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Introduction

In the beginning of the last century the works of H. Bohr laid the foundations of the theory
of analytic almost periodic functions. However, many natural problems in the theory still
remain open. This particularly applies to meromorphic almost periodic functions for which
there are just a few remarkable results obtained. Lately an intensively developing theory
of differential equations with almost periodic coefficients again raised the issue of studying
both analytic and meromorphic almost periodic functions. Quite useful and convenient tools
for such studies are the generalized analytic functions which were introduced by R. Arens
and I.M. Singer (see [1]). The method suggested by those authors not only allowed to give
a new treatment of the well-known theorems from the theory of analytic almost periodic
functions (such as the theorems of H. Bohr, A. Besicovitch, B. Levin, et al) but also enabled
to take a look at the theory of almost periodic functions and at the theory of analytic
functions in the unit disc from a unified point of view. In short, as we know the theory of

analytic functions in the unit disc considers the functions that are represented by the series
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f(z) = f(r-e?) = Donez, Wz =D cq, Ant" e where r = |z| < 1and @ € [0, 27). Thus,

9 over the positive

an analytic function is expressed as the power series in the variable r - €’
elements of an additive group of integers Z. Based on the fact that in that representation
e belongs to the unit circle T of the complex plane and T is the group of characters of Z
the theory of generalized analytic functions considers the functions which are represented
in the form of the series above, where the group Z is replaced by an arbitrary additive
subgroup I' of the group of real numbers R and the unit circle T is replaced by the group
of characters of I'. Clearly, if " is isomorphic to Z then the obtained theory is identical
to the classical function theory of one complex variable but in the case when I' is a dense
subgroup of R the theory of generalized analytic functions which will be developed in this
work significantly differs from its classical prototype. However, the search of new features
while applying the classical scenarios continues to be one of the most important aims of the
theory of generalized analytic functions. In this work we develop one of the applications of
the theory of generalized analytic functions to the classical theory of Riemann surfaces.
The work consists of three parts. In the first part the notions of a generalized plane and
generalized analytic functions are introduced. Then the structure of a generalized plane is
described in detail and the behaviour of generalized analytic functions are studied. In the
second part generalized meromorphic functions are observed and, among other results, the
theorem about the factorization of generalized meromorphic functions is proved. Note that
the results of the first two chapters are mainly taken from the works [2], [3] and [4]. The
last part is devoted to the investigation of Bohr-Riemann surfaces. Particularly, the group

structures as well as the local geometric structures of the Bohr-Riemann surfaces studied.

1 Generalized analytic functions

1.1 Basic concepts and auxiliary results

In this section we present some definitions and results from the theory of uniform algebras
and from the theory of analytic functions which will be used later in the work. They are
mainly taken from the notable books [5], [6] and [7].

A Banach algebra is an algebra A over the field of complex numbers C which is a Banach
space with [|fg|| < [|f|lllgl| for f,g € A. An example of a Banach algebra is the algebra
C(X), i.e., the algebra of continuous functions on a compact set X with the sup—norm. A
closed algebra A C C'(X) is called uniform algebra if it contains all constant functions and
separates the points of a compact set X. The classical non—trivial example of a uniform
algebra is a disk algebra, i.e., the algebra of all continuous functions on the closed unit disc
which are analytic on the interior of unit disc. This example allows to demonstrate many of
the results from the theory of uniform algebras.

Each point z € X determines a multiplicative functional on A which is given as the
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value at x. The family of all multiplicative functionals on A is denoted by M. Obviously,
X C My. The kernel of a multiplicative functional is a maximal ideal, and, hence, a closed
ideal of an algebra A. Therefore, each multiplicative functional is continuous. Moreover, it
can be shown that M, is contained in the unit ball of the dual space of A and is compact
in a weak™ topology.

Let I be a maximal ideal of A. By Gelfand-Mazur theorem the quotient algebra A/I
is isomorphic to the field of complex numbers C. This result allows to uniquely recover a
multiplicative functional on A via maximal ideal. That is why M, is also called the space
of maximal ideals of A.

A homomorphism A — C(My,), which sends each f € A to a function f € C(M,)
defined as f(m) = m(f),m € My, is called the Gelfand transform. The obtained algebra A,
which consists of all such functions f with f € A, is a uniform algebra which is isometrically
isomorphic to the algebra A.

A subset E of M, is called a boundary of A if each function from A attains its maximum
modulus on F. By Shilov’s theorem the intersection of all closed boundaries of an algebra
A is also a boundary, the so called Shilov boundary, which is denoted by 0A.

A point x € X is called a peak point for A if there is a function f € A such that f(z) =1
and |f(y)| < 1,y # x. Respectively, a closed subset E of X is called a peak set if there is a
function f € A such that f(z) =1for z € F and |f(y)| <1lfory € X \ E.

If X is a compact metrizable space then the intersection of all boundaries of an algebra
A is also a boundary (the Choquet boundary). That set coincides with P(A), the set
of peak points of an algebra A. The isometricity of the Gelfand transform implies that
P(A) C 0A C X.

In case X is not metrizable we consider generalized peak points (p—points), which are
obtained from the intersection of some family of peak sets. The intersection of peak sets is
called a generalized peak set or p—set. If F' C X is a p—set for A then the restriction A|r of
an algebra A to F' is a uniform algebra on F.

An important class of p—sets is formed by the maximal sets of antisymmetry of an algebra
A. A uniform algebra A on a compact set X is called antisymmetric if every real-valued
function in A is constant. A set F' C X is called a set of antisymmetry of A if every function
in A that is real-valued on F' is constant on F. Compact set X can be represented as disjoint
union of maximal sets of antisymmetry {F,} where, by Bishop—Shilov theorem, each F, is
a p—set and if f € C(X) and f|g, € A|g, then f € A.

Let A+ be a space of regular Borel measures on X which are orthogonal to A and let S(A)
be the unit ball in A*. By Bishop theorem maximal sets of antisymmetry are the supports
of extremal measures from S(A). The peak sets are described via orthogonal measures as
follows: a set F' C X is a peak set for an algebra A if and only if the restriction of each
measure i € AL to the set I belongs to A+.

Each continuous functional on C'(X) corresponds to a regular Borel measure which rep-
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resents that functional. Using Hahn-Banach theorem each multiplicative functional from
M 4 can be extended to a state on C'(X). Therefore, there exist probability measures among
representing measures of a multiplicative functional. More precisely, by Bishop—de Leeuw
theorem for each multiplicative functional there exists a representing probability measure
concentrated on P(A).

From now on, by "representing measure” we shall always mean representing probability
measure.

A family M, of representing measures of a multiplicative functional m € M}, is a con-
vex compact set. The examples of algebras for which M,, consists of a single point are the
Dirichlet algebras, the algebras whose real parts are dense in the algebra of bounded con-
tinuous real functions on X. A measure p € M, is called a Jensen measure if log|m(f)| <
[log|f|du, f € A. By Bishop theorem for each m € M, there exists at least one represent-
ing Jensen measure and, moreover, by Arens theorem, there is a Jensen measure u € M,

concentrated on A such that
Jrogltdr < [10glidu, v € Moy £ < A

The last property of the space of maximal ideals we present here concerns the group
A~! of invertible elements of a uniform algebra A. By Arens—Royden theorem A~!/exp A =
H'(Ma,Z), where H'(Ma,Z) is the first integral cohomology group of M. Recall that a
character of a group G is a continuous group homomorphism from G to the unit circle of
the complex plane. In case GG is a connected compact abelian group by Bohr—van Kampen
theorem we have that C'(G)~'/exp C(G) = G, where G is the group of characters of the
group G.

1.2 Topologies on the generalized plane

In this section we define the notion of a generalized plane. Then the topologies arising on
the generalized plane and its subsets are considered and their comparisons are investigated.
Let I be a subgroup of an additive group of real numbers R and let G be the group of
characters of I': G =T. By Pontryagin duality theorem we have that the group of characters
of a group G is isomorphic to I': G~T. Using G we define a Cartesian product G x [0, 00)
and glue to the point the bottom layer G x {0}. The obtained space is called generalized
plane and is denoted by C(I"). This construction is due to Arens and Singer (see [I]).

As T' is an additive subgroup of R then by the well-known dichotomy we have that there
are two possible cases: either I' is isomorphic to the group of integers Z or I' is dense in R
in the Euclidean topology 7. In the first case the constructed space C(I') and the theory of
generalized analytic functions which we would like to develop on C(I") are identical to their
classical prototype, that is, to the function theory of one complex variable on the complex

plane C. That is why in what follows we assume, unless stated otherwise, that the group
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I' is dense in R in the Euclidean topology 7. There are many examples of such subgroups,
e.g., I' = Q, an additive group of rational numbers, I' = I'* = {m + an,m,n € Z}, where
« is a positive irrational number, or I' = Ry, the group of real numbers with the discrete
topology, but we will only use the density of I' in R and hence will not be interested in the

precise structure of I'.
For brevity of notation, we shall also denote the generalized plane C(I") by A.

Let 7 : G x [0,00) — A be a canonical projection. Then the elements of A are the
points 7(a,r) = (o, r), with @ € G,r > 0, and * = 7(G x {0}). The space A can be also
canonically identified with the space C = {ar : @ € G,r € [0,00)} — the analogue of the
complex plane C which consists of the homomorphisms ar : I' = C : a — a(a)r®. Usually
it is more convenient to take A = C, in which case the representation s = ar of an element
s € A is called a polar decomposition and the number 7 is called a modulus of s. As the null
element x essentially differs from the other elements of the space A, it makes sense to define
aspace A” = A\ {x}, the so called punctured generalized plane. Obviously, A° = G x (0, 0o)
and A° can be canonically identified with the space {ar: a € G,r € (0,00)}.

Let us now pass to the topologies which arise on A. Let {T'} be some basis of open sets
of the unit circle T of the complex plane C and let F be a collection of all finite subsets
of I'. Define P(F,T) = {x € G| x(F) C T}. The family {P(F,T),F € F,T € {T}}, is a
basis of some topology in G, which will be denoted by k. Then the topology on A would
be the standard factor topology 7a = {U C A : 7 1(U) € k X T}, Where 7jg ) is a
restriction of the Euclidean topology 7 to [0,00). As a basis of the topology 7a could be
taken the family of sets B = {7(G x [0,7)) },~0 Um(any basis in G x (0,00)), where the first
component in this union is a basis of open neighbourhoods of the element x € A. Similarly,
we define the topology Tao = k X 7(g 400y on A’ Canonical projection 7 is not open (as
the topology k is not trivial), but it is a closed mapping which induces a homeomorphism
Tlax(,00) @ (G X (0,00),k X T(g.400)) = (A Ta0). The space A is then a locally compact
Hausdorff space.

Let us now consider the mapping e : R — G : e(t) = e;, where ¢;(a) = ¢ a € T. The
density of I' in R implies that e is injective. Indeed, if e;, = e;, with t1,ty € R, t; # to,
then e = ¢ for all ¢ € I'. As I is dense in R and e;,,4 = 1,2, are both continuous on
(R,7), we get that et = ¢ for all a € R, and, therefore, t; = t,. This argumentation
can be also used as a justification of an equality e(R) = R of two groups of characters with
different domains (I" and R, respectively). In other words, the equality e(R) = R assigns to
an element ¢, € e(R),t € R, the element from R which (by Pontryagin duality) corresponds
to the number ¢ € R. The proof of density of ¢(R) in G is similar and is based on the fact
that e(R) separates the points of a group I' (see [§], p. 55).

The space A° = G x (0, 0o) which has been canonically identified with the space {ar : a €
G,r € (0,00)} is a locally compact abelian group under the coordinate-wise multiplication

with the unit element ey - 1 = ¢(0).
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There are two topologies arising on e(R): the restriction k|.m) of a finite-open topology
k on G and the topology 7 which arises as a compact-open topology on e(R) = R. Since
each finite set is compact we get that the topology 7 is stronger than k|.r). As a basis
of neighbourhoods at the unit element ey € e¢(R) which defines 7 can be taken the family
{P.}cc(0.x) of the sets P. = {e; : e;([—1,1]) C V.}, where V. = {{ € T: { =€, 0 € (—¢,2)}.
Clearly, P. = e((—¢,¢)) and, therefore, 7 = e(7), the homeomorphic image of the Euclidean
topology 7 on R.

The obtained topologies on e(R) determine two different factorizations of the mapping

e : R — G which are presented in the following diagram:

In that diagram €} is a homeomorphism, €, is a continuous homomorphism and the
insertion € : e; > e;|I', as well as the embedding e, is continuous.

The group e(R) is a path-connected group in both topologies as the image of a path-
connected space under the continuous mappings €] and e},. Moreover, we claim that these
path-connectedness are equivalent. Clearly, a path-connectedness of e(R) with respect to
the topology 7 implies the path-connectedness with respect to a weaker topology k|cr). Let

us now prove the converse statement.

Lemma 1 Fach path o : I = [0,1] — e(R) that is continuous with respect to the topology

Elemy is also continuous with respect to the topology 7 = e(T).

Proof. Using the fact that the family {F.}.c(o ) is a basis of neighbourhoods of ¢j in the
topology 7 we first prove the continuity of a path o at the point tq € I with o(ty) = eg. Let
us fix any € € (0, 7) and consider the corresponding P. = {e; : e,([—1,1]) C V.} = e((—¢,¢))

which is a neighbourhood of ¢g in the topology 7. The set Q. = {e; : e;(1) C V.} = | e(1,)
neL
is then a neighbourhood of e in the topology k|cw), where I, = (2mn — ¢,27n 4 ¢),n € Z.

Obviously, P. C Q..

We have that o is continuous at ¢, with respect to the topology k), therefore there
exists 0 > 0 such that o(ls5) C Q., where Is = (ty — d,tg + ) N 1. We want to show that
o(ls/2) C P..

Indeed, the continuum o(755), which is contained in ¢(Is), is covered by the set Q. =

{e; 1 e/(1) € V.} = U e(I,,) which is a countable union of compact and, therefore, closed
nez
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sets e(I,). By Sierpinski’s theorem (see [9]. p. 526), at most one of these sets is non-
empty. As the set o(I5/,) certainly intersects with e(1y), then e(Ip) is the mentioned unique
non-empty set. Hence, o(I52) C e(Io) N Q. = e(ly) = P, as desired.

The general case is reduced to the considered situation via transitions from o to 6(t) =
o(to) 1o (t) and back again, using the fact that the shifts by o(¢o) ™! and o (ty) are topological
automorphisms of e(R) in both topologies k|.r) and 7.

Lemma is proved. [
The mapping e : R — G generates an embedding
0:Co A" z=t+iy— o, =¢e -V

The transition from e to ¢ complexifies the above diagram keeping the properties of the
mappings in it.

A topology Taol,(cy which is induced on ¢(C) from a topology a0 = k X (g 00y on A is
weaker than the topology 7, = ¢(7.), the homeomorphic image of the Euclidean topology .
on C. The topology ¢(7.) has also two other equivalent descriptions: it emerges as a product
of topologies 7 X T(,o0) With {P. x (6*5, 65)}56(07ﬁ)75>0 being the basis of neighbourhoods of
the unit element (eg, 1) = ¢(0) and as a compact—open topology on ¢(C) with the basis of
neighbourhoods of the unit element formed by the sets P.s = {p, : p.([-1,1]) C V.5} =
0(K.5),e € (0,m),6 > 0, where V.5 = {w = pe? : e7% < p < €, e € V.}, and the sets
K.s={z=t+1iy:|t| <e|y| <} obviously form the basis of neighbourhoods of the zero
element z = 0 of a group C.

Note that since e(R) is dense in G the image ¢(C) is dense in both A? and A.

Definition 1 For a point s € A° the set of the form C, = s@(C) is called a plane in A°
passing through s.

Obviously, C, is dense in A° for any s € A’. We also define Cj := Cy0) = ¢(C). Define
a mapping ¢s : C — C; : z — sp,. Again there are two topologies on each plane C;: the
topology Ts := Tao|c, which is induced from A? and the stronger topology 75, = s7, = {sU :
U € 7,} which is inherited from C by the mapping ¢;.

The theory of Bohr-Riemann surfaces which will be developed in the third chapter con-
siders the so called thin sets K in A and investigates the finite sheeted coverings of the space
A* = A%\ K. So we now pass to the situation which often arises in that theory.

Let s € A” and let K be a closed nowhere dense subset of A° such that the intersection
K NC;y is a discrete set. Define A* = A\ K and Ct = C,n A* = C, \ K. Let us consider

*
S

the preimage 7~ !(C*) under unfolded, finite-sheeted covering 7 : X — A* where X is a

topological space. There are two topologies that arise on 7=*(C¥): the topology 7, x which

is induced from a topology 7x of the space X and is locally homeomorphic to 7} = 7,|c:,

and the topology 7, c base of which is consisted of the path—connected components of the
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sets from 7, x. Thus, using the characterization of 7,, as a topology with a base consisted
of the path-connected components of the sets from 7, we get that the restriction 7|,-1(cs)

induces two coverings of the punctured plane C:: 75 x : 7, x — 7, and myc @ Tsc — 7';0.

Theorem 1 The path-connected components of a subspace w'(C¥) in the topology T, x

coincide with the path—connected components of a Riemann surface 7= (C%) in 75 c.

