On the solutions of two third order recursive sequences

R. Abo-Zeid*
* Department of Basic Science, The Valley higher Institute of Engineering \mathcal{G}^{3} Technology, Cairo, Egypt abuzead73@yahoo.com

Difference equations, although their forms look very simple, it is extremely difficult to understand thoroughly the global behaviors of their solutions. One can refer to [1, 2, 3, 3, 4, 5, 6] and the references therein.

In this paper, we determine the forbidden set, introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equations

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-1}}{x_{n}-x_{n-2}}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-1}}{-x_{n}+x_{n-2}}, \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

Consider the following subsets of \mathbb{R}^{3} :
$S_{1}=\left\{\left(u_{0}, u_{-1}, u_{-2}\right): u_{-1}=0\right\}, S_{2}=\left\{\left(u_{0}, u_{-1}, u_{-2}\right): u_{0}=0\right\}, S_{3}=\left\{\left(u_{0}, u_{-1}, u_{-2}\right):\right.$ $\left.u_{0}=u_{-2}\right\}, S_{4}=\left\{\left(u_{0}, u_{-1}, u_{-2}\right): u_{-2}=0\right\}, B_{n}=\left\{\left(u_{0}, u_{-1}, u_{-2}\right): u_{0}=-\frac{1}{n+1} u_{-2}\right\}$, and $C_{n}=\left\{\left(u_{0}, u_{-1}, u_{-2}\right): u_{0}=\frac{1}{n+1} u_{-2}\right\}, n=0,1, \ldots$.

In [7], H. Sedaghat, discussed the behavior of solutions of the rational difference equation

$$
x_{n+1}=\frac{a x_{n} x_{n-1}}{x_{n}+b x_{n-2}}, \quad n=0,1, \ldots
$$

where $a, b>0$.
He established the forbidden set and a solution form of it by reducing it to a first order linear difference equation. When $a=b=1$, the forbidden set is $F=\bigcup_{n=0}^{\infty} B_{n} \cup S_{1} \cup S_{2}$. Also the solution when $a=b=1$ is

$$
x_{n}=\left\{\begin{aligned}
x_{-1} \prod_{j=o}^{\frac{n-1}{2}} \frac{1}{\gamma+2 j+1}, & n=1,3,5, \ldots \\
x_{0} \prod_{j=o}^{\frac{n-2}{2}} \frac{1}{\gamma+2 j+2}, & n=2,4,6, \ldots
\end{aligned}\right.
$$

where $\gamma=\frac{x_{-2}}{x_{0}}$.
Finally it was proved, when $a<b+1$ that every solution converges to 0 .
We point out that the AJM Editorial Board suggested that if we apply the substitution $u_{n}=\frac{x_{n-2}}{x_{n}}$, the difference equations (1) and (2) are reduced respectively to the first order difference equations $u_{n+1}=-u_{n}+1$ and $u_{n+1}=u_{n}-1$ where $u_{0}=\frac{x_{-2}}{x_{0}}$, which are easy to deal with.

Theorem 1 Assume that $\gamma=\frac{x_{-2}}{x_{0}}$. Then we have the following:

1. The solution of equation (1) is

$$
x_{n}=\left\{\begin{align*}
\frac{x_{-1}}{(1-\gamma)^{\frac{n+1}{2}}} & , n=1,3,5, \ldots \tag{3}\\
\frac{x_{0}}{\gamma^{\frac{0}{2}}} & , n=2,4,6, \ldots
\end{align*}\right.
$$

2. The solution of equation (2) is

$$
x_{n}=\left\{\begin{align*}
x_{-1} \prod_{j=o}^{\frac{n-1}{2}} \frac{1}{\gamma-2 j-1}, & n=1,3,5, \ldots \tag{4}\\
x_{0} \prod_{j=o}^{\frac{n-2}{2}} \frac{1}{\gamma-2 j-2}, & n=2,4,6, \ldots
\end{align*}\right.
$$

Corollary 1 The following statements are true.

1. The forbidden set of equation (1) is $F_{1}=\bigcup_{i=1}^{4} S_{i}$.
2. The forbidden set of equation (2) is $F_{2}=\bigcup_{n=0}^{\infty} C_{n} \cup S_{1} \cup S_{2}$.

Theorem 2 Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of equation (1). Then

1. If $\gamma \in(-\infty,-1) \cup(2, \infty)$, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ converges to zero.
2. If $\gamma \in(0,1)$, then both of the subsequences $\left\{x_{2 n}\right\}_{n=-1}^{\infty}$ and $\left\{x_{2 n+1}\right\}_{n=-1}^{\infty}$ are unbounded.
3. If $\gamma \in(-1,0)$, then $\left\{x_{2 n+1}\right\}_{n=-1}^{\infty}$ converges to zero and $\left\{x_{2 n}\right\}_{n=-1}^{\infty}$ is unbounded.
4. If $\gamma \in(1,2)$, then $\left\{x_{2 n}\right\}_{n=-1}^{\infty}$ converges to zero and $\left\{x_{2 n+1}\right\}_{n=-1}^{\infty}$ is unbounded.

Theorem 3 Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of equation (1). Then

1. If $x_{-i}>0, i=0,1,2$ such that $x_{0}>x_{-2}$, then the solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is positive. Moreover, both $\left\{x_{2 n}\right\}_{n=-1}^{\infty}$ and $\left\{x_{2 n+1}\right\}_{n=-1}^{\infty}$ are unbounded.
2. If $x_{-i}<0, i=0,1,2$ such that $x_{0}<x_{-2}$, then the solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is negative. Moreover, both $\left\{x_{2 n}\right\}_{n=-1}^{\infty}$ and $\left\{x_{2 n+1}\right\}_{n=-1}^{\infty}$ are unbounded.

Example Figure 1 shows that if $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is the solution of equation (1) with initial conditions $x_{-2}=0.6, x_{-1}=2, x_{0}=1.3$, then the solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is positive. Moreover, both of the subsequences $\left\{x_{2 n}\right\}_{n=-1}^{\infty}$ and $\left\{x_{2 n+1}\right\}_{n=-1}^{\infty}$ are unbounded.

Theorem 4 Every solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ of equation (2) converges to zero.
We thank the anonymous reviewer for his help to formulate the following theorem.
Theorem 5 Every solution $\left\{x_{n}\right\}_{n=-2}^{\infty}$ of equation (2) eventually oscillates about 0 with semicycles of length 2 .

Figure 1: The difference equation $x_{n+1}=\frac{x_{n} x_{n-1}}{x_{n}-x_{n-2}}$

Acknowledgements

The author would like to thank the anonymous reviewer for constructive suggestions and comments which led to improvement of the paper.

References

[1] R.P. Agarwal, Difference equations and inequalities, First edition, Marcel Dekker, (1992).
[2] E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.
[3] E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
[4] R. Khalaf-Allah, Asymptotic behavior and periodic nature of two difference equations, Ukr. Math. J., 61 (6) (2009), 988-993.
[5] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.
[6] M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
[7] H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Diff. Eq. Appl., 15(3), (2009), 215-224.

