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Abstract

In our research we will study the existence of weak solutions to the problem

−[M(‖u‖p1,p)]p−1∆pu = f(x, u) +

∫
Ω

k(x, y)H(u)dy in Ω,

with zero Dirichlet boundary condition on a bounded smooth domain of Rn,

1 < p < N ; M ,f ,k and H are given functions. By means of the Galerkin method

and using of the Brouwer Fixed Point theorem we get our results. The uniqueness

of a weak solution is also considered.
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Introduction

The following equation

ρ
∂2u

∂t2
−
(ρ0

h
+
E

2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx)∂2u

∂x2
= 0, (1)

presented by Kirchhoff in 1883 [13], is an extension of the classical D’Alembert’s wave equa-

tion by considering the effects of the changes in the length of the string during the vibrations.

The parameters in (1) have the following meanings: L is the length of the string, h is the area
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of the cross-section, E is the Young modulus of the material, ρ is the mass density and P0

is the initial tension. A distinguishing feature of equation (1) is that the equation contains

a nonlocal coefficient ρ0
h

+ E
2L

∫ L
0
|∂u
∂x
|2 dx which depends on the average 1

2L

∫ L
0
|∂u
∂x
|2 dx, and

hence the equation is no longer a pointwise identity. Some early classical studies of Kirchhoff

equations were of Bernstein [7] and Pohožaev [18]. The equation

−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

(2)

is related to the stationary analogue of the equation (1). Equation (1) received much at-

tention only after Lions [20] proposed an abstract framework to the problem. Problems like

(2) can be used for modelling several physical and biological systems where u describes a

process which depends on the average of it self, such as the population density (See [12] and

its references therein). Some important and interesting results can be found, for example, in

[3, 11, 16]. Recently Alves et al. [4] and Ma and Rivera [23] have obtained positive solutions

of such problems by variational methods.

An interesting generalization of problem (2) is

−
[
M
(
‖u‖p1,p

)]p−1

∆pu = f(x, u) in Ω,

u = 0, on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, and−∆pu is the p-Laplacian:

−∆pu := div(|∇u|p−2∇u) , and ‖.‖1,p is the usual norm

‖u‖p1,p =

∫
Ω

|∇u|pdx

in the Sobolev space W 1,p
0 (Ω). Correa and Nascimento [8], Liu et al [24], Yang and Chang

[25], Correa and Figueiredo [9], and more recently Molica Bisci and Radulescu [15] studied

questions on the existence of positive solutions.

In [25] Yang and Zhang studied the following problem

−
[
M
(
‖u‖p1,p

)]p−1

∆pu = λf(x, u) in Ω,

∂u

∂ν
= 0, on ∂Ω,

where p < N , they have established existence and multiplicity of solutions for the problem

under suitable assumptions on M and f . In [10] Correa and Nascimento considered the

following nonlocal elliptic system of p-Kirchhoff type

−
[
M1

(
‖u‖p1,p

)]p−1

∆pu = λf(x, u) + h1(x) in Ω,

−
[
M2

(
‖v‖p1,p

)]p−1

∆pv = λg(x, v) + h2(x) in Ω,

∂u

∂ν
= 0

∂v

∂ν
= 0, on ∂Ω,

(3)
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with suitable hypotheses on Mi, hi (i = 1, 2), f and g.The authors have proved the existence

of a weak solution for (3).

In this paper we are interested in the following semilinear integro-differential equation of

p-Kirchhoff type

−
[
M
(
‖u‖p1,p

)]p−1

∆pu = f(x, u) +

∫
Ω

k(x, y)H(u(y))dy in Ω,

u = 0, on ∂Ω,

(4)

with the following conditions:

M) the function M : R+ −→ R+ is a continuous function and there is a constant m0 > 0

such that

M(t) ≥ m0 for all t ≥ 0.

F) f(x, t) : Ω× R −→ R is a continuous function and satisfies the subcritical condition

|f(x, t)| ≤ c1(|t|q−1 + 1) for some p < q < p∗ =

 Np
N−p if N ≥ 3,

+∞ if N = 1, 2.