Proof. Let x € n71(C?) and let C, and D, be the path-connected components of a pre—
image 7! (C?) containing z in the topologies 7, ¢ and 7, x respectively. Since 7, ¢ is stronger
than 7, x it follows that C;, C D,. Let us proof the converse inclusion. Fix an arbitrary
point y € D, and connect it with = by a path v : I = [0,1] — X which lies in D, and
which is continuous with respect to the topology 75 x. Then A = movy : I — C is a
continuous path from 7|; to 7. Temporarily forgetting about the stars we get that A is a
continuous path from 7|; to 7,, and, therefore, s7*\ : I — Cy is a continuous path from 7|; to
To = Taolc, = Elem) X T(0,400)- Using the interpretation of a space AP as a Cartesian product
G x (0,00) we get that the mapping s\ : I — Cg is comprised of the pair of mappings
sTINt) = (B(t),r(t),t € I, with 8: T — ¢(R) and r : I — (0, +00). But then the mapping
s\ is continuous if and only if 8 is a continuous mapping from 7|; to k|.g) and r is a
continuous mapping from 7|; to 7o 4o0) (see e.g. [9]. pp. 129,131). By Lemma [I] we get that
the path 5 : I — e(R) is then continuous with respect to the topology 7 = e(7) as well. This,
together with the arguments above, shows that the mapping s'A\(¢) = (B(t),r(t)),t € I, is
continuous with respect to the topology 7 X 79 1) = Ty, l.e. the path X is a continuous
path from 7|; to 74, and, therefore, to o, as well. The continuity of the path ~ with
respect to the topology 7, ¢ is obtained from the local homeomorphity of 7 as a covering
Toc : 1 (CE) — C} from 7, ¢ to 77,. Thus, y € C,. This completes the proof of the theorem.
O

1.3 Generalized analytic functions

Let us remind that given a dense subgroup I' of an additive group of real numbers R the
generalized plane A = C(I") is obtained from the Cartesian product G x [0,00) by gluing
to the point the layer G x {0} where G = I' is a group of characters of . By Pontryagin
duality theorem we have that G ~T. Let X € G be a character corresponding to an element
a € I'. Obviously, x* - x* = x***. Also for a character % a € I, the conjugate character
X° is defined as Y%(a) = x(a), @ € G. Each function f € L'(do), where o is a normalized

Haar measure of a group G, has the following Fourier series representation
[~ an(f))(‘ﬂ where ¢, (f) = / f.xdo.
a€l o

The set of all a € T such that ¢,(f) # 0 is called the spectrum of f and is denoted by
S(f). Similarly, the spectrum of a regular Borel measure p on G is the set of all @ € T
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such that [, X*du # 0. Define 'y, = {a € I' : @ > 0}. A function f € L'(do) is called
generalized analytic or just analytic function if S(f) C 'y and the measure p is called
analytic if S(u) C I'y. With the sup-norm the space A of all continuous analytic functions
on (G is a uniform Dirichlet algebra. The space of maximal ideals of an algebra A coincides
with the generalized unit disc Q = {s € A, |s| < 1} which is the group of semi-characters
of a semigroup I',. Recall that a semi-character on a semigroup is a non-zero continuous
homomorphism from a semigroup to the unit disc of the complex plane.

Each character x®,a € I'y, can be extended to a continuous function ¢* on A which acts

as follows:
©*(s) = x"()r®, s = ar,

where x*(o) = a(a),a € G (we assume 0* = 0,a € I'}). The family {¢*},er, thus obtained

separates the points of a space A.

Definition 2 Let D be an open set in A. Continuous function f on D is called a generalized
analytic function if for any s € D there is a neighbourhood U C D, s € U, such that the
restriction of f to U can be uniformly approximated by linear combinations of the functions

' aely.

The set of all generalized analytic functions on D will be denoted by O(D). A function
from O(A) will be called entire function. Finite linear combinations of the functions from
{¢?}aer, will be called polynomials and the ratio of two polynomials will be called a rational
function.

Let K be a compact set in A and let P be the family of all polynomials. Then the

polynomially convex hull of K is defined as follows:
K'={s € AIp(s)| < suplpl,p € P}.

The set
Ko ={s €A, |pi(s)/pa2(s)] < S‘;{P \p1/p2|, p1,p2 € P},

where ps does not vanish on K, is called a rationally convex hull of K. Obviously, K C
Ky, C K°.

Proposition 1 Let K be a compact set in A. Then

1. K" is the space of marimal ideals of the uniform algebra P(K) generated by polynomials
on K;

2. Ky is the space of maximal ideals of the uniform algebra R(K) generated by rational

functions of the form py/ps, where ps does not vanish on K.
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Proof. If sy € K then the point-evaluation at sy is a multiplicative functional on P(K),
and, therefore, so € Mp(k), where Mp (k) is the space of maximal ideals of P(K). Conversely,
as the norm of each multiplicative functional m € Mp(xy (which is a point-evaluation) is 1
then Mpf is contained in K°.

Second statement is proved similarly. [J

The question naturally arises as whether a compact set K is always rationally convex.
It is known that if I' = Z then for any compact set K C C we have K = K,. However, if
['=T*={m+an,m,n € Z}, where « is a positive irrational number, then it is possible
to construct a compact set in A which is not rationally convex. Nevertheless, the following

proposition holds.

Proposition 2 Suppose that I' is isomorphic to some subgroup of the group of rational

numbers. Then each compact set in A is rationally convex.

Proof. Let K be a compact set in A and suppose sg € A\ K. Choose ay,...,a, € I'; and
e > 0 such that an intersection of the set U = {s € A, |p%(s) — ¢%(s0)| < ,i =1,...,n}
with K is empty. Since I' is isomorphic to a subgroup of the group of rational numbers then
there exists an element ay € I'y such that a; = m;ag,m; € Z,1 = 1,...,n. Therefore, for
sufficiently small ¢/ > 0, the set V = {s € A,|p"(s) — p*(s¢)| < €'} is contained in U.
Hence, the function 1/(¢%(s) — ¢ (sg)) belongs to R(K) which means that sy ¢ K. Thus,
K=K, O

We now describe the local structure of the algebras of generalized analytic functions. Let
us remind that we assume, unless stated otherwise, that the group I' is dense in R. Also recall
that for each ¢t € R a character e; € G of a group I' acts as e;(a) = €', a € T', and the family
{e:}ier is dense in G. Let W C C be a compact set and let P(W) be the uniform algebra
on W generated by polynomials. For a fixed a € 'y, a # 0, the set G, = {a € G,a(a) =1}
is a subgroup of G.

Theorem 2 FEach point from A° = A\ {*} has a closed neighbourhood F which is homeo-
morphic to the Cartesian product G, x W such that the uniform algebra P(F') is isometrically

isomorphic to the uniform algebra on G, x W generated by the functions of the form f - g,
where f € P(W), g € C(G,).

Proof. Let w = {e : |0] < 7/2} be an arc on the unit circle. Fix a € I';,a # 0 and
consider the sets K = {a € G,a(a) € w} and | = {t € R, |t| < 7/2a}. Define a mapping
h: G, x1l — K by h(a,t) = « - ;. Let us show that h is a homeomorphism. Suppose
B € K and (a) = €?,]0| < 7/2. Then t = —0/a € | and a = ¢; - B € G, which means
that = h(a,t) € h(G, x ). Therefore, we can assume that K = G, x [. Now consider the
neighbourhood F' = K X [ry,79],71 < r < ry of a point ey - 7 € A°. Obviously, F = G, x W
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where W = [ x [r, 9] = {2z € C,Rez € [,Imz € [—logry; —logr|}. Since a(a) = 1 for
all @ € G, the function ¢*(a,z) = ala) - e/(a) - e = €%*, where 2 = t + iy, does not
depend on «, is an analytic function of z and separates the points of the polynomially convex
compact set W. Therefore, by Mergelyan’s theorem each continuous function on W that
is analytic on int W can be approximated by the polynomials on €. Thus, P(WV) can be
embedded in P(F'). Let us show that C'(G,) can be also embedded in P(F). Indeed, since
(o, 2) = a(b)e®, (a,z) € G, x W, and the functions f(z) = €®* and f(a,z) = e are
invertible in P(W) and in P(F), respectively, then the function g,(«, z) = «(b) belongs to
P(F). Since F is the set of maximal ideals of P(F') (see Proposition [I|) and the family
{gv}ver, separates the points of a group G,, by Stone-Weierstrass theorem we get that
C(G,) C P(F). Now suppose that ¢ € P(F). Since g can be locally approximated by the
linear combinations of ¢’ b € T';, then for every fixed a € G, the function g(«, 2) belongs to
P(W). Therefore, by Bishop-Shilov theorem (see Section|1.1]) g(«, z) belongs to the uniform
algebra P(W) - C(G,). O

Thus, the space A° locally has a structure of the form G, x W, i.e., each point s € A°
has a neighbourhood of the form V x W,V c G,,W c C.

Definition 3 An open bounded set D in A is called a set of uniqueness if each function

f € O(D) vanishes on some open subset of D.

We finish this section with the following theorem.

Theorem 3 (see [10]) An open bounded set D in A is a set of uniqueness if and only if
xecD.

1.4 Endomorphisms of the algebra A

The normalized Haar measure o of a group G can be naturally extended to a measure o on
T, = Gx{r},r > 0. Denote A = P(Q2), the uniform algebra on € generated by polynomials,
where Q = {s € A,|s| < 1} is a generalized unit disc. Each function f € A has a formal

series

f ~ Z Ca(f)gpaa (1)

where ¢,(f) = fTT f/¢%do does not depend on the choice of r > 0. The converse is also true:
a function f € C(Q) which has a formal series of the form (1)) belongs to A (see [I1]).
Denote Q(ry,r2) = G X [r1,79] and B = R(£2(r1,72)), the uniform algebra on €2 generated

by rational functions, where 0 < ry < ro < 1. Each function f € B also has a formal series

f ~ Z ca(f)gpa

a€el

on Q(ry,77), where o™ =1/¢p% a € 'y

7
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Lemma 2 Suppose that a function f € B does not vanish on (ry,r3). Then there exist
a €1 and g € B such that f = p*expg.

Proof. From Proposition [1| we have that Q(ry,79) is the space of maximal ideals of the
algebra B. Therefore, by Arens-Royden’s theorem H'(Q(ry,73);Z) = B~ '/exp B (see
Section [L.1). But H(Q(ri,79);Z) = H'(G;Z). Hence, by Bohr-van Kampen’s theorem
HY (Q(ry,m2);Z) =T. O

The next lemma is a variant of the Phragmén—Lindelof principle for generalized analytic

functions.

Lemma 3 Let f be a generalized analytic function on the set Q°\ {x}, where Q° = {s €
Q,|s| < 1}. Suppose that Re f(s) < clog |s| for all s € QY \ {x}. Then f can be extended to

an analytic function from O(QP).

Proof. Note that the statement of the Lemma is obvious if f is an analytic function of one
complex variable. Indeed, let us show that if a function f(z) is analytic in a punctured unit
disc and satisfies the conditions of the Lemma then zero is a removable singularity. We have
that

exp f(z) < |z|° < 1/]z|" for n > |c|.

Therefore, the function g(z) = z"exp f(z) can be analytically extended to the whole disc.
Hence g(z) = 2™ exp k(z), where k(z) is an analytic function in the unit disc. Thus, n =m
and k(z) — f(z) = const.

In general case the proof goes as follows. Since f is analytic on Q°\ {*} then it can be
represented by the series Y . c,(f) - ¢*. Let us show that ¢,(f) = 0if a ¢ I';, which would
mean that f € O(Q°). Assume to the contrary that c,(f) # 0 for some a ¢ T',. As before,
denote G, = {a € G,aa ) = 1} and let v be the Haar measure of the group GG,. Then the
function g(a - 1) fG r)dvy(f) is also analytic on Q°\ {x} and has a series of the
form >, cna(f) - @™, ca( ) 7é 0. Hence the function g could be considered as an analytic
function of p~*. Clearly Reg < clog|p~?|. Therefore, g can be analytically continued to
the whole Q0 i.e., c,(f) =0. O

Theorem 4 Suppose that a function f € A does not vanish on Q\ {x}. Then there exist
a €'y and g € A such that f = p®expg.

Proof. Since the set €2, which is the space of maximal ideals of the algebra A, can be
shrunk to the point * € Q then H'(Q;Z) is trivial. Therefore, if f does not vanish on
then by Arens—Royden theorem f = expg for some g € A. Now suppose that f(x) = 0.
By Lemma [2] there exist a € ', and generalized analytic function g on Q \ {*} such that
f=¢" -expgon Q\ {*}. Boundedness of f implies that there exists a constant ¢ > 0 such
that Reg(s) < clogs for all s € Q\ {x}. Applying Lemmawe get that g € A. O
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Corollary 1 Suppose that for a function f € A there exists a number r < 1 such that f does
not vanish on Q. \ {x}, where Q, = {s € Q,|s| <r} is a generalized disk of radius r. Then
there exist a € 'y and g € A, g(*) # 0, such that f = ¢” - expg.

Corollary 2 Suppose that a function f € A does not vanish on Q°. Then there exists a
function k € O(Q°) such that f = expk on Q°.

Definition 4 A mapping H : Q2 — € is called holomorphic if for each f € A the function
f oH belongs to A.

Let us remind that unless stated otherwise, we suppose that the group I is not isomorphic
to Z.

Theorem 5 Suppose that H is a holomorphic mapping and H(x) = . Then there exists a
number b € Ty, b # 0, such that |H(s)| < |s|’.

Proof. 1If H is a trivial mapping then the statement of the theorem is obvious. Suppose that
H is a non—trivial mapping. Let us show that if sg # *,|so| < 1, then H(sg) # *. Assume
to the contrary that there exists so # *, |so| < 1, such that H(sg) = *. Let F' = G, x W be
a neighbourhood of syg. Then for each a € I'y,a # 0, the function ¢*(«, z) = ¢* o H(a, 2)
is an analytic function of z which vanishes at the point sy = (ap, 29) € F. Since for every
n € Z, there exist ay, ..., a, € 't \ {0} such that ¢* = []'_, g% we get that the order of zero
of a function g at s is infinite which is impossible. Therefore, H(sy) # *. Now applying
the Corollary [1] to the function ¢® o H we get that

[H(s)|" =l o H(s)| < |"(s)| = |s],
where d € 'y, d # 0. It remains to take b = d/a € T, to complete the proof. [

Remark. Each holomorphic mapping from the unit disc of the complex plane to itself
is determined by some function from a disc algebra A(D) with modulus not exceeding 1.
Therefore, if a function f € A(D) satisfies the conditions of the Schwarz lemma then it can
be considered both as a holomorphic mapping and as a function from A(D) that vanishes
at the origin. Theorem [5| is a direct generalization of Schwarz’s lemma with assumption
that f is a holomorphic mapping. And if f is regarded as a function we can again get a
generalization of Schwarz’s lemma (H.Bohr’s approach). Indeed, let f € A, f(x) =0, |f] <1
and b < inf S(f), where S(f) is the spectrum o f. Then |f(s)| < |¢°(s)|. Indeed, we have
that S(f/¢’) € T'y. Therefore, there exists g € A,g < 1 such that f = - g. Hence
F(s)] < [¢"(s)]-

Now we pass to the description of the endomorphisms of an algebra A. Note that there
exists one-to-one correspondence between endomorphisms and holomorphic mappings: each
endomorphism H° that acts on A generates a holomorphic mapping and vice versa.

Recall that if o(I"y) C 'y then the endomorphism ¢ on a group I' is an order—preserving

endomorphism.
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Theorem 6 Fach endomorphism of the algebra A is given by a triple (o,V,, k) where o
1s an order—preserving endomorphism of I', V,, is the operator of a shift by a« € G and
ke O(Q°) with Re k <0 and expk € A. Conversely, every such triple (o, V,, k) determines

an endomorphism of A.

Proof. Let H° be an endomorphism of A and let H be the corresponding holomorphic
mapping. Assume first that H (%) = . Since H(s) # * for s € Q,0 < |s| < 1 (see the proof
of previous theorem) then, from the Corollary |I| we have that

HO (") = ¢ - g,, a €T, (2)

Since HO(p? - °) = HO(p?) - HO(®) then o is an endomorphism of T’y which can be
continued to an order-preserving endomorphism of I and g, € A does not vanish on Y,
with gu1s = ga * go. Hence, for every fixed s € QY the function ¥ (a) = g.(s) determines a
semi-character of a semigroup I';. Since the family of semi-characters of a semigroup I',
coincides with € there exist & € G and r > 0 such that g,(x) = a(a)r® for all a« € I';.. The
function f, = m - ga,a € T'y, does not vanish on Q°, hence, by Corollary [2, there exists
a function k € O(9°) such that f, = expak,a € T'y. Thus, H'p® = 7@ . a(a) - exp ak,
i.e., H" is determined by the triple (o, V4, k). In case H(x) # * an endomorphism o in (2) is
identically zero (i.e. o(a) =0 for all a € T'y). Therefore, H° is determined by (0, V,, k).

Now suppose that we are given a triple (o, V,, k). For any fixed s € ) define a character
7, of a semigroup I'; as follows: 7,(a) = ¢7@(s) - a(a) - exp ak(s). Since Rek(s) < 0 and
the space of semi—characters of I'; coincides with  then there exist s € G and r, € [0, 1]
such that 75(a) = Bs(a) - r? a € T'y. Define a mapping H : Q — Q with H(s) = G515, s € Q.
Obviously, the function ¢ o H(s) = B,(a) - 1% = ¢ @(s) - a(a) - exp ak(s) belongs to A. As
the family {¢},a € T';, generates A we get that H is a holomorphic mapping. O

Corollary 3 FEach isometric endomorphism of A is determined by a triple (o, V,,0), where

o 18 an order—preserving endomorphism of I' and V,, is the operator of a shift by a € G.

Proof. As H° is isometric then H(T}) = Ty, where T} = G x {1}. Hence the function
exp ak(s) € A does not vanish on Q and |expak(s)| =1 on T;. Since H'(Q;Z) is trivial we
get that k(s) € A with Rek(s) =0 on Tj. Therefore, £k = 0. O

Corollary 4 (see [12]) Each automorphism of A is determined by a pair (o,V,), where o

is an order—preserving endomorphism of I' and V,, is the operator of a shift by a € G.

