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Introduction

Fractional calculus theory has attracted many authors in the last decade.
In particular, fractional differential equations, as a branch of fractional cal-
culus, has proved to be better to describe certain problems than differential
equations of integer order. The properties of genetics and memory make
those equations, accompanied by initial or boundary conditions, important
in many fields of engineering, physics, biology and mechanics (see [8,15,16]).

Many researchers have focused in the existence, uniqueness or multiplic-
ity of solutions for such problems with fractional derivatives. In this regard,
intersting results have been obtained by using some fixed point theorems,
such as the Banach’s fixed point theorem, the Schauder’s fixed point the-
orem, the Krasnoselskii’s fixed point theorem, etc. (see, e.g., [19–22, 25]).
Other techniques can be used, in particular, for the study of solution of frac-
tional boundary value problems at resonance. A boundary value problem
is said to be resonance if the corresponding homogeneous boundary value
problem has a nontrivial solution. One of the most important theory used in
the study of those problems is the coincidence degree of Mawhin (see [9–11]).

In the last years, many researchers have studied the existence of solu-
tions of resonant boundary value problems using coincidence degree theory
(see, e.g., [1–7, 12–14, 17, 18, 23, 24]). In particular, in 2012, Jiang et al. [7]
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investigated the existence of solutions for the fractional differential equation
at resonance {

Dα0+x(t) + f(t, x(t)) = 0, t ∈ [0, 1],
x(0) = 0, x(1) = βx(ξ),

where Dα0+ is the Riemann-Liouville fractional derivative, 1 < α ≤ 2, 0 <
ξ < 1, βξα−1 = 1, and f : [0, 1]×R2 → R satisfies Caratheòdory conditions.

Hu et al. [6], in 2013, studied a two-point boundary value problem for
fractional equation at resonance{

CDα0+x(t) = f(t, x(t), x′(t)), t ∈ [0, 1],
x(0) = 0, x′(0) = x′(1),

where 1 < α ≤ 2, CDα0+ is Caputo fractional derivative and f : [0, 1]×R2 →
R satisfies Caratheódory conditions.

In 2015, Guezane-Lakoud et al. [3] studied the existence of solutions for
the two-point fractional boundary value problem at resonance{

CDα0+x(t) = f(t, x(t), x′(t), x′′(t)), 0 < t < 1,
x(0) = x′(0) = 0, x′′(0) = 2x(1),

where f : [0, 1]× R3 → R is continuous, 2 < α < 3 and CDα0+ is the Caputo
fractional derivative.

Benchohra et al. [2], in 2016, studied the nonlinear implicit value problem
for Caputo fractional derivative of order 0 < α < 1{

CDα0+x(t) = f(t, x(t), CDα0+x(t)), t ∈ [0, T ], T > 0,
x(0) = x(T ),

where f is a continuous function.
Hu and Zhang [5], in 2017, investigated the existence of positive solutions

of the problem with Caputo fractional derivative{
CDα0+x(t) = f(t, x(t)), 0 < t < 1,

x(0) = x(1), x′(0) = x′(1), x′′(0) = x′′(1),

with 2 < α < 3, where f : [0, 1]× R→ R is a continuous function.
In 2020, Wang and Wu [18] studied the fractional differential equation

with Riemann-Liouville fractional derivative and under resonant boundary
conditions {

Dα0+x(t) = f(t, x(t)), 0 < t < 1,

x(0) = 0,Dβ0+u(1) = ηDβ0+u(ξ),

where 1 < α < 2, 0 < β < α− 1, η > 0, 0 < ξ < 1 with ηξα−β−1 = 1.



EXISTENCE OF SOLUTIONS FOR A FBVP AT RESONANCE 3

Inspired by mentioned works, this paper is devoted to the study of the
fractional boundary value problem (FBVP) with Caputo fractional deriva-
tive {

CDαa+x(t)− f(t, x(t), x′(t), x′′(t)) = 0, t ∈ [a, b],
x(a)− βx′(a) = 0, x′(a) = x′(b), x′′(a) = 0,

(1)

where β ∈ R, 0 ≤ a < b, 2 < α < 3 and f : [a, b] × R3 → R is continuous.
The problem will be transformed into the equation Lx = Nx, where L is a
linear operator and N is a given operator between Banach spaces. It will
be shown that, with the present choice of boundary conditions, L is non-
invertible (KerL ≥ 1), and thus, the problem is at resonance. Proving that
L is a Fredholm operator with Fredholm index 0, it is applied coincidence
degree due to Mawhin.