H) H ∈ C(R) satisfying

|H(s)| ≤ c2|s|r, r ∈ 〈1; p− 1〉.

K)

k(x, y) is a non-positive Lp(Ω× Ω) function.

The nonlocal term
∫

Ω
k(x, y)H(u)dy, with k = k(x), appears in numerous physical models

such as systems of particles in thermodynamical equilibrium via gravitational (Coulomb)

potential, 2-D fully turbulent behavior of real flow, thermal runaway in Ohmic Heating, shear

bands in metal deformed under high strain rates, see [22] for references of these applications.

Semilinear integro-differential equations have become an active area of research, for example

in the framework of control theory as well in order to solve noncooperative system, arisen

in the classical FitzHugh-Nagumo systems , see e.g. [2, 14, 5]. In case that the kernel k=

k(x,y) is symmetric (and H(s) = s), the problem is of variational type and a solution can

be found by the Mountain Pass Theorem if the Lp×Lp norm is sufficiently small, see [6] for

p = 2. Motivated by the above papers and the results in [14, 15], we consider (4) to study

the existence of weak solutions, but with non-symmetric kernels, then the problem has no

variational structure; so, the most usual variational techniques can not be used. To attack

problem (4) we will use the Galerkin method through the following version of the Brouwer

fixed -point theorem whose proof may be found in Lions (see [21, lemma 4.3]).
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Proposition 1 Suppose that F : Rm → Rm is a continuous function such that 〈F (ξ), ξ〉 ≥ 0

on |ξ| = r, where 〈·, ·〉 is the usual inner product in Rm and | · | is its related norm. Then,

there exists z0 ∈ Br(0) such that F (z0) = 0.

1 Main results and proofs

Since we are preoccupied with the existence of weak solutions of the problem (4) we begin

giving the definition of such solutions.

Definition 1 A weak solution of problem (4) is any u ∈ W 1,p
0 (Ω) such that[

M
(
‖u‖p1,p

)]p−1
∫

Ω

|∇u|p−2∇u.∇v dx =

∫
Ω

f(x, u)v dx+

∫
Ω

(

∫
Ω

(k(x, y)H(u(y)) dy)v dx

for all v ∈ W 1,p
0 (Ω).

Our main result is given by the following theorem

Theorem 1 Let us assume that conditions (M)–(F)–(H) and (K) hold. If ‖k‖Lp(Ω×Ω) is

sufficiently small and the function f satisfies

f(x, u)u ≤ a|u|p + b|u| (5)

for some constants a, b > 0 with mp−1
0 − aλ−1

1 − |k|Lp(Ω×Ω)c
r
rp′cp′c2 > 0 , 1

p
+ 1

p′
= 1

where λ1 is the biggest constant satisfying∫
Ω

|u|p dx ≤ 1

λ1

∫
Ω

|∇u|p dx; ∀u 6= 0, u ∈ W 1,p
0 (Ω),

(see [19]), and cξ is the Sobolev constant for the embedding W 1,p
0 (Ω) ↪→ Lξ(Ω) where ξ ∈

[1, Np
N−p [ ; then problem (4) has at least one weak solution. Besides , any solution of (4)

satisfies the estimate

‖u‖1,p ≤ R1 = max

1,

(
b|Ω|1/p′λ−1/p

1

mp−1
0 − aλ−1

1 − |k|Lp(Ω×Ω)c
r
rp′cp′c2

)1/(p−1)
 (6)

Proof. Let {wν}ν≥1 be a Schauder’s basis for W 1,p
0 (Ω).For each m ∈ N consider the finite

dimensional space

Vm = span{w1, . . . , wm}.