1.5 Differentiation of generalized analytic functions

In this section we introduce the notion of differentiation of generalized analytic functions

and prove that it is well-defined.
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Let D C Q be an open set and let O(D) be the algebra of generalized analytic functions
on D. Define a Frechet topology on O(D) as follows: for a compact set F' C D let ||f||r =
supg | f], f € O(D). In this topology O(D) is a Frechet algebra.

Definition 5 Continuous linear functional Dy on O(D) is called a point differentiation at
s € D ifDs(f - g) = Ds(f) - g(s) + f(s) - Ds(g) for any f,g € O(D).

Let E, be the linear space of all point differentiations at s € D on a Frechet algebra

O(D).
Theorem 7

0,5 = *.

dim B, = { Ls 7%,

Proof. Suppose that D; is a point differentiation at s € D on O(D). If s # * define an
additive function ks on I'y by ks(a) = Dg(p*)/¢%(s). The continuity of Dy implies that
|ks(a)| < c-n®-|s|~* for some ¢ > 0 and n € Z,. Therefore, if we define a natural topology
on I' that is induced from R, then k, can be extended to an additive, continuous function
on the whole I'. But all such functions are linear. Hence, there exists z, € C such that
ks(a) = zs - a,a € T.

Suppose now that s = x. Obviously, D,(¢°) = 0. Furthermore, since for any a € 'y \ {0}
there exist b, ¢ € T, \ {0} such that a = b+c we get that D, (p?) = D, (p°-¢°) = 0,a € T \{0}.
Therefore, D, = 0. [

Definition 6 Continuous linear operator D : O(D) — O(D) is called differentiation if
D(f-g) =D(f)-g+ f-D(g) for any f,g € O(D).

Clearly, if f € O(D) and D is an operator of differentiation then Dy = f - D is also a
differentiation. Therefore, the space of all differentiations on O(D) is an O(D)-module. Let
us find the O(D)-dimension of that module. If D = G, x W, where W C C is an open
set and G, = {a € G,a(a) = 1},a € Ty, then O(G, x W) is the algebra of all functions
continuous on G, X W that are analytic as functions of z € W. Therefore, for each function
f € O(G, x W) we can define a derivative

/ o L f(057£)
Filos) = g [ e ®)

where A is a smooth contour around the point z € W. Since ¢*(«, 2) = a(a)e’®®,a € Ty,
then (¢%)" = iap®. We then define a derivative D(f) of a function f € O(D) as

on D\ {x} and D(f)(x) = 0. From (3)) it follows that D is a linear operator on O(D).
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Theorem 8 The operator D : O(D) — O(D) is continuous in Frechet topology.

Proof. Suppose that a sequence {f,}° C O(D) converges in a Frechet topology to a func-
tion f € O(D) and F C D is a compact set. Without loss of generality, assume that there
exists an open set W C C with a smooth boundary A = OW such that FF C G, x W C
G, x W C D. Now if E C W is a compact set such that FF C G, x E then

/ fTL(Oéaf) — fm(aag)
A (€ —2)?

1
D(f)=D(f) | = sup | fr,— f1] < 5 supsup d¢| < d|| fa=fullGuxe;
F T G, E

O

where d = sup sup ‘@

zEN EEE
Theorem 9 Suppose that D : O(D) — O(D) is a differentiation. Then D= g -D for some
g€ O(D).

Proof. Let s € D,s # . Then D,(f) := D(f)(s) as well as D,(f) := D(f)(s) is a point
differentiation at s on O(D). By Theorem [7| there exists a number z, € C such that
D, = z, - ;. Define a function g(s) = z,. Then D(¢)(s) = g(s) - D(¢®)(s) = a- g(s) - p(s),
a € I'. Hence, g(s) € O(D \ {x}) and the theorem is proved for the case * ¢ D. In case
* € D we have that ), C D for some r > 0. Let us show that * € (), is a removable
singularity for a function 1 = g|g,\r+}. It is sufficient to show that the spectrum S(¢) of a
function 1) is contained in I'y (see Theorem . Indeed, since for any a € I', we have that

Sla-¢-¢*)Cl'yand S(a-v-p*)={belb=a+c,ce S)} then S(v) CcTy. O

Theorem 10 Suppose that a function f € O(Q°) has formal series of the form f ~
> acr, Ca(f)p". Then the formal series of D(f) is of the form 3 o, a-ca(f) - ¢*.

Note that if I' = Z then for every f € O(Q2) the operator equation D(g) = f has a

solution

g(z) = / Cf(©)de, % e .

In case I' # Z this is not true. Indeed, let {a,} be a sequence of elements from I" such that
0 <a,-2"<1/2". Then f = > (1/2")¢" is an entire function but the operator equation
D(g) = f has no solution.

In conclusion of this section we note that for any positive integer n the n-th derivative
of a function f € O(D) can be defined inductively by D"(f) = D(D"1(f)).

1.6 Jensen’s formula

In this section we suggest a method to count the number of zeros of a generalized analytic
function. Let A = P(€Q). The representing measure of a point * € € concentrated on

Ty = G x {1} coincides with the normalized Haar measure o of a group G.
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Theorem 11 (see [13]) Suppose f € A is not identically zero and let mg be a representing
measure of a point s € §,|s| < 1, concentrated on Ty. Then fTr log | f|dms > —o0.

Proof. Since the restriction Al|p, is a Dirichlet algebra then my is the unique representing
measure of s € ) concentrated on T;. Assume first that s # %. Let FF = G, x W be a
closed neighbourhood of a point s = (ayg, zp). Since for a fixed a € G, f(«, z) is analytic
as a function of z then we can choose W such that f(ag, z) does not vanish on {ag} x OW.
Hence | (a0} xOW log fdms > —o0, where my is a representing measure (for the algebra A) of
a point s concentrated on {ap} x OW. Therefore, by Arens Theorem (see Section ,

/log \fldms > /10g|f\dﬁzs > —o0. (@)

The group G naturally acts on Q by 5-s = (a-f)-r, where § € G and s = a - r. Since
G is compact and [ log|f|dms is continuous as a function of s then implies that

d = inf /log|f\dma.s > —00.
acG

Hence, for € > 0

/ log(|f] + &)do = / log(|f(ar- B)] + £)do ()
- / / (log |f(a- B)| + £)do(a)dm.(5)

= // log(|f(B)| + €)dme.s(5)do(a) > d.
U

Definition 7 We say that a function f(r) on R is a convex function of logr if for any
ro € R and any ri,r5 € R such that r§ = riry we have that f(ro) < 5(f(r1) + f(r2)).

Theorem 12 Suppose f € A. Then ®(r) = [,log|f(a - 7)|do(a) is a convex function of
logr.

Proof. Fix ry € (0,1). Let ri,r9 € (0,1),r1 < 73, be such that 7’8 = 717r9. Define a
homeomorphism 7 on Q(ry,72) by 7(a- 1) = a™ - r2/r. Obviously, sy = eg - 1o € Q(r1,72)
is the unique fixed point of that homeomorphism. Since ¢® o 7 = 72 - % then 7 generates
an automorphism on R(€2(ry,72)). If my, is a representing Jensen measure of a point s, for
R(Q(ry,72)) concentrated on T,, UT,, then my, o 7 is a representing Jensen measure of sg
as well. Therefore, the measure m = (my, + my, 0 7)/2 is a T-invariant representing Jensen

measure. Hence, ||mr, || = |[mg, || = 1/2. Thus,

D(ry) = / log | f(a - ro)|der(a / / ol )dm(s)io o).

As for s € T,, [, log|f(a - s)|do(a) = ®(r;),i = 1,2, then, using Fubini’s theorem, we get
that ®(rg) < ®(r1)/2 + P(r2)/2 and, therefore, ®(r) is a convex function of logr. [
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Convexity of ®(r) implies the existence of a positive non-decreasing function n(r, f) such

that e
D(ry) — O(ry) = / Tdr.

Definition 8 The number n(r, f) =r - ®'(r 4+ 0) will be called a measure of the set of zeros
of a function f on §,.

Let us discuss the given definition. Fixa € 'y, a # 0, and denote G, = {a € G, a(a) = 1}
and W = {z € C,0 < Rez < 27/a,b; < Imz < by}. Consider a mapping h : G, x W —
Q(ry,7re) : h(a,2) = a- e, - e Y, where r; = —logbs,ro = —logb; and z = ¢ + iy. As in the
proof of Theoremit can be shown that h is a one-to-one mapping and p*oh(q, z) is analytic
as a function of z € int W. Suppose that f € R(£2(r1,72)) does not vanish on h(G, x OW).
Then, by the argument principle, the number of zeros of a function f(a,z) = f o h(a,z) on
{a} x W coincides with

a P - dt
na(f, @) dt dt

1 /2”/“dargf(a,t—kibl)dt_/z”/“dargf(oz,t—l—ibg)
2r | Jo 0

—Im

by : by :
fla0+iy) g g [7 P e 2n/atiy) , }
b1 f(aa 0 + Zy) b1 f(au 27T/CL + Zy)
Since esr/q € G and h(a - €37/4,0) = h(a, 27 /a) then

fla-earsa, 04 iy) = f(o, 2m/a + iy)

which means that the last two terms in the above equation cancel each other out.

Furthermore, the Cauchy—Riemann conditions give

darg f(a,t +iy)  dlog|f(a,t+iy)|

dt dy

1 27r/“dlog\f(oz,thz'yﬂ
/ana(f,a)dv—%{/%/o -

- / /2“/“d10g|f(a,t+iy)| drdt
Ge dy y=bs 7

where v is the normalized Haar measure of a group G,.

Since h(G, x 1) = G x {e™®} € Q, where [ = {2z € C,0 < Rez < 27/a,b; < Imz = b},
then the pre-image of the Haar measure o of a group G under the mapping A is a measure
a/2mdy x dt on G, x [. Therefore,

a / /2”/“d10g|f(a,t+iy)| drdt — —22()
27 Ja, Jo dy b

Yy=01

Therefore,

drydt

y=b1
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Hence,

Q' (r9)ry — ®'(r1)r1 = a - / na(f, a)dy. (5)

a

This formula implies the following theorem.

Theorem 13 Suppose that for some f € R((ry,72)) ®(r) is a linear function of logr.
Then there ezist a € I' and g € R(Q(ry,7r2)) such that f = ¢ -expyg.

Proof. Since ®(r) = clogr + d then the left side of is zero which means that the
right side of (5] is also zero. Therefore, f does not vanish on R(£2(r1,r2)). Now applying
Arens—Royden’s theorem to the algebra R(€2(ry,r2)) and noting that Q(ry,rs) is the space
of maximal ideals of R(Q(ry,72)) and H'(Q(r1,12));Z) = H'(G;Z) = T we get the desired

expression for f. [

Theorem 14 Let f € P()). Then

1. n(r, f) is a positive non—decreasing function;

2. ifn(r, f) = const,r € (0,1], thena = n(r, f) € 'y and there exists a function g € P(2)
such that f = % - exp g;

3. if f does not vanish on T,.,0 < r <1, then n(r, f) = fTT %da;
4. if g € P(Q) is such that |f| > |g| on T, then n(r, f + g) = n(r, f).

Proof. (1) is obvious. (2) follows from Theorem [13| (3) If the function f does not vanish

on T, then f = ¢®-exp g on some neighbourhood of T, where a = n(r, f). Therefore,

D a. D(qg) - a,
/ (f)dg:/ ¢ Dlg) -expg +ap®-expg
. T p*-expg
as [ D(g)do = 0. (4) Since |f| > |g] on T, then |(f +g)/f —1| < 1 on some neighbourhood
of T,.. Therefore, there exists h € R(Q(r —e,r+¢)) such that (f+g¢)/f = exp h. This means
that ®(ry, f+g) = ®(r1, )+ [, Rehdo. But [, Rehdo = Reco(h), where ¢o(h) is the zero
1 1

Fourier coefficient of a function h which does not depend on 7. Hence, n(r, f +g) = n(r, f).
O

Let f be a generalized analytic function. Jensen’s formula allows to calculate the modulus
of the first Fourier coefficient of f. So it is natural to assume that a = inf S(f) € S(f). Let

N(r, f) = /O mdt.

Theorem 15
log ea( )] = [ 1og|ldo = NG, ) - alogr

T,
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Proof. Since a € S(f) there exists o > 0 such that f does not vanish on €,,\{*}. Therefore
on 2, we have that f = ¢ - expg = ca(f)9" - exp(g — g(*)) with g € P(£,). Hence,

®(ro) = log [ea(f)| + alogro.

Now to complete the proof it remains to note that N(r, f) = ®(r) — ®(rg). O

2 Generalized meromorphic functions

2.1 On the singularities of generalized analytic functions

In this section we state the theorems on analytic continuation of generalized analytic func-

tions.

Theorem 16 Let D be an open set in Q and let s € D, s # x. Then every analytic function

on D\ {s} can be analytically continued to some function from O(D).

Proof. Let FF =V xW C D be a closed neighbourhood of a point s = («, 29) with V' C G,
and W C C. Then the function f € O(D \ {s}) is continuous on 0F =V x W and by the
maximum principle for the functions of one complex variable we have that

sup |fl= sup |f| < sup |f|=M < o0, a € V,a# ay.
{a}xW {a}xoW V xoW

Since G, is a perfect set then for any z # 2y and any € > 0 there exists a € V such
that |f(ao,2) — f(a, 2)| < e. Therefore, |f(ag, 2)| < M,z # zp. Thus, f(ao,-) is a bounded
analytic function of one complex variable on W\ z and, hence, f can be analytically extended
to {ap} x W. Thus, f can be extended to some function from O(D). O

In case s = x = G x {0} the previous theorem does not hold. However we still have the

following result.

Theorem 17 Let D > x be an open set in 2. Then every bounded analytic function on

D\ {x} can be analytically continued to some function from O(D).

Proof. Let 1o > 0 be such that the set ,, = {s € Q,|s| < 1} is contained in D. For any
a € I'and 0 < r < ry the Fourier coefficient ¢,(f) = fTT f - @ %o of a function f satisfies
the inequality |c,(f)|r* < supg, |f| where T, = G x {r}. Boundedness of f implies that if
a < 0 then ¢,(f) = 0. Thus, the spectrum S(f) does not contain any negative element from
. Therefore (see Theorem [20)), f can be continued to a function from O(,). O

Let us now introduce the notion of a thin set, which is an analogue of sets of zeros and
poles of analytic functions of one complex variable. Here we again use the fact that each
point from A\ {*} has a neighbourhood U of the form U =V x W where V C G, and
w cC.
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Definition 9 Let D be an open set in A. A subset F' C D is called a thin set if it is closed
i D and the following conditions hold:

1. for each s € D,s # *, there exist a neighbourhood U C D, U =V x W, and a function
feoWU),f #0, such that f = 0 on FNU and f is not identically zero on each
Wy ={a} xW,aecV;

2. if x € D then there exists a function f € O(,.),Q,. C D, f # 0, such that f =0 on
Q.NFE.

Remark. Clearly, if F' is a thin set in D and D; is an open subset of D then F'N Dy is a
thin set in D;.
Slightly modifying the proof of Theorem [16| one can prove the following theorem.

Theorem 18 Let D C §2 be an open set and suppose F' is a thin subset of D. Then every
bounded function from O(D \ F) can be uniquely extended to some function from O(D).

Theorem 19 Let F' be a thin subset of an open set D C ) and let f be an analytic function
on D\ F. Then the behaviour of the function f near each point sy € F can be one of the
following:

1. f(s\) tends to a finite limit as sy — So;
2. 1f(sx)| tends to oo for any sy — So;

3. in every neighbourhood of sg the function f takes on wvalues arbitrarily close to any
number.

A point satisfying 1), 2) or 3) will be called, respectively, removable singularity, pole or
essential singularity.
Behaviour of a function f near * € () is determined by the following property of a

spectrum.

Theorem 20 Suppose f € O(Q°\ {*}) and ag = inf S(f). Then
1. if ag > 0 then *x is a removable singularity;
2. ifag <0 and ag € S(f) then * is a pole;

3. if ag < 0 and ag & S(f) then x is an essential singularity.

Proof. 1) If S(f) < T'y then on 7,,0 < r < 1, f can be uniformly approximated by
polynomials. But 7, is the Shilov boundary of an algebra P(€2,). Therefore, * is a removable
singularity of f. 2) The spectrum of a function g = ¢ - f is contained in I'y and 0 € S(g).

Hence, g(*) # 0. Therefore, * is a pole of f. 3) Assume that * is not an essential singularity
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of f. Let z ¢ f(Q0\ {*}),0 < < 1. Then the function 1/(f — z) is bounded on Q0 \ {x}
and does not vanish there. By Theorem 4| there exist g € O(Q?) and a € T'y such that
1/(f —2) = ¢*-expg. Hence, f = ¢~ exp(—g) + z and as 0 € S(exp(—g)) C I'; then
—a € S(f) and —a = inf S(f). We have thus arrived at a contradiction with (3), which
means that x is an essential singularity of f. [J

2.2 Auxiliary results

In this section, based on the function theory of one complex variable, we elaborate the
methods for further investigations of generalized analytic functions.

Without loss of generality, assume that 2r € I'. On a locally compact group K x R,
where K = {a € G,a(21) = 1}, consider an algebra B of bounded continuous functions
which for any fixed @ € K can be continuously extended to a bounded analytic function in
the upper half-plane. Let us describe some properties of that algebra.

1. We begin with the measures which are orthogonal to B. Let A be a trace of the disk
algebra on the unit circle and let H! be a Hardy space which is a closure of A in £ norm
with respect to the Lebesgue measure. Also let H} be the family of functions from H! whose
analytic continuations vanish at the origin. By F. and M. Riesz theorem the space of all
measures on the unit circle which are orthogonal to disk algebra coincides with Hj. Here we
present an analogue of that theorem for the algebra B.

