Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program

Authors

  • Debapriya Biswas Indian Institute of Technology Kharagpur
  • Ipsita Rajwar Indian Institute of Technology Kharagpur

DOI:

https://doi.org/10.52737/18291163-2022.14.11-1-15

Keywords:

Lie Group $\text{SL}(3,\mathbb{R})$, Homogeneous Space, Iwasawa Decomposition, One-Parameter Subgroups, Group Action, Derived Representation, Orbit, Curvature, Fixed Point

Abstract

We investigate the action of the Lie group $\text{SL}(3,\mathbb{R})$ on the two-dimensional homogeneous space. All the one-parameter subgroups (up to conjugacy) of $\text{SL}(3,\mathbb{R})$ are considered. We discuss the orbits and curvatures of these one-parameter subgroups. We also classify these subgroups in terms of fixed points.

References

D. Biswas, The actions of subgroups of $SL_2(R)$ for the Clifford algebra in EPH cases, Commun. Math. Anal., 11 (2011), no. 1, pp. 41-50.

D. Biswas, Projective coordinates and compactification in elliptic, parabolic and hyperbolic 2-D geometry, J. Appl. Anal., 18 (2012), no. 1, pp. 145-158. https://doi.org/10.1515/jaa-2012-0008

D. Biswas, The invariance of cycles in upper half plane under Möbius transformation in EPH cases, J. Anal., Springer, 22 (2014), pp. 13-34.

D. Biswas and S. Dutta, Möbius action of $SL(2;R)$ on different homogeneous spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 92 (2022), no. 1, pp. 23-29. https://doi.org/10.1007/s40010-020-00673-1

D. Biswas and S. Dutta, Geometric invariants under the Möbius action of the group $SL(2;R)$, Kragujev. J. Math., 45 (2021), no. 6, pp. 925-941. https://doi.org/10.46793/kgjmat2106.925b

C. Bonotto, The Erlangen program revisited: A didactic perspective, For the learning of mathematics, 27 (2007), no. 1, pp. 33-38.

S. Brewer, Projective cross-ratio on hypercomplex numbers, Adv. Appl. Clifford Algebras, 23 (2013), no. 1, pp. 1-14. https://doi.org/10.1007/s00006-012-0335-7

S. H. Friedberg, J. I. Arnold, and E. S. Lawrence, Linear algebra, Englewood Cliffs, N.J.: Prentice Hall, 1989.

J. R. Gebert, Perspectives on projective geometry: A guided tour through real and complex geometry, Springer, Heidelberg 2011.

G. Goffer and G. A. Noskov, A few remarks on invariable generation in infinite groups, J. Topol. Anal., 14 (2022), no. 2, pp. 399-420. https://doi.org/10.1142/S1793525320500508

B. C. Hall, Lie groups, Lie algebras and representations, an elementary introduction, Springer-Verlag, 2004.

T. Hawkins, The Erlanger programm of Felix Klein: Reflections on its place in the history of mathematics, Hist. Math., 11 (1984), no. 4, pp. 442-470. https://doi.org/10.1016/0315-0860(84)90028-4

A. Kirillov Jr., An introduction to Lie groups and Lie algebras, Cambridge University Press, 2008.

A. V. Kisil, Isometric action of $SL_2(R)$ on homogeneous spaces, Adv. App. Clifford Algebras, 20 (2010), no. 2, pp. 299-312. https://doi.org/10.1007/s00006-010-0203-2

V. V. Kisil, Erlangen program at large-1: Geometry of invariants, symmetry, integrability and geometry, Methods Appl., 6 (2010), pp. 76-121. https://doi.org/10.3842/SIGMA.2010.076

V. V. Kisil and D. Biswas, Elliptic, parabolic and hyperbolic analytic function theory-0: Geometry of domains, Trans. Inst. Math. of the NAS of Ukraine, 1 (2004), pp. 100-118.

F. Klein, A comparative review on recent research in geometry, M. W. Haskell, Bull, New York, Math. Soc., 1893.

R. M. Koch and F. Lowenthal, On generating subgroups of the affine group on the plane by pairs of infinitesimal transformations, Rocky Mt. J. Math., 6 (1976), no. 1, pp. 119-131. https://doi.org/10.1216/rmj-1976-6-1-119

S. Lang, $SL_2(R)$, Grad. Texts in Math., 105, Springer-Verlag, New York, 1985. https://doi.org/10.1007/978-1-4612-5142-2

J. M. Lee, Introduction to smooth manifolds, Grad. Texts in Math., 218, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21752-9

Downloads

Published

2022-08-16

How to Cite

[1]
D. Biswas and I. Rajwar, “Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program”, Armen.J.Math., vol. 14, no. 11, pp. 1–15, Aug. 2022, doi: 10.52737/18291163-2022.14.11-1-15.