Since (Vm, ‖ · ‖) and (Rm, | · |) are isometric and isomorphic, where ‖ · ‖ is the usual norm in

W 1,p
0 (Ω) and | · | is the Euclidian norm in Rm, we make the identification

um =
m∑
j=1

ξjwj ←→ ξ = (ξ1, . . . , ξm), ‖u‖ = |ξ|.
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We will show that for each m there is um ∈ Vm, an approximate solution of (4), satisfying

[
M
(
‖u‖p1,p

)]p−1
∫

Ω

|∇um|p−2∇um.∇wj dx =

∫
Ω

f(x, um)wj dx+

∫
Ω

(

∫
Ω

(k(x, y)H(um)dy)wj dx,

(7)

j = 1, 2, 3, ...,m.

To solve this algebraic system in m unknowns ξ1, ξ2, ..., ξm, we consider the function F :

Rm → Rm given by

F (ξ) = (F1(ξ), . . . , Fm(ξ)),

Fj(ξ) =
[
M
(
‖u‖p1,p

)]p−1
∫

Ω

|∇u|p−2∇u.∇wj dx−
∫

Ω

f(x, u)wj dx−
∫

Ω

(

∫
Ω

(k(x, y)H(u(y))dy)wj dx

where j = 1, 2, 3, ...,m. and u ∈ Vm
We note that F is continuous from the continuity of M , f(x, u) and

∫
Ω
k(x, y)H(u)dy, with

respect to u .

Therefore, from the hypotheses we have

〈F (u), u〉 ≥ mp−1
0 ‖u‖p1,p −

a

λ1

‖u‖p1,p − b|Ω|1/qλ−1/p‖u‖1,p − |k|Lp(Ω×Ω)c
r
rp′cp′c2‖u‖r+1

1,p

≥ (mp−1
0 − a

λ1

)‖u‖p1,p − b|Ω|1/qλ−1/p‖u‖1,p − |k|Lp(Ω×Ω)c
r
rp′cp′c2‖u‖r+1

1,p > 0
(8)

if ‖u‖1,p = R, for R large enough.Thus, because of Proposition 1 there is um ∈ Vm,

‖um‖1,p ≤ R, where R does not depend on m, such that um is a solution of (7).

Let us prove that the sequence (um)m≥1 ⊆ W 1,p
0 (Ω) has a convergent subsequence which

converges to a solution of (4). Indeed, since (um) is bounded, there exists a subsequence,

still denoted by (um), such that

‖u‖p1,p −→ γ, for some γ,

um ⇀ u, in W 1,p
0 (Ω), (9)

um −→ u, in Lq(Ω), 1 ≤ q < p∗,

um −→ u, a.e in Ω.

In view of continuity of M

[M(‖um‖p1,p)]p−1 −→ [M(γ)]p−1 (10)

and the continuity of the Nemytskii map

f(., um) −→ f(., u) in Lq(Ω). (11)

But under the assumption (K) we have

|k(x, y)|p = (

∫
Ω

|k(x, y)|pdy)
1
p < +∞; i.e, k(x, y) ∈ Lp(Ω)
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for fixed x ∈ Ω and noting that (H(um))m≥1 is bounded in Lp
′
(Ω), 1

p
+ 1

p′
= 1,

we obtain, up to a subsequence, that

H(um) ⇀ H(u) in Lp
′
(Ω) (12)

Therefore, for x ∈ Ω we get∫
Ω

k(x, y)H(um(y)) dy −→
∫

Ω

k(x, y)H(u(y)) dy, a.e.

Also, we can easily prove that

|
∫

Ω

k(x, y)H(um(y)) dy|Lp′ (Ω) < +∞.

Then, by Lemma 1.3 in [21], we have∫
Ω

k(x, y)H(um(y)) dy ⇀

∫
Ω

k(x, y)H(u(y)) dy (13)

weakly in Lp
′
(Ω).

From the theory of monotone operators and reasoning similarly as in [8], we get

[M(‖um‖p1,p)]p−1

∫
Ω

|∇um|p−2∇um.∇w dx −→ [M(γ)]p−1

∫
Ω

|∇u|p−2∇u∇w dx (14)

∀w ∈ W 1,p
0 (Ω).