Note that the conformal mapping w(z) = 7~ of an upper half-plane to the unit disc

generates a mapping from the Hardy space H' to H' — the space of integrable functions on

dx
1422

to an analytic function in the upper half-plane. The image of H; in H! under the mapping
w will be denoted by H}.

Let H{(K x R) be a space of measures of the form f(a,z) v x

dx
1422

R with respect to the measure Each function from H! can be analytically continued

dx
1422

) for almost all fixed o € K

where v is some

probability measure on K and the function f(a, z) € L' (v x

(with respect to the measure v) belongs to Hg.

Lemma 4 Suppose p € H{(K x R). Then for any g € B foRgdu = 0.

Jowo=, (/Rg(av 1) /(o x)lj—‘”’;) v,

is the Poisson kernel of the point ¢ € C, and for almost all fixed o € K an

Proof. We have

Since ﬁ
w(1+x2)
analytic continuation of f to the upper half-plane vanishes at ¢ then the inner integral is

zero for almost all o € K with respect to the measure v. [

By the Phragmén-Lindelof principle B is a Banach algebra (even uniform) with respect
to the uniform norm on K x R. Each point from K x R is a generalized peak point for B,
therefore, K x R is contained in 0B, the Shilov boundary of an algebra B. Let B+ be a

space of all regular Borel measures on 9B which are orthogonal to the algebra B.
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Lemma 5 Suppose i € B-. Then there exist mutually singular measures pu, g € Bt such
that

1opp= iy + po

2. w1 € HY(K x R) and supp o C 0B\ K x R.

Proof. The algebra C(K) of all continuous functions on K can be embedded into B by
assigning to a function g € C(K) the function g(a, z) = g(«). Therefore the set F,,a € K,
which is obtained as a closure of the set {a} xR = R, in 0B, is a maximal set of antisymmetry
of an algebra B. Hence, by Bishop theorem, the support of each extremal measure from the
unit ball Sy C B is contained in some F,,a € K (see Section |1.1)). Let B be a set of the
measures from Sy whose support lie in F,,a € K. Obviously, B+ is a compact set in a weak*
topology. Since F, N Fz = &, a # 3, then for any measure u € B there is a probability
measure v on K such that

:UJ:/K,U/ozd% /vbaeBi_‘ (6)

Indeed, convex combination of extremal measures from Sy is contained in the convex
combination of the measures from B, o € K. Therefore, using the Krein-Milman theorem
and the fact that F,, is a set of antisymmetry we get that @ holds. By F. and M. Riesz
theorem (see [5], pp. 66-67) the measure p, can be represented as the sum of two measures
(o and &, from B} where &, = f - %, with f € H}, and supp ¢, C F, \ R,. It remains to
take

= / codv and iy — / Cudv.
K K
]

Corollary 5 Let F' be a compact subset of K X R. Then the restriction of the algebra B to
F' coincides with C(F) if and only if for each o € K the set F, "R, has a Lebesgue measure

ZETO0.

2. Here we prove some facts about the zero sets of the algebra B that will be used below in
this chapter.

Let Mp be the set of maximal ideals of the algebra B. Obviously, K x C, C Mg, where
C; ={2€ C,Imz > 0}. For n € Z define C,, = {z € C;,n < Rez <n+1}.

Hereafter the algebra B will be identified with its extension on K x C,.

Lemma 6 Let V and W be open sets in K and Cgy, respectively, and let f be a continuous
function on V- x W which is analytic as a function of z € W. Suppose that there exists an
open convex set Wo @ W such that the set N(f) = {s € V. x W, f(s) = 0} is contained in
K x Wy. Then for each s € N(f) there exist a neighbourhood U =V x W and a function
g € B such that N(g) C K x Wy and N(f)NnU = N(g)NU.

89



90 A. F. BEKNAZARYAN AND S. A. GRIGORYAN

Proof. Let us denote by N(f,) the set of zeros of a function f,(z) = f(«,2) (counting
multiplicities). Then N(f,) is finite and N(f,) C Wy. Also, if two elements a, 3 € V are
”close” to each other then, since f continuous, Rouche’s theorem implies that the sets N(f,)
and N(fs) are also "close” to each other. Therefore, if N(f.) = {#z1(®), ..., Zn(a)(a)} then
n(a)
the function p = p(a, z) = [] (z — zi(«@)) is continuous on V' x W with N(p) = N(f).
1
Fix a point s = (o, z;(«)) € N(p) and let h be a positive continuous function on K with

0 < h < 1 such that h = 1 on a neighbourhood V5 € V of « € K and h =0 on K\ V. Then,
since W is convex, the function

@)y — (1 — h(a))zo — h(a)zi(a

= gy = TG = (bl —ha)z@)

(2 = (1= h(a))Zo = h(a)zi(a))
belongs to the algebra B. Now taking U = Vj x W we get that N(g) € K x Wy and
N(g)nU=N(p)nU. O

Corollary 6 Under the conditions of the previous lemma, for any s € N(f) there exist a
neighbourhood U =V x W and a family of functions {g\} C B such that N(gy) C K x W,
N(f)NnU = N(gx)NU and (), N(gx) = N(f)nU.

As K = {a € G,a(27) = 1} then for every n € Z the element e, € G with e,(a) =
e’ a €T, belongs to K. The subgroup F = {(e,, —n),n € Z} of a group K x R acts on
K x C, in the following way: (e,, —n)-(a-z) = (a-e,,z—n). Given aset F' C K x Cy the
set F'- (en, —n) we will be denoted by F,,. Obviously, F,, C K x C,,.

Lemma 7 Suppose that the zero set N(g) of a function g € B is contained in K x Wy, where
Wy @ Cy. Then there exists a function b € B such that |b||xxgr = 1 and N(b) = Ufz N(g)n.

Proof. Again if we consider the function g,(z) = g(«, z) then the zero set N(g,) is finite.

[ -

Suppose that N(ga) = {z1(a), ..., 2y ()}. Consider two functions p(c, 2)
zi(@)) and pav, z) = [[7“(z — Zi()). For n € Z define

pn<O(,Z) :p(a-en,z—n), ﬁn(OQZ) :]3(0['67“2—%)7

Cn(Oé) = ]_on(a, 0)/pn(oz, O), bn(Oé, Z) = Cn(a>ﬁn(a7 z)/pn(oz, Z)
Then, obviously, b,(«, z) € B, N(b,) = N(g)n,bn(c,0) =1 and |b,(a,z)| = 1,2 € R. Let us
show that b(«, z) = [] bu(a, 2) is the desired function. Indeed, let W,, = {z € C,,,z —n €
Wo}t,n € Z, and define V- = |J W,,. Since card N(g,) = n(a) < oo then, as K is compact

and n(a) is continuous, there exists a natural number m such that

supn(a) < m.
K
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For any set £ C V with card (ENW,) < m, n € N, there exists a Blaschke product on
C4 whose zero set, counting multiplicities, is E (see [7], p. 62). Let {b(2)}w),b(0) = 1,
be the family of all Blaschke products in upper half-plane which have no more than m
zeros, counting multiplicities, all being contained in W,. Fix § > 0 and denote £,(5) =
SUD{py, SUD,e(—s6) |1 — b(2)]. Since W,, is compact then for any n € Z there exists a function
bn € {b}, such that ,(8) = sup,¢(_s4 |1 —bn(2)|. As the Blaschke product [TX_ b, exists we
have that > ™ €,(0) < co and since for every fixed a € K the function b,(«, z) belongs to
the family {b}, then supg, (s [1 = ba(a, 2)| < £,(5). Therefore, b(a, 2) = [[= bala, 2) €
B. O

2.3 Analytic A—measures

Denote A = P(2). Since the uniform algebra on G generated by the characters x*, a € I, is
isometrically isomorphic to the algebra A we will then identify those two algebras.

Let M(G) be a space of regular Borel measures on G. A measure p € M(G) is orthogonal
to A (u € A1) if and only if the spectrum S(u) of a measure p is contained in I'y. Such
measures are called analytic A-measures. They have been studied in the works [14], [I5],
[16]. In this section we explore the measures on 2\ {*} which are orthogonal to A. Consider
a group homomorphism ® : K x R — G, ®(a,t) = a-¢. If B € G and B(27) = €% then
p-e € K where t = (2 — 6y)/2m. Therefore, ® is a surjection and for every n € Z the
set F,, = K X [n,n + 1) is a fundamental region of ®. The mapping ® can be extended
to a mapping ® : K x Cy — Q\ {*} with ®(a,2) = a - e - e Y. Then, obviously, for
every n € 7Z the set K x C,, is a fundamental region of the extended mapping ®, where
C,={z€Ci,n <Rez <n+1}, and a group F = {(e,, —n)}nez C K xR is a kernel of .

Let M be a space of locally finite measures on K x C, which are invariant under shifts
by the elements of F. The space M is uniquely determined by the measures with supports

contained in K x Cy — the fundamental region of ®. Hence, the following lemma holds.

Lemma 8 Let M, be the space of measures on 2\ {x}. Then the mapping ® generates a
linear bijective operator ®* : M, — M with ®*(u.)(-) = e (P(+)), ps € M,.

Let C(K x C,) be a space of bounded continuous functions on K x C, with dual space
M(K x C,) which is the space of measures on K x C,. Define a mapping ¢ : M, —
MK x Cy) by (€)= 1/(i + 2)* - 9*(€), € € M.,z € Cy.

Theorem 21 Suppose p € AL and supp p C Q(r,1) = G x [r,1]. Then ¢(u) € B*.
To prove this theorem we need the following lemmas.

Lemma 9 Assume that a net of measures {£} C M, with supp & C Q(r, 1) converges weak™
to a measure ¢ € M,. Then the net of measures {1(§)} converges weak™ to the measure
(). Furthermore, ||£]]/(1 —logr)? < |[w(€)|] < 2|[€]| where the norms || - || are taken in

the corresponding spaces.
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Proof. Since F,, = K x C,,n € Z, is a fundamental region of the mapping ® then for
any £ € M, we have that |[€]|| = [|®*(§)|r,||- As Q(r,1) = &(K x W), where W = {z €
C,i,Imz < —logr}, then

127 ()r.[1/((n +1)* + (1 = logr)?) < |[¥(§)]r. 1] < [[(E)I] < 2[I¢€]].

But K x C; = |J F,,. Hence, [[¢]|/(1 —logr)* < [[¢(€)]| < 2||€]|. The first part of the

lemma follows from Lemma [ O

Let {Ux}rea be a basis of neighbourhoods of the unit element of a group G and let

{5} 8>0 be a system of positive continuous functions on GG such that the following conditions
S
hold:

1. the spectrum S(¢s,) of a function )5 is finite;
2. 2,057)\(60 <dif o Q_f U)\;

3. ¢ Ysado =1, where o is the normalized Haar measure of a group G.

Using the system {15, } we define a family of Bochner-Fejer operators { K, } as follows:
Koa(£)() = [ flar- 57 1sn(8)do(5).

4. Kj is a continuous operator on C(G) with || K5 || = sup) p<1 [[Ksa(f)l] = 1, infsx [ Ksa(f)—
fIl = 0 and S(K5,) is finite and is contained in S(f).

Since M (G) is a dual space of C(G), the operator Kj, generates an adjoint operator
K;, : M(G) = M(G) with

/ Kan(f)du = / FAK ().
G G

On the family of pairs {(, )\)}i>g one can define an order in the following way:
S

(01, A1) < (02, A2) if 09 < 07 and U,, C U,,. Having this order a family of opera-

tors { K5, } becomes a net.

From the conditions 1)—4) it follows that for any p € M(G) that:

5. the spectrum S(Kj,(¢)) of a measure K, () € M(G) consists of finite number of
elements and is contained in S(u);

6. |[K5 ()| < |[p]| and the net of measures { K5, ()} converges weak™ to the measure
1



ON THE SURFACES GENERATED BY GENERALIZED ANALYTIC FUNCTIONS

From (5) and (6) it follows that the measure Kj,(x) is absolutely continuous with respect
to o and, therefore, each measure from M (G) can be approximated in the weak™ topology
by equibounded net of measures which are absolutely continuous with respect to o.

Let v be the normalized Haar measure of a compact group K. Let us show that
O*(0) = x dx = p. (7)

Since ®*(0) and p are invariant under shifts by the elements of a group F then it is sufficient

to show that their restrictions to K x [0,1) coincide. If x°,b € T, is a character of a group

G then
/ Xoo@dp:/d’y/ dr =1 and
Kx[0,1) K [0,1)

/ X o ®dp = / Xb(oz)dv(a)/ ePdr =0 if b#0.
Kx[0,1) K

[0,1)
Indeed, first equality is obvious, second equality is also obvious if b = 27n,n € Z \ {0}. In
case b # 27mn since K = {a € G,a(27) = 1}, then x? is a non—trivial character of a group K.
Hence, [, x"(a)dy(e) = 0. The measure ®*(0) also satisfies the above equations, therefore,

the uniqueness of Haar measure implies .
Lemma 10 Let y € A+ with supp u C G. Then ¢(u) € HY (K x R).

Proof. Since € A+, suppp C G, then S(u) C I'y. Therefore psy € AL, where psy =
K5 ,(1) (see part (5.) above). As the set S(us») is finite, then there exists a polynomial

p=> ¢’ € A such that sy = p - o. The function
i=1

m

pla,z) =po®(a,z) = ch - a(by) - pibnz

=1

belongs to B. Therefore, for every fixed éiﬁ; pla, ) € H{ (see Section . Hence, from
we have (s ) € Hy(K X R). A net of equibounded measures {1} converges weak* to
the measure u € A+, Therefore, the net of measures {1 (j5.)} is also equibounded (Lemma

9) and converges weak* to ¢(u) € Hi(K x R). O

Let £ be a representing measure of a point (ag,29) € K x Cy concentrated on R,, =

{ap} x R. Then ¢ is of the form of the Poisson kernel for the upper half-plane: & =
yodz
7r((96*9(0)0)2+y§) ’
¢ by (en, —n) € F. Then the measure ¢ = > > &, is locally finite on K x R and belongs to

the space M of measures which are invariant under shifts by the elements of F.

20 = xg + 1yo. Denote by &, a measure on K x R which is obtained by shifting

Lemma 11 Let us € M(G) be a representing measure of a point s = ®(«ayg, 29) € Q. Then
1y = C.
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Proof. Since ®*pu; € M then it suffices to prove that (|r, = ®*pus|r,, where Fy = K x [0,1).

For a € I'; we have
/ P o ®dd u, = / o dps = " 0 D(rg, 20) = Ozo(a)emzo.
Fy G

On the other hand

P odd( = o ®d» X &,
/Fo K xR ; 0

where x g, is a characteristic function of a set Fy. Since xg, - §, = X, -  the last integral
above is equal to ag(a)- €. To complete the proof it remains to note that as the restriction

of A to G is a Dirichlet algebra then each point s € Q° has only one representing measure

concentrated on G (see Section [1.1]). OJ

Proof of Theorem . Denote 7(s) = ps—0ds, where J, is an atomary measure concentrated
at the point s € QY and p, is a representing measure of s concentrated on G. Since for
f € Adf) = f(s) = [ fdus then 7(s) € A+, Let s = ®(ap,20). Since the measure
&= Wf’i—%, 20 = Xy + 1Yo, concentrated on R, , is a representing measure of the point
(a0, 20) € K x C4 then 8 = € — §(ayz) € BE. Therefore, 6, = &, — d(ag-en,20—n) € BH. Hence,
Y(1(s)) =1/(i+2)*>."_ 0, € B*+. Let u be a probability measure on A%(r,1) = G x (r, 1),
0 < r < 1. Let us show that there exists a measure i on G = T} such that u — i € A+. By
Krein-Milman theorem there exists a net of measures {>_ ¢(s)ds} with ¢(s) > 0,> ¢(s) = 1,
which converges weak™ to p. But Ag is a Dirichlet algebra. Therefore, the net of measures
{> c(s)us} converges weak™ to some probability measure i on G. Hence, the net of measures
{3 e(s)7(s)} € At converges weak™ to the measure i — p € A*. Since (> ¢(s)7(s)) € B+
then ¥ (fi — y1) € B* (see Lemma [0). Now suppose p € A* with supp u C Q(r, 1) and iy =
tlao, 2 = p|lg. Then there exist probability measures 71, ..., 74 such that u; = Z?:l CiYi-
Taking i, = Zle ci¥; we get that ¥ (jiy — py) € B+ and since = py — fiy + pio + fi; then
fio + jin € A+ and ¥(ps + i) € B* (see Lemma[10). Therefore, 1(u) € B*.

2.4 Null sets and interpolation sets of the algebra A

In this section we establish a connection between thin sets, zero sets and interpolation sets
of the algebra A.

Lemma 12 Let F C QY be a thin set. Then for any point sy € Q°, sy # *, there exist a
neighbourhood U C Q° and a function g € A, g #£ 0, such that FNU C N(g)NU.

Proof. Let U =V x W with V. Cc K,W C Cy, be a neighbourhood of a point s, € Q°
such that some function f € O(U) vanishes on F N U and satisfies the Definition [9] We
can choose U and f € O(U) such that the conditions of Lemma [f] will be satisfied as
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well. Then, by Lemma [6] there exists a function h € B with N(h) C K x Cy such that
N(f)nU = N(h) nU. By Lemma [7| there exists a function b € B such that |[b||xxr = 1
and N(b) = UX _N(h),. Let £ be a weak™closed space of measures on G generated by
the linear combinations of representing measures fs,s € N (h), and by the measures from
AL. Since (+) CD* () = Y7 Hz - &, (see Lemma and ®'(s) C N(b) then
- D* () 6 H{(K xR) C B+. By Lemmawe have that 1/)( (G)NAL) C HI(K xR).
, (+ - ®7(L) C H{(K x R) (see Lemma @) Hence, £ # M(G) which means that
there exists a function g € C(G),g # 0, which is orthogonal to £. Since At C £ and
ps € L,s € N(h), then g € A and [ gdus = 0. Thus, the function g € A vanishes on N (h)
and, in particular, on FNU. O

(Z-FZ)2
Therefore

Let I be the set of all continuous functions on G that are orthogonal to £. The above
arguments imply that I C A.

