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The Convergence Acceleration of

Two-Dimensional Fourier Interpolation

A. B. Nersessian and A. V. Poghosyan

Abstract. Hereby, the convergence acceleration of two-dimensional
trigonometric interpolation for a smooth functions on a uniform
mesh is considered. Together with theoretical estimates some
numerical results are presented and discussed that reveal the po-
tential of this method for application in image processing. Ex-
periments show that suggested algorithm allows acceleration of
conventional Fourier interpolation even for sparse meshes that
can lead to an efficient image compression/decompression algo-
rithms and also to applications in image zooming procedures.
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Introduction

It is well known that Fourier series and Fourier interpolation are powerful
tools for theoretical and applied investigations. The main drawback that
diminishes their strength is the Gibbs phenomenon near the points of sin-
gularities of the approximated function.

Let f be a piecewise smooth function on [−1, 1] with jump points {ak},
−1 = a0 < a1 < · · · < al−1 < 1, 2 ≤ l < ∞. Suppose that f ∈ Cq+1,
q ≥ 0 on each segment [ak, ak+1], k = 1, · · · , l − 2 and also on the segments
[−1, a1], [al−1, 1].

Denote by

Ask = f (k)(as + 0)− f (k)(as − 0), k = 0, · · · , q; s = 1, · · · , l − 1,

A0k = f (k)(−1)− f (k)(1), k = 0, · · · , q
the jumps of f and its derivatives at the points {as}. By {fn} we denote
Fourier coefficients of f

fn =
1

2

∫ 1

−1
f(t)e−iπntdt, n = 0,±1, · · · . (1)
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1 Two-dimensional acceleration

1.1 Basic Notations

For f ∈ C2q[−1, 1]2 denote

f (k,s)(x, y) =
∂k+sf(x, y)

∂xk∂ys
, k, s = 0, · · · , q,

uk(y) = f (k,0)(1, y)− f (k,0)(−1, y), k = 0, · · · , q,

vk(x) = f (0,k)(x, 1)− f (0,k)(x,−1), k = 0, · · · , q,

∆k,s = f (k,s)(1, 1)−f (k,s)(−1, 1)−f (k,s)(1,−1)+f (k,s)(−1,−1), k, s = 0, · · · , q.

By fnm, uk,m and vs,n we denote the following Fourier coefficients

fnm =
1

4

∫ 1

−1

∫ 1

−1
f(x, y)e−iπ(nx+my)dxdy,

uk,m =
1

2

∫ 1

−1
uk(y)e−iπmy, vk,n =

1

2

∫ 1

−1
vk(x)e−iπnx, k = 0, · · · , q.

The next two lemmas can easily be proved by means of integration by
parts (see [4]).

Lemma 1 For any f ∈ C2q+2[−1, 1]2, q ≥ 0 the following formula holds for
n,m 6= 0

fnm =
(−1)n+1

2

q∑
k=0

uk,m
(iπn)k+1

+
(−1)m+1

2

q∑
s=0

vs,n
(iπm)s+1

−

−(−1)n+m

4

q∑
s=0

q∑
k=0

∆k,s

(iπn)k+1(iπm)s+1
+

+
1

4(iπn)q+1(iπm)q+1

∫ 1

−1

∫ 1

−1
f (q+1,q+1)(t, z)e−iπ(nt+mz)dzdt. (2)

Theorem 1 [4] . If f ∈ C2q+4([−1, 1]× [−1, 1]), q ≥ 0 then

lim
N→∞

(2N+1)q+2||f−Sq,N(f)||2 =
22q+3

(2q + 3)π2q+4

∫ 1

−1

(
|ϕ̃q(x)|2 +

∣∣∣ψ̃q(x)
∣∣∣2) dx,

where

ϕ̃q(y) =

∫ 1

−1
Bq(t)ϕq(y − t)dt, ψ̃q(x) =

1

2

∫ 1

−1
Bq(t)ψq(x− t)dt.

ϕq(y) = f (q+1,q+1)(1, y)− f (q+1,q+1)(−1, y),
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ψq(x) = f (q+1,q+1)(x, 1)− f (q+1,q+1)(x,−1)

and

‖f‖ =

(∫ 1

−1
|f(x)|2dx

)1/2

.

Proof. Using (2) and (1) �
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Figure 1: Graph of the function f1(x, y) values (left) as well as (right) values of f1(x, 1)−
f1(x,−1) (blue) and f1(1, y)− f1(−1, y) (red-dashing),−1 ≤ x, y ≤ 1
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Equation references: (1), (2)

Theorems, lemmas, sections references: Lemma 1, Theorem 1, Section 1.1,
Figure 1
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