Now fixing l ≤ m,Vl ⊆ Vm, letting m −→ +∞ in (7), and using (10)–(14), we conclude that

[M(γ))]p−1

∫
Ω

|∇u|p−2∇u∇wl dx =

∫
Ω

f(x, u)wl dx+

∫
Ω

(

∫
Ω

k(x, y)H(u)dy)wl dx, l = 1, 2, ...(15)

From the completeness of {wν}ν≥1, the identity (15) holds with wl replaced by any w ∈
W 1,p

0 (Ω).

In particular, when w = u we get

[M(γ))]p−1‖u‖p1,p =

∫
Ω

f(x, u)u dx+

∫
Ω

(

∫
Ω

k(x, y)H(u)dy)u dx. (16)

On the other hand, taking wj = um in (7) and passing to the limit, we obtain

[M(γ))]p−1γ =

∫
Ω

f(x, u)udx+

∫
Ω

(

∫
Ω

k(x, y)H(u)dy)udx. (17)

Comparing equations (16) and (17) we get

[M(γ)]p−1γ = [M(γ)]p−1‖u‖p1,p.

Then we conclude γ = ‖u‖p1,p.
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Therefore, from (15) ( with wl = w ∈ W 1,p
0 (Ω) )

M(‖u‖p1,p)]p−1

∫
Ω

|∇u|p−2∇u∇w dx =

∫
Ω

f(x, u)w dx+

∫
Ω

(

∫
Ω

k(x, y)H(u(y))dy)w dx (18)

for all w ∈ W 1,p
0 (Ω), which shows that u is a weak solution of (4).

Finally, if u is any solution of (4), then

M(‖u‖p1,p)]p−1

∫
Ω

|∇u|p dx =

∫
Ω

f(x, u)u dx+

∫
Ω

(

∫
Ω

k(x, y)H(u(y))dy)u dx.

Therefore, either ‖u‖1,p ≤ 1 or

mp−1
0 ‖u‖p1,p ≤

a

λ1

‖u‖p1,p + b|Ω|1/p′λ−1/p‖u‖1,p + |k|Lp(Ω×Ω)c
r
rp′cp′c2‖u‖r+1

1,p . (19)

Then (
mp−1

0 − aλ−1
1 − |k|Lp(Ω×Ω)c

r
rp′cp′c2

)
‖u‖p1,p ≤ b|Ω|1/p′λ−1/p‖u‖1,p (20)

and (6) follows. �

2 Uniqueness of weak solutions

In this section, we are going to consider problem (4) when the exponent p satisfies

2N

2 +N
< p ≤ 2. (21)

To establish the uniqueness of weak solutions, we need the following lemma (see [17]).

Lemma 1 If p ∈]1, 2], then it holds

i) ||z|p−2z − |y|p−2y| ≤ β|z − y|p−1

ii) 〈|z|p−2z − |y|p−2y|, z − y〉 ≥ (p− 1)|z − y|2 (|z|p + |y|p)
p−2
p

for all y, z ∈ RN with β independent of y and z.

Theorem 2 Let the assumptions of theorem (1) hold with (5) replaced by

(f(x, u)− f(x, v)) (u− v) ≤ 0 ∀ x ∈ Ω;∀ u, v ∈ R. (22)

Let us assume, in addition, that M is Lipschitz on [0, Rp
1], where R1 is defined in (6), and

H is a C1-function such that |H ′(s)| ≤ c3|s|r−1, c3 > 0. Then if the Lipschitz constant

LM of M is small enough, problem (4) has exactly one solution.
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Proof. We will follow some ideas in [1], adapted to our case.