Given an ideal J of the uniform algebra A the set (., N(f) is called the hull of I and
is denoted hull J.

Lemma 13 [ is an ideal of the algebra A and hulll coincides with N (h).

Proof. From the definition of I we have that I C J = {f € A, f(s) = 0,s € N(h)}.
But J* D £ = I*+. Hence, I = J. Now suppose sy ¢ N(h). Since the function b € B
vanishes only on the set N (b) = U*_N(h), (see the proof of the previous lemma) and
O~ !(s) N N(b) = & then —Z) ®*(us,) ¢ Bt. Therefore, p,, ¢ L£. Hence, there exists a
function f € I such that f(sg) # 0. O

Theorem 22 Let F C Q° be a compact thin set such that x ¢ F. Then the hull of an ideal
I={feA f(s)=0,s€ F}isF.

Proof. For a fixed s € F there exist an open neighbourhood U C QY of s and a family of
functions {f,} € O(U) such that F NU = (), N(fx) (see Definition [9] and the subsequent
remark). Let {hy} C B be a family of functions such that N(hy) NU = N(fy) NU (see the
proof of Lemma [6). By Corollary [6] the family {h\} can be chosen such that (), N(hy) =
Ny N(fr). If J is an ideal of A generated by the ideals Iy = {f € A, f(s) = 0,s € N(hy)}
then hull J = (), N(hy) = F N U. Therefore, since F is compact, there exists a finite family
I, ..., I, of ideals of the algebra A such that F = |J;_, hullI;. Hence, hull J = F, where
J=0-Iy-..-I,. Bt JC I ={f €A, f(s) =0,s € F}. Therefore, hull/ = F. O

Theorem 23 Let F C Q° be a thin set such that x ¢ F. Then there exists a non—zero
function f € O(Q°) such that F C N(f).

Proof. For an increasing sequence r, — 1 denote Q, = {s € Q,|s| < r,}, Qrp_1,rm) =
G X [rn_1,mn] and F,, = F N Q(r,_1,7,). Each F), is a compact thin set in Q°. Therefore,
the hull of an ideal I,, = {f € A, f(s) = 0,s € F,} is F,,. Hence, the restriction of I,
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to Q,_o is dense in P(£2,_5). Thus, there exists a function f, € I,,n = 2,3, ..., such that
supg, , |1 — ful < 1/2". Last inequality implies that f = [[>7, f, € O(Q°). Obviously,
FcN(f). O

Let us now describe the interpolation sets of the algebra A. Recall that a closed set
F C Q is called interpolation set if A|r = C(F).

Theorem 24 Let F' C G be a compact set. Then the following conditions are equivalent:

1. F is a peak set for A;
2. Alp = C(F);
3. for each o € K the Lebesgue measure of the set F, = {t € [0,1], ®(c,t) € F'} is zero.

Proof. 1) = 2) If F is a peak set for A then u|p = ur € At for any measure p € A+
(see Section [L.1). But suppp = G. Therefore, up = 0. Hence, A|p = C(F). 2) = 3) Let
1 : A — C(F) be the operator of restriction. Clearly, ¢ is continuous. As F' # G, then for
any € > 0 there exists a function f € A with ||f|| = sups |f| = 1 and |f|r| < €. Hence, from
2), using Banach—Steinhaus theorem, we get that the ideal I = {f € A, f(s) =0,s € F} of
the algebra A is non—trivial. Since ¢® o ®(a, 2) = a(a)e’® € B and A is generated by the
family of functions {¢®}acr, then Ao ® C B and, therefore, I o ® C B. Now if for some
a € K the Lebesgue measure of a set F,, is not zero then, by Fatou’s theorem (see [7], p.
127), I o ®|g, = 0. But ®(R,) = G, and, therefore, I = 0, a contradiction. 3) = 1) Suppose
p € At. Then the theorem of F. and M. Riesz (see [7], p. 127) and Lemma [10] imply that
the restriction of the measure ® oy to the set £ = & 1(F)N (K x [0,1)) is a null measure.

And since K x [0, 1) is a fundamental region of ® we get that pup =0, i.e., A|p = C(F). O

Let F C K x C4 be a closed set. We say that F' is an interpolation set for the algebra
B if the restriction of B to F'is closed in the uniform norm on F. The interpolation sets
of the uniform algebras are described by the orthogonal measures. In particular, a closed
set ¥ C K x C, is an interpolation set for B if and only if there exists d < 1 such that
||| r|| < d||p|| for any p € B+. The interpolation sets for an algebra A are defined similarly.

Theorem 25 Suppose F' C Q(r,1) is a compact set. The set I is an interpolation set for
A if and only if ®~Y(F) is an interpolation set for B.

Proof. 1If F is not an interpolation set for A then for any n > 0 there exists u € A+ such
that [|up|| > nllpa\r||. Hence, if we denote E = ®1(F) and E° = (K x C;) \ E, then,

applying Lemmal[9] we get [[¢:(x)|gl| > n/2(1 —log)?|[¢(1)| || and as ¢(u) € B* then E
is not an interpolation set for B.
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Conversely, assume that the set F = ®!(F) is not an interpolation set for B. Then
for any m > 0 there exists a measure u € B+ such that suppu C C, = {a} x C,a € K,
and ||pg, || > m||pg ||, where E, = C, N E and EY = C, N E®. Let p, be a measure on
K x C, obtained by shifting the measure p by an element (e,,, —n) € F and let & = U>_p,,.
Obviously, ¢ € M and by Lemma [§ there exists ( € M, such that £ = ®*({). Since
Jo fd¢ = fK><(C0 fo®(a,2)d( = fo(Co fo®(a,z)du =0 then ¢ € A+, Furthermore,

ICIell = M€l enrexco || = Hlplzall > mllpl e || = mll€] e xconell = mllClas|

which means that F' is not an interpolation set for A. [J

2.5 Generalized meromorphic functions

Let D C 2 be an open set. For each point s € D the notion of an order of a function f €
O(D) at s is introduced in the following way: ord f(s) = inf{n € Z,, f™(s) = 0, f+D(s) #£
0}, where f° = 1 and f = D"(f) is the n-th derivative of f (see Section . From the
definition of derivative it follows that if U = V xW C D,V ¢ K,W C C, is a neighbourhood
of a point s = (v, z0) then ord f(sg) = ord f,,(20), where fo,(2) = f(a, 2).

Definition 10 An integer—valued, non—negative, continuous from above function O(s) de-
fined on an open neighbourhood D is called a divisor if there exists a thin set I C D such
that O(s) =0 on D\ F.

For example, the function ord f with f € O(Q°), f £ 0, is a divisor.

Theorem 26 Suppose I(s) is a divisor on Q° with O(x) = 0. Then there exists f €
O(Q°), f #0, such that ord f(s) > d(s).

Proof. ;From the Definition and the condition of theorem we have that the set F' =
{s € Q% 0(s) > 0} is a thin set in Q° and * ¢ F. For an increasing sequence r, — 1
denote 2, = {s € Q,|s| < rn}, Qrpn_1,7) = G X [rp_1,7] and F, = F N Q(rp_1,70).
As F is a thin set in Q° then F, is a compact thin set in Q° and the hull of an ideal
L, ={f€A f(s)=0,s € F,} is F,. Denote k, = supp, [0(s)| and let {&,}7° be a sequence
of positive numbers such that []7°(1+¢,)* < oo. Since for n € Z, the restriction of A to 2,
is dense in P(£2,) and F}, 12N, = @ then the restriction of 1,19 to €2, is also dense in P(£2,,).
Therefore, for any n € Z, there exists a function f,, € I,42 such that supg |1 — f,| < &p.
Hence, the function f = g-[[° f¥», g € I1, belongs to O(Q°) and ord f(s) > d(s). O

We now give the definition of generalized meromorphic function.

Definition 11 Let D C Q° be an open set. A function f will be called generalized mero-

morphic function (or just meromorphic function) on D if
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1. f is a generalized analytic function on D\ F, where F' is a thin set in D,
2. f cannot be continued analytically to any point of F,

3. for any point s € F there exist a neighbourhood U of s and a function g € O(Q°) such
that N(g) is a thin set in U and f - g can be continued to some function from O(U).

Let f be a meromorphic function on Q°. For s € Q° let O(s) be a germ of generalized an-
alytic functions at s, i.e., O(s) consists of the functions that are analytic on some neighbour-
hood of s, and let O(s, f) be the set of all functions g € O(s) such that f-g can be extended
to a generalized analytic function from O(s). Define a divisor 9;(s) = infyeo(s ) ord g(s)

which represents the poles of a function f. If 8]?(3) = 0 then, obviously, f € O(s).

Theorem 27 Let f be a generalized meromorphic function on Q° such that x € Q° is either a
removable singularity or an isolated pole of f. Then there exists a function g € O(Q°), g # 0,
such that f - g can be extended to some function from O(Q°).

Proof. Assume first that * € QU is a removable singularity for a meromorphic function
f; ie., 07 (¥) = 0. By Theorem [26] there exists a function g € O(€2°) such that J; (s) <
ord g(s),s € Q°. Let us show that g € O(s, f) for all s € Q°. Indeed, let U =V x W C Q°,
with V' C K and W C Cy be a neighbourhood of a point sy € F' = {s € Q% 05 (s) = 0}.
For each fixed @ € V the restriction of a function f to W, = {a} x W is a meromorphic
function which orders of poles do not exceed Of_(s). Therefore, f - g can be analytically
continued to W,. Denote by v the function on U obtained by such continuations. Obviously,
€ O(U \ F) and, by the maximum principle for the functions of one complex variable,
we have that supy .y |¥| = supy ow [¥]. The sets V and W can be chosen such that the
functions f and g would be bounded. Hence, v is a bounded function on U\ F. By Theorem
v € O(U). Therefore, g € O(s, f),s € Q°, and f - g can be extended to some function
from O(Q°).

Suppose now that x € Q° is an isolated pole of f. Then the function 1/f is bounded
on the set Q, \ * where Q, = {s € Q,|s| < r}. By Theorem [17] the function 1/f can be
extended to a function from O(Q?) which vanishes at *. By Theorem [4| there exist a € T’}
and g € O(9,),g(x) # 0, such that 1/f = p?-g. Therefore, * € QY is a removable singularity
for a meromorphic function f - ®.

Since each function f € O(Q%(ry,72)), Q°(r1,79) = G X (r1,79), can be represented in
the form of formal series Y, 1 ca(f)9® then the Frechet algebra O(Q°(ry,r2)) contains two
following subalgebras: the algebra of functions whose spectrum lies in I'; and the algebra of
functions whose spectrum lies in —I', . First subalgebra is implemented by the algebra O(£2,,)
and the second is implemented by O(€2,,) which is the algebra of functions f € O(€,,), with
Q,, = A\Q,,, for which lims) 00 | f(5)] is finite. Obviously, the Frechet algebras O(2,,) and
O(Q,,) are isomorphic. O
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Theorem 28 Let f be a generalized meromorphic function on Q°(r1,r9). Then there exists
a generalized analytic function g € O(Q°(ry,73)),g9 Z 0, such that f - g can be extended to a
function from O(Q°(r1,72)).

Proof. As the function 95 (s) is a divisor on Q°(ry,72) then the functions

0 if s € Q0 ry <ry<ry, 0 if s € Q%ry,ma) \ QY
Y (s) = B ‘ OO ' ° o > and Pa(s) = _ . 0( L72) \ S
95 (s) if s € Q(ry,m2) \ 2 95 (s) if s €y

are divisors on QY and Q,, respectively. Therefore, there exist the functions ¢, € o))
and g € 6(@21) such that ¢; < ord ¢;,7 = 1,2. Hence, the function f-p1-ps can be extended
to a function from O(Q%(ry,73)). O

Theorem 29 Let f,g € O(Q%(ry,73)) be such that ord g(s) < ord f(s),s € Q(ry,7r9). Then

the meromorphic function f/g can be uniquely extended to some function from O(Q°(ry,r2)).

Proof. ;From the condition of the theorem we have that the set F' = {s € Q%(ry,rs),0ord g(s) >
1} is a thin set in Q%(ry,72) and each point s € F has a neighbourhood U =V x W such
that f/g is bounded on U\ F. Therefore, f/g can be extended to some function from O(U).
Hence, f/g can be extended to a function from O(Q°(ry,73)). O

3 Bohr-Riemann surfaces

3.1 Unbranched coverings of the generalized plane

In this part of the work we develop the theory of Bohr—Riemann surfaces. Recall that
a mapping 7 : Y — X between two topological spaces Y and X is called (in general,
branched) covering if it is continuous, open and discrete, i.e. for each z € X the set 7' (x)
is a discrete set in Y (see [17], p. 25). A mapping 7 : Y — X between topological spaces
Y and X is called unbranched covering if each point x € X has a (so called evenly—covered)
neighbourhood U > x such that
()=
icA

is a disjoint union of open sets in Y, and each restriction 7|y, : U; — U,i € A is a home-
omorphism. If the set A is finite then 7 is called an unbranched, finite-sheeted (or n-fold,

where n = card A) covering.

Definition 12 Topological space X s called a Bohr-Riemann surface over the generalized
plane A if there exist a thin set K C A and a covering m : X — A such that the restriction of
7 to the set X* = X\n ' (K) is an unbranched, finite-sheeted covering of the set A* = A\K.
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Note that as the set K = {x} is obviously a thin set then the existence of a covering
7w : X — A such that the restriction of 7 to the set X* = X\7~!(x) is an unbranched,
finite-sheeted covering of A" implies that the space X is a Bohr-Riemann surface over A.

The above definition can be extended to open subsets of A as follows.

Definition 13 Let D be an open subset of A. Topological space X is called a Bohr-Riemann
surface over D if there exist a thin set K C D and a covering m : X — D such that the
restriction of m to the set X* = X\n~Y(K) is an unbranched, finite-sheeted covering of the
set D* = D\K.

We now turn to a study of main properties of unbranched coverings of A°. Let us first

define the notion of a cylindrical neighbourhood of a continuous path in A°.

Definition 14 Let v : I — A be a continuous mapping that determines a continuous path
y(I) in A® and let U be an arbitrary neighbourhood of the unit element eq € A°. Then
an open set W = U - ~(I) will be called cylindrical neighbourhood of a path v(I) or just a
cylinder. The sets U - ~(0) and U - (1) will be called, respectively, the beginning and the
ending of the cylinder W.

The above definition implies that if W is a cylindrical neighbourhood of a path ~(I)
then for any s € U, W is a cylindrical neighbourhood of the path ~4(I) as well, where
Vs(t) = s-(t),t € 1.

Now suppose that 7 : X° — A° is an unbranched, n—fold covering and v(I) C A° is
some non— self-intersecting path with v(0) # ~v(1). By path lifting theorem there exist n
non-intersecting paths

Al c X% i=1,..,n,

which cover the path (I), that is, 7,(I) = mo4;(I),i = 1,...,n (see [1T], §4). Moreover, let
us show that each path 4;(I),i = 1,...,n, has a neighbourhood W; O 4,(I) such that

(W) =n(W;),1 <i,5 <n,

and the restriction of w to W; is a homeomorphism between W; and the set V = 7(W;).
Indeed, as X° is a Hausdorff space then for compact sets 4;(I) there exist mutually disjoint
open sets W; € X9 such that Fi(l) C W,i=1,..n (see [9], p. 197). Then, obviously, the
path ~(I) lies in each m(WW;) and, therefore, (1) lies in the intersection N7, x(W;) == V.
Denote W; = W; N~ (V). Then for i = 1, ...,n, we have that =(W;) = #(W; N7 (V) C
7(7~1(V)) = V. Let us now show the converse inclusion. Assume g € V then from the
construction of V' it follows that there exists x; € Vf/, such that w(z;) = ¢, that is, z; €
7 Yg) C m (V) and g = w(z;) € 7(W; N7~ Y(V)) = n(W;). Hence, 7(W;) = V,i=1,..,n.
Since the sets W; (and, therefore, the sets W, as well) are disjoint, then again from the

construction of V' it follows that for each ¢,1 < i < n, the mapping 7|y, : W; — V is a
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bijection (surjectivity and injectivity of the restriction of an n—fold covering 7 to each of the
sets Wy, i = 1, ..,n, immediately follow from the established equalities 7(W;) = V,i =1, .., n,
and N?_,W; = @) and since 7 is open then it is a homeomorphism (see [9], pp. 64-65).

Using the compactness of v(I) it can be shown that each neighbourhood of the path (1)
contains cylindrical neighbourhood of (7). Clearly, if U C V' is a cylindrical neighbourhood
of the path (I) then W* := W; N w1 (U) is a neighbourhood of the path 4;(I), which will
be called cylindrical neighbourhood as well. Thus, the following lemma holds.

Lemma 14 Let y(I) C A° be a non-self-intersecting path with v(0) # (1). Then v(I) has
a cylindrical neighbourhood U such that the set W = 7~ Y(U) is representable as a disjoint

unLon

of cylindrical neighbourhoods W; of the paths 4;(I), where each W; is homeomorphic to the
set U.

The above lemma and the continuity of 7 imply that if 4/(I) is a path in U then each
lifting of /(1) is contained in some W;, 1 < i < n.

Next theorem presents a method of defining a group structure on the covering spaces
of the group A? and describes the structures of the obtained groups up to a topological

isomorphism.

Theorem 30 Let 7 : X° — A® be an n-fold, unbranched covering of the punctured gen-
eralized plane A° by a connected topological space X°. Then there can be defined a group
structure on X° turning m into a group homomorphsim between X° and A°. The group X° is
then topologically isomorphic to the Cartesian product Gy x (0, 4+00) where G is a compact

subgroup of X°.

