Weighted integral representations of harmonic functions in the unit disc by means of Mittag-Leffler type kernels
DOI:
https://doi.org/10.52737/18291163-2021.13.5-1-11Keywords:
Harmonic Functions in the Unit Disc, Weighted Function Space, Weighted Integral RepresentationAbstract
For weighted $L^p$-classes of functions harmonic in the unit disc, we obtain a family of weighted integral representations with weight function of the type $|w|^{2\varphi}\cdot(1-|w|^{2\rho})^{\beta}$.
References
W. Wirtinger, Über eine minimumaufgabe im gebiet der analytischen functionen, Monatshefte fur Math. und Phys. 39 (1932), pp. 377-384. https://doi.org/10.1007/bf01699078
S. Bergman, Über unendliche Hermitische formen, die zu einem bereiche gehören, nebst anwendungenauf fragen der abbildung durch funktionen von zwei komplexen veränderlichen, Math. Zeit. 29 (1929), pp. 641-677. https://doi.org/10.1007/bf01180554
M.M. Djrbashian, On the representability of certain classes of functions meromorphic in the unit disc, Dokl. Akad. Nauk ArmSSR 3 (1945), no. 1, pp.3-9 (in Russian).
M.M. Djrbashian, On the problem of representability of analytic functions, Soobshch. Inst. Matem. Mekh. Akad. Nauk ArmSSR 2 (1948), pp. 3-40 (in Russian).
A.E. Djrbashian and F.A. Shamoyan, Topics in the theory of $A_α^p$ spaces, Teubner-Texte zur Math. 105 (1988), Leipzig.
M.M. Djrbashian, Weighted integral representations of smooth or holomorphic functions in the unit disc and in the complex plane, J. Contemp. Math. Analysis 28 (1993), no. 4, pp.1-27.
F. V. Hayrapetyan, Weighted integral representations of holomorphic functions in the unit disc by means of Mittag-Leffler type kernels, Proc. NAS RA Math. 55 (2020), no. 4, pp. 15-30. https://doi.org/10.3103/s1068362320040032
E. Titchmarsh, The Theory of Functions, Nauka, Moscow, 1980 (in Russian).
M. Andersson, Formulas for the $L^2$-minimal solutions of the $∂ ∂^-$-equation in the unit ball of $C^N$, Math. Scand. 56 (1985), pp. 43-69. https://doi.org/10.7146/math.scand.a-12087
A. H. Karapetyan, Bounded projections in weighted function spaces in a generalized unit disc, Annales Polonici Mathematici 62 (1995), no. 3, pp. 193-218. https://doi.org/10.4064/ap-62-3-193-218
K.Avetisyan, Bounded projections on mixed norm harmonic spaces, Dokl. NAN Armenii 101 (2001), no. 3, pp. 211-215 (in Russian).
K.Avetisyan, Continuous inclusions and Bergman type operators in n-harmonic mixed norm spaces on the polydisc, J. Math. Anal. Appl. 291 (2004), no. 2, pp. 727-740. https://doi.org/10.1016/j.jmaa.2003.11.039
N. T. Gapoyan, Bergman type operators on the spaces of functions in the ball from $C^n$, Candidate Dissertation, Yerevan, 2017 (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Armenian Journal of Mathematics
This work is licensed under a Creative Commons Attribution 4.0 International License.