The part of existence follows from theorem 1 . Now, let u1 and u2 be two solutions to the

problem . Introduce the function u = u1− u2. Taking it for the test-function in the integral

identities for u1 and u2 , we obtain the relation[
M
(
‖u1‖p1,p

)]p−1
∫

Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
(∇u1 −∇u2) dx =∫

Ω

(f(x, u1)− f(x, u2))(u1 − u2) dx+

∫
Ω

∫
Ω

k(x, y)(H(u1(y))−H(u2(y)))(u1 − u2) dy dx

+

{[
M
(
‖u2‖p1,p

)]p−1

−
[
M
(
‖u1‖p1,p

)]p−1
}∫

Ω

|∇u2|p−2∇u2(∇u1 −∇u2) dx

Now, using the hypotheses on M,H,K and Lemma 1, after some calculations we have

mp−1
0 (p− 1)

∫
Ω

|∇u|2
(
|∇u1|p + |∇u2|p

) p−2
p
dx ≤

c3

∫
Ω

∫
Ω

|k(x, y)|
(
|u1|r−1 + |u2|r−1

)
|u|2 dy dx+ βLp−1

M p [(‖u1‖1,p + ‖u2‖1,p)‖u2‖1,p]
p−1 ‖u‖2

1,p,

(23)

where β = max
s∈[0,Rp1 ]

M(s). It follows from Holder’s inequality and the Sobolev immersions

that∣∣∣∣∫
Ω

∫
Ω

|k(x, y)||u1|r−1|u|2 dy dx
∣∣∣∣ ≤ ‖k‖Lp |u1|r−1

(r−1)p′ |u|
2
2p′ ≤ cr−1

(r−1)p′c
2
2p′‖k‖Lp‖u1‖r−1

1,p ‖u‖2
1,p

where we take 1
2p′
≥ 1

p
− 1

N
. Similar inequality is obtained for u2.

Let us take a constant q ∈
(
p
2
, 1
)
⊆
(

2N
2+N

, 1
)

. Using the inverse Holder’s inequality for

every constant q ∈ (0, 1)(∫
Ω

|g|
q
q−1 dx

) q−1
q
(∫

Ω

|f |q dx
) 1

q

≤
∫

Ω

|f ||g| dx

in (23), we obtain

mp−1
0 (p− 1)

(∫
Ω

|∇u|2q dx
) 1
q
(∫

Ω

(
|∇u1|p + |∇u2|p

) 2−p
p
. q
1−q

dx
) q−1

q ≤(
2c3c

r−1
(r−1)p′c

2
2p′‖k‖LpRr−1

1 + 22p−3R2p−2
1 CβLMm

p−2
1

)
‖u‖2

1,p

(24)

Since p < 2q < 2 , again using Holder’s inequality and the Sobolev embedding W 1,2q ↪→ W 1,p

and noting that 2−p
p
. q
1−q ≤ 1 , we obtain(

mp−1
0 (p− 1)C−2

2q |Ω|
1
θ 2

p−2
2 Rp−2

1

)
︸ ︷︷ ︸

e0

‖u‖2
1,p ≤

(
2c3c

r−1
(r−1)p′c

2
2p′‖k‖LpRr−1

1 + 22p−3R2p−2
1 CβLMm

p−2
1

)
︸ ︷︷ ︸

e1

‖u‖2
1,p

(25)
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with θ = 1− (2−p)q
p(1−q) . Hence it follows that

(e0 − e1)‖u‖2
1,p = 0. (26)

Therefore, if ‖k‖Lp and LM are small enough, we conclude that ‖u‖1,p = 0, and so u = 0. �
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[18] S. I. Pohožaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.) 96

(1975),pp. 152–166.

[19] P. Lindqvist, On the equation − div(|∇u|p−2∇u) + λ|u|p−2u = 0, Proc. Amer. Math.

Soc. 109 (1990) 157164.

[20] J. L. Lions, On some equations in boundary value problems of mathematical physics, in:

Contemporary Developments in Continuum Mechanics and Partial Differential Equa-

tions (Proc. Internat. Sympos., Inst. Mat. Univ. Fed. Rio de Janeiro, Rio de Janeiro,

1977), North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, 1978, pp. 284–

346.
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