Proof. Assume (z,t) € X° x (0,+00) with ¢ > 1. Consider a path 7(z) - ¢, € € [1,], in
A Let n(z) - &, € € [1,t], be a path in X starting at the point x and lifting 7(z) - &, i.e.,

m(z)=xand 7(z)- £ =mom(x)-& & € [1,t. Define Ty (x) = w(x) = x and Ti(x) = w(x)t -
the end—point of the path W@)\'f , £ €[1,t]. Then
m(x)t = 7o Ty(x). (8)

For ¢t € (0,1) the path WG)\-f and, therefore, the function Ti(x) is defined similarly by
considering the liftings of a path 7(x) - &, £ € [t, 1]. Let us consider the mapping

T:X°x (0,+00) = X% : (z,t) = Ti(x).

Later on we will indicate the sheet of the pre-image of the neighbourhood of a point 7(x)t €

A% under the n—fold covering 7 : X° — A that we are interested in, and, therefore, from
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(8) using the homeomorphism which is locally inverse to = we will get more explicit form of
the function Ti(z) = w(x)t.
Define G = 71(G) € X" and consider the restriction p = T, x(0,400), 1-€., the mapping

p: Gy x (0,4+00) = X p(u,r) = Tp(u).

Note that from the definition of the set G; > u we have m(u) € G which means that
|m(u)| = 1, and, therefore, using (8) we get that |7(T,.(u))| = |7 (u)r| = r. It is easy to check
that last equality implies that the inverse of the mapping p has the following form

¢: X" = G1 % (0,+00) : q(2) = (Tir(ay -1 (@), |7(2)])-

Let us show that p is a homeomorphism from G; x (0, 4+00) to X°. Fix an arbitrary (z,t) €
G1 x (0,+00) with ¢ > 1. Then, by Lemma[l4] the path m(z) - £, ¢ € [1,¢], has a cylindrical
neighbourhood U = Uy - m(x)- &, € € [1, ], such that 7= 1(U) = | | W;, where each cylindrical

=1

neighbourhood W; is homeomorphic to U (Uy is a neighbourhood of the unit element ¢y € A°
which determines the cylindrical neighbourhood U). Denote the set W; that contains the
path ﬂ@)\-f, ¢ € [1,t], by W. Then W@)\-f C W and 7 : W — U is a homeomorphism.
Also, denote ¢ : U — W the inverse of 7 : W — U: ¢ onw = idy. By definition of the
topology Tao = k X T(0,400) OD AY there exist a neighbourhood U € k of the unit element €o
in G and a number § > 0 such that the neighbourhood p(U x (e7%,¢%)) = U(e~?, €?) of e
in A lies in Uy, where p is the natural topological isomorphism between A® and the space
{a-r:aeG,re(0,00)}.

Therefore, p(n(z) - U x (te=%,te®)) = n(x) - U - (te %, te’) € 7w(x) - Uy-t C U, ie.,
the set w(z) - U - (te=%,te’) lies in a domain of the homeomorphism ¢ : U — W. The
constructions above imply that (z,t) € ¢(m(x)U) x (te~?, te’), that is, ¢(m(z)U) x (te~9, te’)
is a neighbourhood of the point (z,¢) in X° X (0, +00). Let us now investigate the mapping
p on that neighbourhood. Suppose that u € Uandre (te=?,te’). Then, from the definition
of a mapping p, p(¢(n(z)a),r) = T.(¢(m(z)a)). From (8) we have that 7 o T,.(¢(n(z)a)) =
m(¢(m(z)a))r = w(x)ar. Since w(x)ur € w(z)-U- (te?,te’) C U then we can apply ¢ = 7
to the equation derived above, and, thus, we get: T,.(¢(m(z)n)) = ¢(w(x)ur). Therefore,
p maps the set ¢(m(x) - U) x (te~?,te?), which is a neighbourhood of the point (z,t), to
d(m(x)-U-(te=? te?)). Since (x,t) was arbitrary and p is bijective then the desired conclusion

is established by the following local factorization of p:
O(r(@)0) x (te?,1e%) = o(m(x)U(te %, te?))
™ X id]R T(JS
(r(2)0) x (te=%,te’) == (2)U(te=, te®)

where all the mappings composing p are continuous and open. The case t € (0,1] is

considered similarly.
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Thus, p is a homeomorphism. Since GG is compact and 7 is open and continuous then
G, is also compact. Let us show that G, is connected. Indeed, as X° is connected and
p is a homeomoprhsm (and, therefore, so is ¢), then G; x (0,+00) = ¢(X") is connected
which means that G is connected as well. Thus, for the restriction ¢ = 7|g, : G1 — G the
conditions of the Theorem from [I8] are satisfied. By that theorem there can be defined a
group structure on G turning ¢ = 7|, into a group homomorphism from G; to G. Clearly,
having a group structure on G; we can define a group structure on Gy x (0,400) as well.
Denote by '®’ the operation of multiplication in the group G; x (0,4+00). Now define a

multiplication in X as follows:

z179 1= p(q(z1) © q(72)),

for z1, 25 € X°. Then it is easy to check that X° becomes a group with unit element being
p(e, 1), where e is the unit element of Gy, and x=! := p(¢(x)™!) being an inverse of the

element € X°. It follows from definition of multiplication that

p(g(z1))p(q(72)) = 7172 = p(q(71) © q(72)),

for 1,2, € X°, that is, p is a homomorphism, which means that X° is topologically iso-

morphic to Gy x (0, +00). Finally, let us show that 7 is a homomorphism. Let z € X° and

r=p(&r),§ € Gyr € (0,+00). Then from (8) we get 7(z) = n(p(§,r)) = n(T.(§)) = 7(§)r,
hence, for z1, 2o € X° with 21 = p(&,71), 12 = p(&,72), since p and the restriction 7|g, are

homomorphisms, we get that
m(z129) = T(p(&1,71) P(&a,m2)) = T(P(§1€a, 1172)) = T(E1&2) 12 =

= m(&)rm(&e)re = w(xy)m(xg).

Thus 7 is a group homomorphism. The theorem is proved.
O

3.2 Algebraic coverings

Definition 15 Bohr—Riemann surface X is called algebraic over an open subset D C A
if there exist polynomials Pj(x,s) = a + f;(s)a™ ™! + ..+ fi, ;(s) with fn; € O(D),
1<m <k j=1,N, such that X is homeomorphic to the subspace Xy = {(s, 21, ..., 2n) €
D x CV: Pj(zj,s) =0,1<j <N}

We don’t know whether each Bohr-Riemann surface is algebraic but we claim that the

unbranched coverings over the punctured generalized plane A° are algebraic.

Lemma 15 Suppose that a group homomorphism ¢ : G — G implements an unbranched n-

fold covering of a (compact solenoidal) group G by a connected group G1. Then the group G
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1s commutative and there exist ay, ...,a,, € I'y andnq,...,n, € N, such that G is isomorphic

to the algebraic covering of a group G by the algebraic equations
y:h _Xai = 072 = 17

Proof. By definition of an unbranched covering there exist the neighbourhoods V' 3> e
and W > e of the unit elements of the groups G and (G respectively, such that on W
¢ is a homeomorphism between W and V. Let W, C G; be a neighbourhood of e such
that WZ C W. Then, as G C A is a commutative group, for any a,3 € W, we have
olaf) = pla)e(B) = p(B)e(a) = p(Ba), therefore, since ¢ is homeomorphic and, hence, is
injective on the set W D> W¢ 3 af3, Ba then a8 = Ba. The connectivity of Gy implies the
representation Gp = U2, W' which allows to extend the commutativity to the whole group
G'1. In particular, this means that the group K = ker ¢ is a finite abelian group and since
v is an n—fold covering we have |K| = n. Denote by ¢ : G — G the dual mapping of ¢,
where G and G, are the groups of characters of G and G respectively. From definition of
dual mapping we have that @(g) = gop € G, for each § € G. For k € K we have that
gop(k) = g(eg) = 1, which implies that the image @(G) under the dual mapping ¢ : G — G4

has the following form

P(GQ) = {x e Gy x(K)=1}. (9)

The surjectivity of ¢ implies that the mapping ¢ is injective and, therefore, ¢ is a
topological isomorphism from G to a subgroup {x € G; : x(K) = 1} of a group Gy (&
inherits continuity and openness from ¢ (see [20], p.498)). Consider the homomorphisms
e:R = G:et) =¢ and o : e(R) — Gy : a(e(t)) = Ti(e), where Ti(e) = é(t) is a
path in G; which starts at the point e and lifts the path e(t) = e;,t € R, in G. Denote
R, = {Ti(e) : t € R} = o(e(R)) C G;. Since R, = G; (see [I8]), then the image of the
homomorphism kK = goe : R — G is dense in Gy: @ = (71, and, therefore, dual mapping
fiG 5> R2Ris injective. Denote further I'y := R(Gl) Then I'y is an algebraic subgroup
of Rand I'; 2 G is an algebraic isomorphism and, hence, it is a topological isomorphism of
discrete groups which means that L ~2Gisa topological isomorphism of compact groups.
The above arguments together with @ and the fact that G is a group of characters of the

group I' imply the following equality
D={bely: ' (K) =1}, (10)

where b — x? is the standard parametrization of the groups elaen by the groups I' C I'y
which follows from the Pontryagin duality theorem. Let us find the explicit form of I';.
Finite abelian group K is isomorphic to the direct product K;...K,, where each group K is
a cyclic group of order n;,i = 1,m (obviously, nyns...n,, = n). It is known that the group of

characters K; is also cyclic group of the same order: K; = {6,%, ...,y '}, i = 1, m, where é
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is the unit element of a group G1. Since K is compact, each character from K~ K;...K,, can

be extended to a character of a group G (see [§], p. 56). Therefore, for every i,1 <7 < m,

there exists ¢; € I'iy such that x“|x, = 9; and x“|x;, = é1,j # 7,1 < 4,57 < m. Then for
0 < k < n; we have that x*“(K) # 1, hence, from we get that ke; ¢ T, 0 < k < n;, and
for a; := n;c; we have x%(K) = 1 which means that a; € T'y. Thus, presented arguments

imply that the group I'; has the following form:
I' = {kflcl 4+ ..+ kpenm +d:de F,O <k < ng;,1 =1, ...,m}, (11)

and, again by definition of ¢;,7 = 1, m, we have kic; + ... + ke, € T'. To construct the

required algebraic covering isomorphic to GGy let us consider the set

Go={(a, 21, ..., 2m) EGXT™: 2" = x%(a),i = 1,...,m},

7

where T is the unit circle of the complex plane. Then G is a compact abelian group under

the coordinate—wise multiplication

(0, 21, ooy 2m) (B W1, oy W) = (3, 21W1, ey Z W ).

A mapping ¢ : Go — G : (@, 21, ..., ) +— « is a group homomorphism which implements
an n—fold algebraic covering of a group G. Indeed, the homomorphity of ¢ directly follows
from the definition of multiplication on Gy, and since for given a the equation 2] = x* has
precisely n; solutions, ¢ = 1,...,m, and nins...n,, = n we get that ¢ is an n—fold covering.
Thus, it remains to prove that G; = Gy. Let us find a dual group of Gy. The group Gy is a
subgroup of the Cartesian product G x T™. By Theorem 54 from [0] (p.283), we have

Go = G x Tm/A(G x T, Gy), (12)

where A(G/XTW,GO) = {x € GxTm : X(Gy) = 1} is an annihilator of Gy in a group
Gﬁm =[x Z™. Note that since GGy is compact each character from @0 can be continued
to a character from Gﬁm, hence, we may assume that Go Cc I'xZ™. Using the topological
isomorphism of duality I' x Z™ = G x T™ the action of a group I' X Z™ on G x T™ can be
described in the following way:

—

DX Z™ 3 (¢, q1, s Gm) — X OO0 2 (21, 0y 2) = XE(@) 28020 € G x T,

g
)

Using this description, since z" = x%(a) & x %(a)z" = 1,i = 1,m, the group Gy is

represented in the following form:

Go={(a, 21, .., 2m) € GXT" : i, 21, o0y 2m) = 1,0 = 1,...,m}, (13)

(=5,0,1:,0.m3,0,--.0) ' — T "m. We use this representation to describe the annihilator

where x; := x
A(G x T™, Gy). We claim that the characters xi, ..., X, form the system of generators of

the annihilator, that is,

A(G X T™, Go) =[x - 2™ : pry ey p € L) (14)
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Indeed, the inclusion ” D" follows from (13]), and to prove the inclusion ”C” suppose that
X(c,qL...7qm)(GO) - 1. (15)

Representing ¢; = pin; + ki, 0 < k; < n;, i = 1, m, we get

X(C,q1,-..,qm) — X(C,p1n1+k1,...,pmnm+km) — X(c+p1a1fp1a1+.-.+pmamfpmam,p1n1+k1,.--,pmnm+km) —
— X(C+plal+---+pmam7k1 ----- km)X(_plalaplnlaO---vo) e X(_pmamyo--woapmnm) —

— X(C+P1a1+~-~+pmam,k17~--,km)X11’1 .. anm. (16)

Consider g; = (eg, 1,...,1,e>™/" 1,...,1),7 = 1,m (eq is the unit element of G). Obviously,
xi(g;) = 1,9 =1,...,m, and, therefore, all g;, j = 1, m, belong to G,. We have

ctprai+..+pmam,ki,....km) _ 2mik;/n;
X( ) =e ]/ J’

which must be equal to 1 by , hence k; = 0,7 = 1,m. Then, by and (16)) (using the
fact that x;(Go) = 1,i = 1,m) we get

X(c+p1a1+...+Pm(lm,07~-~70) (GO) e 17

which means that
X(c+p1a1+---+pmam)(G) =1,.

Therefore, ¢ + pra; + ... + ppa, = 0, and gives us . Thus, by , we get
Go =~ G x Tm/A(G x T, Gy) =

= {X(C’ql’m’qm)A(G/X—Tm, G()) 1 C & F, q; = pin; —+ ki7 0 S k’z < ni,i = 17 m} =
= {ylePettpnam bk PP A(G X T Go) 1 e € T,0 < ky < myyi = T,m},

hence, since a; € I',7 = 1, m (and, therefore, p;a; € I';i = 1,m) and x; € A(Gﬁm, Go), i =
1, m, we get that

~

Go 22 {y(@hrkm) A(G X T, Go) : d € 1,0 < ki < ny,i = Lm}

From ((11)) we get that the right hand side of the last expression is isomorphic to the group
I'1, hence, Go T, and, therefore, Gy = I, G,
Lemma (15[ is proved. [

Definition 16 Let m:Y — X be a covering of a topological space X by a topological space
Y. A homeomorphism f:Y — Y such that mo f = 7 is called a covering transformation of
w. An unbranched covering w:Y — X 1is called a Galois covering if for any y1,y2 € Y with

7(y1) = w(ya) there exists a covering transformation f Y — Y such that f(y1) = ya.
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Using the theorem [30| and the lemma [15| we get the following statement.

Theorem 31 Fach n-fold covering m: X° — A° is an algebraic Galois covering.

Proof. Let us consider the space
Y= {(s,wy, .., wp) € A" x C™ : w" = ¢%(s),i = 1,m}

and the corresponding algebraic covering o : Y — AY : (s,wy,...,w,) — s of the space
A’ From lemma |15 we have Gy = G, therefore Gy x (0,+00) = G; x (0,400) = X°
(Theorem [30)). Now the isomorphity of the covering 7 : X° — A to the algebraic covering

oY% — AP follows from the following topological group isomorphism:
n:Gox (0,400) = YO (a, 21, 00 2y 1) = (@, 7020, o P 2 1)
with inverse being
Nt Y? = Gy x (0,400) 1 (8,w1, e i) = (s8] 71wy ]s| 7w S| T |8]),

where the numbers ¢; are determined by n; and a;: ¢;n; = a;,¢ = 1, m. Finally, let us show
that

71 Gy X (0,4+00) = G x (0,400) : m (&, 7) = 7(&)r

is a Galois covering and, since Gy X (0, +00) = X" and G x (0, +o0) = A, this will imply
that the covering m: X° — A% is also a Galois covering. For § € Ker 7|g, define a mapping
fo : G1 x (0,+00) = Gy x (0,+00) : fo(&, 1) = (68,7). As w(0) = e, the unit element of
a group G, then m o fp(&, 1) = m(0&, 1) = w(0)r = 7(O)7(§)r = w(&)r = m (&, ), that is,
7 o fo = m1. Therefore, fy is a covering transformation. Finally, if 71(£,r) = m(w,r) then
7(€) = n(w) and, therefore, # = w&™! € kerm|g,, and for a covering transformation f, we
have that fy(&,r) = (0¢,7r) = (w,7), hence 7 is a Galois covering, and, therefore, so is 7.

Theorem is proved. [

3.3 Analytic paths

Let Cy be a plane in A passing through the unit element ey of a group A° defined in the
Section [[.2] As we have already seen in the Section [1.2] the set Cy, which is the image of
the additive group of complex numbers C under the group homomorphism ¢ : C — A°, is
a dense subgroup of the group A%, As ey € Cy then for any s € AY the set s- Cy = C, is a
plane in AY passing through s. The set of all planes of this form break up into the cosets of
a subgroup Cy in a group AY.

Consider a path in A% that is, a mapping v : I = [0, 1] — A® which is continuous with
respect to the topology 7o in AY.
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Definition 17 A path v(I) C A° is called analytic if it is entirely contained in some plane
CSO, So € A,

Let y(I) be an analytic path in A which lies in a plane C,,, so € A’ Then for any
s € A the path ~,(I) with v,(t) = sy(t),t € I, lies in a plane C,,, and, therefore, v4(I) is
an analytic path as well.