To the best of the author’s knowledge, this problem, with the given
conditions and in a general interval [a, b], has not been studied before.

The paper is organized as follows: in the Section 1, essential results and
definitions are presented as well as Mawhin’s coincidence theory. In Section
2, the main theorem on the existence of solutions to the problem under study
is obtained. Finally, in Section 3, an example is presented to illustrate the
previous results.

1 Preliminaries

In this section, we introduce some notations, definitions and results which
are used thorough this paper.

Definition 1 The Riemann-Liouville fractional integral of order α ∈ R+ of
a function u is defined by

Iαa u(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds,

provided the right-hand side is pointwise defined on (a,∞), where Γ is Euler
Gamma function (given by Γ(α) =

∫∞
0
tα−1e−tdt, α > 0).

Definition 2 The Caputo fractional derivative of order α > 0 of a contin-
uous function u is given by

CDαau(t) =
1

Γ(n− α)

∫ t

a

u(n)(s)

(t− s)α−n+1
ds,

provided that the right-hand side is pointwise defined on (a,∞), where n ∈ N
is such that n− 1 < α < n. If α ∈ N, then CDαau(t) =

(
d
dt

)α
u(t).
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Lemma 1 [8] Let n − 1 < α < n, n ∈ N. If f ∈ Cn([a, b]) or f ∈
ACn([a, b]), then the following relation holds:

(Iαa
CDαa f)(t) = f(t)−

n−1∑
k=0

f (k)(a)

k!
(t− a)k. (2)

Lemma 2 [8] Let α > 0 and f ∈ C([a, b]). Then

(CDαa+Iαa f)(t) = f(t).

In what follows, some notions of operator theory are recalled. Let X and
Y be two normed spaces.

Definition 3 A linear mapping L : dom(L) ⊂ X → Y is said to be a
Fredholm operator with Fredholm index zero if

i. ImL is a closed subset of Y ,

ii. dim KerL = codimImL <∞.

Definition 4 A linear operator P : X → X is said to be a projection if
P 2 = P . In this case, I − P : X → X is also a projection and KerP =
Im(I − P ) and ImP = Ker(I − P ).

Finally, let us recall a useful and well-known theorem [8].

Theorem 1 (Arzelà-Ascoli) Let (X, d) be a compact metric space. A set
of functions F in C(X) is relatively compact if and only if it is bounded and
equicontinuous.

In this paper, we denote X = C2([a, b]) with the usual norm ‖x‖X =
maxt∈[a,b]{‖x‖∞+ ‖x′‖∞+ ‖x′′‖∞} and Y = C([a, b]) with the norm ‖y‖Y =
‖y‖∞, where ‖x‖∞ = maxt∈[a,b] |x(t)|. It is known that X and Y , endowed
with such norms, are Banach spaces.

1.1 Mawhin’s coincidence theory

Let X and Y be two Banach spaces, and consider a linear mapping L :
dom(L) ⊂ X → Y . Assume that L is a Fredholm operator with index zero.
This implies that there exist continuous projectors P : X → X, Q : Y → Y
such that

ImP = KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ.

Consider the restriction of L on domL ∩KerP . It follows that

L|domL∩kerP : domL ∩ kerP → ImL

is an isomorphism. The inverse of L|domL∩KerP is denoted by KP : ImL→
domL ∩KerP .
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Definition 5 Let Ω be an open bounded subset of X with domL∩Ω 6= ∅. A
mapping N is said to be L-compact on Ω if it satisfies

� QN(Ω) is bounded;

� Kp(I −Q)N : Ω→ X is completely continuous.

The existence of a solution of the equation Lx = Nx will be shown using
the following Mawhin’s Theorem.

Theorem 2 [10] Let Ω ⊂ X be open and bounded, L be a Fredholm operator
of index zero and N(Ω) be L-compact. Assume that the following conditions
are satisfied:

(i) Lx 6= λNx for every x ∈ ∂Ω ∩ (domL\KerL) and λ ∈ (0, 1);

(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;

(iii) deg(QN |KerL,Ω ∩KerL, 0) 6= 0, where Q : Y → Y is a projection such
that ImL = KerQ.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

2 Main results

In this section, we apply Mawhin’s coincidence theory to prove the existence
of solution to the fractional boundary value problem (1).

