theorem is proved. �

Corollary 8 The function ν : ∆∗p → Z+ is locally constant on ∆∗p.
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