Let X be a Bohr—Riemann surface over A and let K be a thin set of ”critical points”
of a covering 7 : X — A in A. Let us now define the notion of an analytic path on the
set X* = 77 1(A*) C X, where A* = A\K (we assume that * € K and consider the initial
covering m : X — A over the punctured generalized plane A? = A\ {x}).

Recall that by the path lifting property for each analytic path (/) in A* and for each
point w € m1(7(0)) there is a unique path 4(I) C X* starting at the point w and lifting
v(I), i.e., ¥(0) = w and (t) = T o 4(t),t € I.

Definition 18 A path in X* is called analytic if it is a lifting of some analytic path from
A*.

Thus, the path (/) C X* is an analytic path if it is a lifting of some analytic path
v(I) C Ct, s € A% where C: = C,\K.

We now introduce the notion of equivalent points on the sets 7'(s),s € A*.

Definition 19 Two points wi,wy € 7~ 1(s) will be called equivalent if there exists an analytic
path 4(I) C X* such that wy = 4(0) and we = (1).

Equivalence of the points w; and wy will be denoted as w; ~ w,. It is easy to check that if
wy ~ wy and wy ~ w3 then wy ~ ws. Thus, the set 771(s) = {wy, ..., w, } breaks up into the

finite number of equivalence classes. Define a function v : X* — Z, on X* as
v(wp) = card {w € 7 (7(wp)) : w ~ wo}

for wg € X*. Thus, the function v acts on the set X* and assigns to each point wy € X* the

number of its equivalent points.

3.4 Local constantness of a function v

The main result of this section is a proof of local constantness of a function v : X* — Z, .
We first prove this result on the sets 771(C?),s € A*. Let s € A*. Denote by u(s)
the number of equivalence classes (in terms of definition over s, i.e., the number of

equivalence classes on the set 77 !(s):

p(s) = card {C'(w) : w € 7 ()},
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where

C(w) ={u € rm H(r(w)) :u~w}

Thus, the mapping C' acts on X™ and assigns to each point w € X* the set of its equivalent
points, and, therefore, card C'(w) = v(w). We now pass to the proof of local constantness of

a function v on 77 1(C?), s € A*.

Lemma 16 Let s € A*. Then the function p: A* — Z, is constant on C% and the function
v: X* — Z, is constant on the connected components of a pre—image = *(C%).

Proof. Note first that since a continuous mapping 7y := 7|1z : 7 (C:) — Ciis a
covering of a path connected space C! by a non-connected, in general, Riemann surface
7~ 1(C?), then its restriction 7|, to any path connected component L of a surface 7= !(C?) is
a covering of a space C} as well. In particular, since 7 is a finite-sheeted covering, the number
of such components is finite and for any o € C! the quantity m(L) = card (7~'(¢) N L) is
constant which does not depend on ¢ and which is equal to the number of sheets of a covering
75| of the space C:. Obviously, the sum of all numbers m(L) by all connected components
L gives n — the number of sheets of a covering 7.

Fix an arbitrary o € C! and consider a partition 77!(¢) = C(w;) U ... U C(w,,) of a
set 771(0) into the disjoint union of equivalence classes over . By definition of equivalent
points we have that for any i,1 < i < m, all the points of the class C'(w;) are connected by
analytic paths and, therefore, for any 7,1 < i < m, the class C'(w;) lies in some connected
component L; of a space 7~ 1(C?) containing a point w; € L;, and 7~ '(o) N L; = C(w;)
because all the points from 7~!(o), which are contained in the same connected component
with w;, are obviously equivalent to w;. As the restriction of a covering 7, to each connected
component of a surface 7~!(C¥) is a covering of a space C* then 7~1(C?) does not have any
other connected components besides L;,i = 1, m, because the existence of one more such
component would mean that there are points in C: which are covered more times than o
which contradicts the fact that 7 is a covering. Therefore, m coincides with the number of
connected components of 771(C?), and, hence, does not depend on ¢. Thus, for any o € C*
we have that (o) = m.

Now suppose that w € 77'(C?) and L is a connected component of 77!(C*) containing
w € L. As we have shown, C(w) = 7~ (7(w)) N L. Therefore, v(w) = card C(w) = m(L).

Lemma is proved. [

To prove the local constantness of ¥ on X* we need the following lemma which can be

considered as a version of the homotopy lifting property for a covering 7 : X* — A*.

Lemma 17 Suppose that we are given a point s € A* and a closed path v C A* which begins
and ends at s: v(0) = v(1) = s. Assume that 7 (s) = {x1, 29, ...z, } and let 5 : [ — X* be
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a lifting of v in X*, y(t) = woJ(t),t € I, with initial point 4(0) = z1 and endpoint (1) = x4,

where 11,15 € ™ (8), x1 # 1. Assume further that there is a fized decomposition
=) =V (17)

of the pre—image 71 (U) of an open evenly—covered neighbourhood U of the point s into a
disjoint union of open sets V; which are homeomorphic to U under the mappings 7|y, : V; = U
with inverses @; = (tly,) ™' : U — Vi, and @;(s) = x;,i = 1,n, i.e., the numeration in is
chosen so that x1 € Vi and xo € Vi. Then there exists an open neighbourhood Wy of the unit
element ey of a group A° such that sWy C U and for any o € Wy the lifting Y, : I — X* of
a path v,(t) = oy(t),t € 1, with initial point v1(cs) € Vi has an endpoint at ps(os) € Va.
In other words, if there is a lifting of the path v with initial point and endpoint lying on the
sheets Vi and Vy respectively, then the lifting of "perturbed” path ~, with initial point lying

on the sheet Vi also terminates on the sheet V,.

Proof. Let us use the standard scheme of a construction of the path 4 with 4(0) = x;,
which will be adapted to the case we consider.

First of all, let us cover the compact set y(I) by evenly—covered sets of special form.
Specifically, let us establish the existence of an open neighbourhood W C s~'U of the unit
element e of a group A such that for any ¢ € I the set v(¢)W is evenly—covered.

Since the open evenly—covered sets form a base for a space A* then there exists a finite

covering of a compact set (/) by such sets:

Let {W;};c; be an open base of locally compact space A® at the point ey such that for any
J € J the closure Wj is compact. For every j € J define a set

K;={tel:yt)W; CUfor somei,1 <i<I}.

Since all Wj are closed and each set U;,i = 1,1, is open then K; is also open, j € J.

!
Furthermore, we have that v(I) C |J U;, therefore for any ¢ € I there exists ¢ such that
i=1
y(t) C U; and as {W},cs is a base at the point ey then there exists j € J such that
v(t)Wj C U;, and, hence, t € K;. Thus, the family {K;};c; forms an open cover of

the compact set I, therefore, we can choose a finite number of indices ji, .., jg, such that
d d

I ¢ U Kj,. Let us now consider the set W = (| W;, N s U C s 'U. Since the sets
k=1 k=1

{W; }¢_, and s7'U are open neighbourhoods of the unit element eq, then the set W is non-

emptzfl and is an open neighbourhood of ey as well. Now choose an arbitrary point ¢ € I. As

I C U Kj, then there exists j,, such that t € K;
k=1

Jm>

which by definition of the set K; , implies
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the existence of 7,1 < ¢ < m such that v(t)ij C U;, hence, since all U; are evenly—covered,
we get that the set v(¢t)W C v (t)W;,, is also evenly—covered. We have thus established the
existence of a set W with desired properties.

Let us now recall main concepts of the construction of path-lifting.

Open sets v(t)W,t € I, obviously cover the compact set y(I), therefore, there exist finite
number of points {#} }7 , such that the sets v(¢,)W, k = 1, m cover (I) and the intersections
of ”adjoining” sets (¢, )W N ~(tj,1)W,k = 1,m — 1 are non—empty. Moreover, the points
{t}.}7, can be chosen such that ¢; = 0 and ¢/, = 1. Then there exists a partition of the
interval I = [0, 1] by the points 0 =ty < t; < ... < t,,, = 1, such that for each k,k € 1, m,
the image 7([tx_1,x]) is entirely contained in open, evenly—covered set 7(t},)W. Clearly,
Y(tg) € ()W Nyt )W, k € I,m — 1. Denoting vy, := y(t},), k = 1, m, for the pre-image
of an open, evenly—covered set 7, we get the following representation:

(W) = [V
i=1
where for each i,i = 1, n, the restriction 7T|Vik : VF — 4 W is a homeomorphism with inverse
oF = (’/T‘Vik)_l c W — VE i =1 nk =T1,m. Let us now pass to stepwise construction
of a path 4. We have that v = 7 o 4, therefore, on the initial interval [to, ;] = [0,¢1] C [
there are n possible ways to construct the initial part of the path 4, namely: 4([0,¢]) =
¢} ov([0,t4]),7 = 1,n. As for the lifting 4 we have 4(0) = z1, we choose that i for which
©}(v(0)) = x1. Denote the chosen i by ;. The construction of a continuous path 4 goes on
by cohesion of continuous on [ty_1,t;] parts 5 = gpfk o7,k = 1,m at the points t; due to
the choice of the following ¢f by preceding Wfkj such that f (b—1) = gpfkill(bk_l), where

br—1 = Y(tr—1) € 1 W Ny W. A chain of homeomorphisms
o W = Vi

provides the continuity of a path 4 on the sequence of sheets V;*, k = 1,m on which it lies.
Since the path 4 with 4(0) = z; is uniquely determined by 7 (uniqueness of path-lifting),
then it does not depend on the presented construction which has been chosen to be in line
with the conditions of lemma.

Furthermore, we have that v, = v(t}) = v(0) = s = v(1) = ~v(¢,,,) = vm and, therefore,
1 W = sW C U and the first obtained homemorphism ¢} : sW — V! satisfies the condition
¢i (7(0)) = 21 € V5. Hence, ¢} is a restriction of a mapping ¢ : U — Vi to the set sW:
@i = ¢1]sw (because both homeomorphisms ¢, and ¢} are local inverses of 7). Then,
using the ordering of numeration given in the condition of the lemma (y(1) = 25 € V3), we
similarly get that ¢* = @o|ew.

So we have presented the construction of lifted path in our case. The problem is to show
that small perturbation of an initial point x; € V; does not divert the lifted path from the
given sheets and, therefore, its endpoint is again in V5. To solve this problem let us prove

the existence of the sets Uy, and Uy with following properties.
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First, for any k,1 < k < m, the compactness of v([ty_1,tx]) C 7%W and openness of
YW imply that there exists an open neighbourhood U, of the unit element ey such that
Uny([tr—1,tk]) € %W. Secondly, for any k,2 < k < m, there exists a neighbourhood Uy, of
eo such that ¢f (8) = ¢f' () for all B € be_1Ug. Indeed, we have that by = y(tj_1) €
Y1 W N W and gpfk__ll(bk_l) = @} (bp—1). As W and W are open then the set
Y1 W Ny, W 3 bi_q is also open, therefore, there exists a neighbourhood Uy, of eq such that
bi—1Us C Y1 W N W, hence, cpif:ll (B) = gpfk(ﬁ),ﬂ € by_1Us, as both homeomorphisms
gof}:_ll and @f are local inverses of 7.

Finally, let us prove that if the above conditions are satisfied then for any ¢ from an open
m

neighbourhood Wy = () (Ux N Uk) N U; of eq the lifting 4, of a path -, with initial point
k=2
¢1(0s) has an endpoint at pq(os). To this purpose let us consider a mapping

U(t) = QDZ(O-'Y(t))J € [tk—htk]v k= 17—m7

and let us show that v is a continuous path that coincides with 4,. Clearly, it is sufficient

to prove the continuity of v at the points #,, k = 1, m — 1. We have

v(t) = { QOfk(afy(t)),t € [tr-1,tl;

Pit (0y(1), t € [th, trya]

Since 0 € Wy C Ukﬂ then byo € kakH, therefore, gpfk(bka) = gof:fl(bka), that is,

oF (y(tr)o)) = gof}ill(’y(tk)a) and the continuity of v at ¢; is proved. Thus, v(t),t € I,
is a continuous path. As every gofk, k =1, m, on its domain is an inverse of 7 then, from defi-
nition of the mapping v, we get mowv(t) = oy(t) = 7,(t),t € I, hence v is a lifting of the path
Y. Furthermore, v(0) = ¢; (67(0)) = ¢} (05). As 0 € Wy C Uy, then from definition of the
set Uy, we get that oy([ty—1,tm]) C ymW = sW, and, in particular, os = o7(t,,) € sW and
since ;. = ¢1]sw we get v(0) = ¢} (0s) = pi(os). Thus, v actually coincides with lifted
path 4, from the condition of the Lemma. Let us now show that the endpoint of the path
45 lies on the sheet V3. We have 4,(1) = v(1) = ¢} (07(1)) = ¢}" (0s), and, since os € sW
and @] = a|sw, we get that 4,(1) = ¢" (05) = @2(0s) € Vo. Lemma is proved. [

Corollary 7 FEach element w € X* has a neighbourhood V' such that v(z) > v(w) for any
zeV.

Proof. Suppose w € X* and m(w) = s € A*. Let U be an evenly—covered neighbourhood of

n

a point s such that #=1(U) = |J V; and each restriction 7|y, : V; = U is a homeomorphism
i=1
whose inverse is ¢; : U — V;. Suppose that w € Vi. Choose some u # w from C(w). Then

m(u) = s and the homeomorphity of 7 on each V; implies that u ¢ V;. Let us say u € V5.
Since u € C'(w) then by definition of the set C'(w) there exists an analytic path starting at
w and ending at u, that is, there exists an analytic path v C A* with v(0) = (1) = s, such
that for its lifting ¥ C X* we have 5(0) = w,5(1) = u. Let WSQ) be the set W, from the
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previous lemma for the case we now consider (we add an index 2 because we assume that
u € V,). Denote Vl(g) =Vn W’I(SWO@)) = cpl(sWO(Q)). Then, by the previous lemma, for
any xr € Vl(z) there exists an analytic path which starts at x and ends at a point from the
set gog(sWé2)) C V,. Therefore, on a sheet V5 the points from Vl(z) have as many equivalent
points as w (namely, each of those points has precisely one equivalent point on V3). Then
considering one after another the sets V3, ..., V,, and taking into account the fact that w can
have equivalent points only on the sheets V;, i = 2, n (with no more than one equivalent point
on each sheet), we similarly get the sets Vl(?’), - Vl("). Then the set V = ﬁ Vl(i) obviously

=2

satisfies the condition of the corollary. [J
We are now ready to prove the main result of this section.
Theorem 32 The function v : X* — Z, 1is locally constant on X*.

Proof. Let us first prove that the function p : A* — Z, is constant on A*. We have
p(o) = card {C(w),w € 7 (0)}. By Corollary [7| for w; € 7 '(o) there exists a neigh-
bourhood V; such that v(z) > v(w;),z € Vi, i.e., each point z € V; has at least as many

equivalent points as w;. Suppose 7~ !(c) = (wy, ..., w,) and let V4, ...,V be the correspond-

ing neighbourhoods of those points. Define U = () 7(V;). Assume that £ € U and consider
i=1
(&) = card {C(z),z € 77 1(£)}. Choose an arbitrary z € 7(£) and assume that z € V; for

some 7,1 < i < n. Then by definition of the set V; we have that the number of equivalent
points of a point z € 771(£) is not less than the number of equivalent points of w; € 7~1(o):
v(z) > v(w;), and, therefore, the number of equivalence classes of the points from 7=!(¢)
is not greater than the number of equivalence classes of the points from 7~!(o), that is,
u(§) < p(o).

Thus, for any o € A* there exists a neighbourhood U of a point ¢ such that

w(&) < pulo), §€U. (18)

Denote p = minyeas p(o) and D = {o € A* : u(o) = p}. Since the function p takes values
from Z. then, obviously, D # @&. Let us show that D = A*, i.e., u(s) = p on A*.

Fix an arbitrary s € A* and any o € D. Then by there exists a neighbourhood
U 3 o such that p|y < p(o) = p < u(s). Since the set C* is dense in A* then UNC! # &
and, from Lemma [16| we get that

ples = plunes < plo) = p < p(s) = ples,

i.e., u(s) = pu(o) = p and, therefore, s € D. Thus, D = A* and the function p is constant
A*.
The constantness of x on A* immediately implies the equality v(z) = v(w) for any z

from a neighbourhood V' of a point w (see Corollary 7 because otherwise there would exist
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z € V with v(z) > v(w) and, by the first part of the proof, this leads to a strict inequality
w(m(z)) < p(m(w)) which is a contradiction. Thus, v is locally constant on X*.

Theorem is proved. [

3.5 Local constantness of a function v: algebraic version

In the previous section it was shown that the Corollary [7]implies the local constantness of a
function v on X* (see Theorem , and the Corollary m has been obtained by constructive
lifting of the path from A* (see Lemma . In this section we present an algebraic proof of
the result stated in the Corollary [7| for an algebraic version of the theory.

Let us first prove one technical result.

Lemma 18 Let K be a compact set and let p(t,x) = 2" +g1 ()" +... 4+ gn_1 () T+ gn(t), t €
K, be a polynomial with continuous coefficients: g; € C(K),i = 1,n. Suppose further that a
function f € C(K) satisfies the condition p(t, f(t)) = 0,t € K, and let C = maxi<;<n{||gi||}
Then ||f]] := super | f(1)] <1+ C.

Proof. If C' = 0 then all the functions g;,7 = 1,n, are 0 which means that p(z,t) = 2" and,
hence, f = 0. Thus, ||f||=0<1+0=1+C.

In case C' > 0 and || f|| < 1 the conclusion is obvious: ||f|| <1+ C.

Suppose now that C' > 0 and ||f|| > 1. Then there exists ty € K such that |f(to)| =

I|fl] > 1. Since f(to)™ = —g1(to)f(to)" ' — ... — gn(to) then
1 | f(to)]
Hto)l < CO+ S - F ™) = i) -1

hence, ||f|[ = |f(to)| <1+ C.
Lemma is proved. [

Note that as the example of a polynomial ¢(x) = 2? — C shows for sufficiently small C
(C' < 1/4) the obtained estimate can not be improved to || f|| < 2C.
The next lemma apparently belongs to mathematical folklore.

Lemma 19 Let K = [0,1] and let p(t,x) = ™ + g1 (£)z" ' + ... + gn(t) be a polynomial
with continuous coefficients g; € C(K),i = 1,n, and with discriminant not equal to zero
on K: d,(t) # 0,t € K. Then there exist exactly n functions h; € C(K),i = 1,n, which
mutually does not coincide at any point of K and represent the set of solutions of the equation
p(t,z) =0 on K:

p(t,hi(t) =0,t € K,i=1,n.

Remark. Note that as for every point ty € K the equation p(to,z) = 0 has exactly n
solutions then the mutually distinct values h;(t),7 = 1,n, represent all the solutions of the
equation p(tg,z) = 0, i.e., the values {h;(t)},,t € K, represent the whole set of solutions
of the equations p(t,z) =0,t € K.
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Proof. Define a set
K, ={(t,x) e K xC:p(t,x) = 0}.

We want to find continuous functions h; € C(K),i = 1,n, which mutually does not coincide

at any point of K such that

K,={(t,z) € K x C:p(t,x) =0} = J{(t,hi(t)) : t € K}.
i=1

By Hurwitz-Rouche’s theorem the projection to fist coordinate 7 : K, = K, n(t,z) = t, is
an unbranched n—fold covering and continuity of the functions g; € C(K),i = 1,n implies
that the projection to second coordinate n : K, — C,n(t,z) = x is a continuous mapping.

Consider a path u: I — K, u(t) =t,t € I(= K) and a set 771(0) = {(0,21), ..., (0,2,,)}
of the pre-images of a point 0 € K. By path-lifting theorem there exist n liftings @; : I —
K,,i =1,n, of a path u such that u = 7 o 4; and ;(0) = (0,2;),7 = 1,n.

Define h; = n o 4;,% = 1,n, and let us show that the family h;,i = 1,n, satisfies the
desired conditions.

Note first that the functions h; are continuous as they are compositions of continuous
functions 1 and 4;, i = 1,n. Furthermore, by definition of the mapping 1 we have that h;(t)
is the second ”coordinate” of a point 4;(t). From m o u;(t) = u(t) =t we get that the first

”coordinate” of a point w;(t) is t. Thus,
6u(t) = (t.ha(t). £ € K (19)

Le., (t,hi(t)) € K,,t € K,i=1,n.

Let us now show that for any ¢ € K the points h;(t),7 = 1,n, are mutually distinct.
Assume to the contrary that there exist a point t; € K and the indices ¢ # j such that
hi(to) = hj(to).

Consider the set T'= {t € K : h;(t) = h;(t)}. By our assumption 7" is not empty. From
continuity of functions h; and h; it follows that 7" is a closed set. Let us show that 7" is also
open in K.

Let ¢ € T. Then by we have that 4,;(¢') = 4;(t'). Since 7 is a covering then there
exist an open set U 3 m(4;(t')) = t' in K and an open set V' 3 4;(t') = 4;(¢') in K, such
that 7 : V' — U is a homeomorphism and, hence, a bijection on V. On the other hand, as
@; and 4, are continuous then there exists 6 > 0 such that for t € K, |t — t/| < § we have
that @;(t) and 4;(¢) belong to V. Since on the set V 7 is a bijection, then the equalities
m(u;(t)) =t = w(4;(t)) imply that for t € K, |t — | < 6 we have the following equality of
the liftings:

ilt) = (0), (20)

that is, h;(t) = h;(t), and, therefore, K N (¢ — §,¢' +6) C T which means that the set 7" is
open. As K is connected we get that T'= K. This means that the equality [20] holds on the
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whole K which is impossible since @;(0) = (0,z;) # (0,z;) = 4;(0). Thus, we have shown
that the values h;(t),i = 1,n are mutually different on ¢ € K. Lemma is proved. [J

Note that the last statement proved in the lemma can be reformulated as follows: there
is no continuous function g # h;,i = 1,n on K which at any point of K coincides with one
of the functions h;.

Our main tool in this part of the work is the following lemma.

Lemma 20 Under the conditions of the previous lemma, for any § > 0 there exists € =
e(8) > 0 such that for every collection of the functions ¢; € C(K),g; : K — C with ||g;]| <
e,i = 1,n there are n functions h; € Bs(h;),i = 1,n such that for each t € K the points

ﬁi(t),i = 1,n represent n distinct zeros of “perturbed” polynomial
pe(t,z) :==a" +Zgl + &i(t))a" k. (21)

Here Bs(h) = {f € C(K) : ||f — h|| < 6}.

Proof. Let us first prove the existence of £y > 0 such that for every ¢ < g; each polynomial
of the form (21)) with ||g;|| < €,i = 1, n, satisfies the conditions of Lemma , i.e., has a non—
zero discriminant everywhere on K. For this purpose we use the well-known interpretation
of C™ as a space of the coefficients of the polynomials over the field C. Let D = {w € C" :
d(w) = 0} be a set of zeros of a discriminant mapping d : C* — C which assigns to each
vector w € C™ of the coefficients of a polynomial the value d(w) of its discriminant.

Consider a mapping
G:K—=C':it (gi(t), oy gn() 22" + ()" 4 .+ gult) = p(t, ).

Then the image G(K) = ¢1(K) X ... X ¢,(K) is a compact set, and, by the condition of the
lemma, G(K) N D = @, as the discriminant of a polynomial p(¢, x) does not vanish on K.
Denote by dy = d(G(K), D) the distance between the sets G(K) and D. Since those sets
are closed and, moreover, G(K) is compact then dy > 0. Let us show that g may be taken
to be the constant number dy/2y/n. Indeed, for any collection of functions G' = (g1, ..., Gn)
with |[g; — gi|| < € < 0,7 = I,n, we have d(G(t), G(t)) < go/n = dy/2 for any t € K. The
inequality |d(G(t), D)—d(G(t), D)| < d(G(t), G(t)),t € K (see, e.g., [9], p. 377), then implies
that for any ¢t € K the following inequalities hold: d(G(t), D) > d(G(t), D) —d(G(t), G(t)) >

— dy/2 > 0, which ensure that the desired condition G(K)N D = & is fulfilled.

Thus, under the established conditions for any polynomial of the form by Lemma
there exist n functions h;,i = 1,n, which (for each fixed t € K) represent the zeros
of that polynomial with ¢; = §; — ¢g;. Let us now show the existence of ¢ > 0 such that
for ||g;|]| < €, = 1,n continuous solutions of the equations p.(¢,z) = 0 are contained in
Bs(hi),i = 1,n.
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First, for any choice of G with ||g; — gi|| < o we have ||g]|| < |lgi|| + €0,7 = T, n.
Then C' := max; ||g]| < C + e, where C = max; ||g;||. By Lemma [18 we have that
|hil| <1+ C <1+CHeforali=1,. n.

Define further o = min inf |h;(t) — h;(t)|. By Lemma (19| we have that dy > 0.

1<i<j<nteK
Since for §; < &9 obviously Bys,(h) C Bs,(h), then, without loss of generality, we may

assume that our arbitrary chosen § satisfies the condition § < d¢/2. Then, by Hurwitz—
Rouche’s theorem, there exists a constant &; > 0 such that if [b; — ¢;(0)] < &1, = 1,n
the polynomial P(z) = 2™ 4+ biz" ! + .. + b, has exactly one zero (of order 1) in each disk
|z — hi(0)] <6, =1,n.

Now fix an arbitrary ¢ > 0 with following conditions:

a) € < go; then, by definition of gy, the inequality ||g; — ¢;|| < € implies the existence
of mutually non-coinciding functions h; € C (K),i = 1,n, which represent the zeros of a
polynomial (21)),

b) £ < &1; then, by definition of &1, if |§;(0)—g;(0)| < & the functions h; can be enumerated
so that |h;(0) — h;(0)] < 8,7 = 1, n, and, finally,

c) e[(1 4+ C+eg)” —1]/(C + eg) < §™; then for each i € {1,..,n}, using the equality
pe(t, hi(t)) = 0 we get that

Ip(t, ha(t))| = [p(t, hi(t)) — pe(t, hi(t))] =

= [(ha(t)" + g:s(O)h:()" " + .+ gu(t)) — (i)™ + G(Oha(t)" " + .+ Gu(t))| =

_|_

= 1 (O ()" 4 F ()] < 0" (22)

on K for ||g;|| < e, where ¢; = §; — g.

Let us now show that for such e the following implication holds:
lles|| < & = h; € Bs(hi),i =1, ....,n.
Choose an arbitrary ig € {1,...,n} and consider the number
to == sup{T € [0,1] : |hs,(t) — hi,(t)| < & for t € [0,7]}.

Then to > 0 as the modulus |k, (t) — hi, ()| := 7(t) is continuous and is strictly less than
0 when t = 0 (see b)). Obviously, to < 1. Assume that ¢, < 1. By definition of t, we
have r(t) < 0 for t € [0,%p). Furthermore, we have that r(¢y) = §. Indeed, an assumption
r(ty) < 0 contradicts the fact that ¢y < 1 is a supremum defined above and the assumption
r(top) > 0 contradicts the continuity of a function r(t). Finally, for any j # iy using the
definition of §y we get

|h(to) — hig(to)] = [y (to) — hig(to) + hig (to) — hi(t0)| >

> |]’Lj(t0) — hio(t0>| — T’(to) > (50 —0>20—0=0. (23)

117



118 A. F. BEKNAZARYAN AND S. A. GRIGORYAN

As the pairs (¢, hj(to)), j = 1, n, are roots of a polynomial p(¢, z) then we can write p(to, z) =

[1(xz — hj(to)), hence, by and we get

j=1
0" > [p(to, hug (t0))] = 7(to) [ 1hio(t) — hy(to)| > 66"~ = 6™ (24)
J=Li#i
The obtained contradiction shows that t; must be 1.

However, taking to = 1 in and in (24) we see that the assumption (1) = 0 also
leads to a contradiction. Thus, |hs, () — hs,(t)| < 6 for t € K, and since the functions h;,
and h;, are continuous then ||h;, — hs,|| < 0, that is, h;, € Bs(hs,). Since iy was arbitrary
the Lemma [20] is proved. [J

We now pass to the algebraic version of this theory.
Let

p(s,x) = 2" + fi(s)a" ' + ...+ fu(s)
be a polynomial with generalized analytic coefficients f; € O(AY),i = 1,n and with discrim-
inant d,. Then, obviously, d, is also a generalized analytic function: d, € O(A®). Let us
denote N, = N(d,) — the set of zeros of discriminant d,,. Then either N, is a nowhere dense
(discrete) set in A or N, = A°. We assume that N, is nowhere dense in A? in which case
the zero set IV, will play a role of a thin set. Consider a space

AY = {(s,2) € A x C : p(s,z) =0},

P

and a covering

T A) = A (s,2) s

The restriction m

a; : Ay =771 (A*) — A*is then an unbranched covering over A* = A"\ N,

which will also bep denoted by m. Thus, Ag becomes a Bohr-Riemann surface. Denote
Ci=C,NA*=C,\ N,, C;, =7(C;) and C,, = 7 (Cy).

Recall that a path u : I — A is called analytic if u(/) C Cy for some s € A (we can
take s equal to u(0)).

Definition 20 A path @ : I — A} in Ay s called analytic if its projection u = 7 o 4 under

a covering T is analytic.
The following lemma immediately follows from the above definitions.
Lemma 21 The following conditions are equivalent:

1. a: I — Ay is an analytic path

2. there exists s € A° such that (1) C C; ..
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As we have already seen, the structure of a locally compact abelian group on A° enables
for each s € A” and each analytic path u : I — A° to define an analytic path u, : I — A°
setting us(t) = s - u(t),t € I.

Lemma 22 Let u: I — A* be an (analytic) path. Then there ezists a neighbourhood U of

the unit element of a group A° such that for each s € U the (analytic) path us(I) is contained
in A*.

Proof. We have that u(I) C A*, therefore, (/) does not contain points from NN,. As the set
N, is discrete then there exists a neighbourhood of a path «(I) which does not intersect N,
that is, there exists a neighbourhood U of the unit element ey such that u(l)-U NN, = @.
Then, obviously, for any s € U the path u(I) = s-u(I) does not intersect N, i.e., us(I) C A*.

Lemma is proved. [

As before, two points w,w’ € Ay will be called equivalent (w ~ w'), if 7(w) = 7(w’)
and there exists an analytic path @ : I — A¥ such that 4(0) = w and 4(1) = w'. Again,
if w~ w and w' ~ w” then w ~ w”. Suppose, as before, that C(w) is the set of all
points (including w) which are equivalent to w. As we have an n—fold covering then, clearly,
card C'(w) < n. Also, transitivity of the equivalence relation implies that for any w € Ay
there exists an analytic path @(7) such that 4(0) = w and C(w) C u(I). Let us now pass
to investigation of local behaviour of a function v : A} — Z,, v(w) = card C(w) on Aj. As
we have already noted, the Corollary [7] implies the proof of local constantness of a function
v on a Bohr-Riemann surface (see Theorem . In the next theorem we give an algebraic
proof of the statement of Corollary [7| for our case, which will imply the local constantness

of a function v on A;.

Theorem 33 FEach element w € A; has a neighbourhood V' such that v(z) > v(w) for any
zeV.

Proof. Let us fix an arbitrary wy € A% with m(wp) = so € A*. Suppose v(wy) = k. Suppose
further that C(wo) = (wo, w1, ..., wx—1) and @ : I — AY is an analytic path with 4(0) = wq
and C'(wg) C 4(I). Then there exists 0 =ty < t; < ... < tp_1 < 1 such that u(t;) = w; and
mot(t;) = m(w;) = 89,7 = 0,k — 1. Consider a path u(t) = wou(t),t € I which is a projection
of an analytic path & C A%. We have that u(I) C A* and u(t;) = 7o t(t;) = so,i =0,k — 1.

Clearly, to prove the theorem it is sufficient to show that for any sequence wy — wq there
exists Ag such that if A > A\ then v(w)) > v(wg) = k.

From wy — wy it follows that s, := 7(wy) — sg. Denote s = sal - sx. Then s — e,
where e is the unit element of A°. Define the paths uy : I — A® as uy(t) = 3 - u(t),t € I.
Then, by Lemma 22 there exists A; such that for A > A; the paths u,(I) are contained in
A*.
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Let us now consider the polynomials

p(u(t),z) = 2™ + fi(u(®)x™ ' + ...+ fa(u(?))

and
plux(t), ) = 2™ + filuxa(®)2z™ 4 ... + folux(t)).
Since the path u(t),t € I, is contained in the set A* then, by Lemma the equation
p(u(t),x) = 0,t € I, has exactly n continuous mutually non—coinciding solutions. Obviously,
for any € > 0 there exists A. such that for A\ > \. the following inequality holds
max || fi(u(t)) — fi(ur(t)llca) <e.

1<i<n

Applying Lemma 20| we get that for A > max{A;, \.} the equation p(uy(t),z) = 0,t € I,
also has exactly n distinct continuous solutions, which are (uniformly on [0,1]) close to the
solutions of the equations p(u(t),z) = 0,t € I.

Let a(t) = (5(t),z(t)),t € I. From definition of the covering m we have u(t) = wou(t) =
5(t),t € I, that is, u(t) = (u(t), z(t)),t € I, and, in particular, w; = a(t;) = (u(t;),z(t;)) =
(s, 2(t;)),i =0,k — 1. Since 4(t) C A%, ¢ € I, then from definition of a set A% we get that

() 4+ fr(u(®)d"HE) + o+ fulu(t) =0, €1,

i.e., the function Z(¢) is one of the solutions of the equation p(u(t),z) = 0. Therefore, by
Lemma for A > A.(5) among the solutions of an equation p(ux(t),z) = 0 there exists ()
such that

2y = Z[lom) <6, (25)
where
0< 1§¢I<I§'1£k—1 |2(t:) — 2(8;)]/2, (26)

with w; = (80, 2(t;)),i = 0,k — 1. As the path u is analytic then a path u, is also analytic,
hence, from uy = m(uy, #x) we get that a path ay : I — Ay with a,(t) = (ux(t), 2A(t)),t € 1,
is analytic as well. By construction we have that uy(t;) = s$ - u(t;) = sy5' - 5+ S0 = 8,1 =
0,k — 1. Thus, the points @(t;) = (sx,2A(t;)),7 = 0,k — 1, lie on a path @y(I). Since
w(ux(to)) = sn = w(wy) and wy — wy = (s9,Z(tp)), Sx» — So, then choosing § in ([25))
sufficiently small and A sufficiently large (A > Ag > max{Ai, As5)}), we get that wy = ., (to).
Moreover, using and (26)), for i # j we get |&x(t;) — ()] = [(&(t;) — 2(t;)) — (2(t;) —
(1) — (B (E) (1)) | 2 [(8(0) —5(8)) |~ (@(t)—a (1)) — o t5) —2(2;)] > 26—5—6 = 0,
that is, 2(t;) # 2.(t;), and, therefore, 0y(t;) # ux(t;),7 # j. Thus, we have constructed
an analytic path 4, in AY such that @(0) = x(to) = wa, 7(Ur(t;)) = sx,7 = 0, 0,k —1, and

Ux(t;) # Ux(t;),7 # j. This means that wy has at least k equivalent points wy(¢;),7 = 0,k — 1,

and, therefore, v(wy) > k = v(wp). Theorem is proved. O

Corollary 8 The function v : Ay — Zy is locally constant on Aj.
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