Define the operator L : domL ⊂ X → Y by

(Lx)(t) = (CDαa+x)(t), t ∈ [a, b], (3)

where

domL={x ∈ X : (CDαa+x)(t) ∈ Y, x(a)=βx′(a), x′(a)=x′(b), x′′(a)=0}.

Let N : X → Y be the operator

(Nx)(t) = f(t, x(t), x′(t), x′′(t)), t ∈ [a, b].

Thus, we can rewrite the fractional boundary value problem (1) in the form

Lx = Nx, x ∈ domL.

Lemma 3 Let operator L defined by (3). Then

KerL = {x ∈ X : x(t) = c1(t− a+ β), t ∈ [a, b]}, (4)

ImL =

{
y ∈ Y :

∫ b

a

(b− s)α−2y(s)ds = 0

}
. (5)
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Proof. It follows from Lemma 1 and Lx = 0 that

x(t) = c0 + c1(t− a) + c2(t− a)2.

According to initial condition x′′(a) = 0, we obtain that c2 = 0. From
x(a) = βx′(a), it follows c0 = βc1, and we conclude that

x(t) = βc1 + c1(t− a) = c1(t− a+ β),

where condition x′(a) = x′(b) is verified. Thus, we get (4).
Suppose that y ∈ ImL. Then, there exists x ∈ domL such that y = Lx ∈

Y . Thus, we have

x(t) = c0 + c1(t− a) + c2(t− a)2 +
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds.

Considering the initial conditions x′′(a) = 0 and x(a) = βx′(a), we obtain

x(t) = βc1 + c1(t− a) +
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds.

Since x′(a) = x′(b), we conclude that∫ b

a

(b− s)α−2y(s)ds = 0

and get

ImL ⊂
{
y ∈ Y :

∫ b

a

(b− s)α−2y(s)ds = 0

}
.

On the other hand, suppose y ∈ Y satisfies
∫ b
a
(b − s)α−2y(s)ds = 0. Then

x(t) = (Iαa y)(t) ∈ domL and (CDαa+x)(t) = y(t), thus y ∈ ImL, and (5)
follows. �

Lemma 4 Let L be defined as (3). Then L is a Fredholm operator of Fred-
holm index zero, and the linear continuous projection operators P : X → X
and Q : Y → Y can be defined as

(Px)(t) = x′(a)(t− a+ β),

(Qy)(t) =
α− 1

(b− a)α−1

∫ b

a

(b− s)α−2y(s)ds, t ∈ [a, b].

Furthermore, the operator Kp : ImL→ domL ∩KerP written by

(Kpy)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds, t ∈ [a, b]

is the inverse of L|domL∩KerP .
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Proof. Obviously, ImP = KerL and P 2x = Px. In fact,

(P 2x)(t) = [P (Px)](t) = x′(a)(t− a+ β) = (Px)(t).

For v ∈ KerL, one has (Pv)(t) = v(t), which shows that v ∈ ImP . Con-
versely, for every v ∈ ImP , there is x ∈ X such that v(t) = (Px)(t), and we
conclude that KerL = ImP . Moreover, kerL ∩KerP = {0}, and thus,

X = KerP ⊕KerL.

For y ∈ Y , it holds

(Q2y)(t) = Q

(
α− 1

(b− a)α−1

∫ b

a

(b− s)α−2y(s)ds

)
=

α− 1

(b− a)α−1

∫ b

a

(b− u)α−2
(

α− 1

(b− a)α−1

∫ b

a

(b− s)α−2y(s)ds

)
du

=
α− 1

(b− a)α−1

∫ b

a

(b− s)α−2y(s)ds · α− 1

(b− a)α−1

∫ b

a

(b− u)α−2du

= (Qy)(t).

Thus, the linear operator Q is a continuous projector. For y ∈ ImL, one
has Qy = 0, which shows that y ∈ KerQ, in fact, ImL = KerQ. Moreover,
y−Qy ∈ ImL. It follows that Y = ImL+ImQ, and since ImQ∩ ImL = {0},
we have

Y = ImL⊕ ImQ.

Thus, codimImL = dim ImQ = dim KerL = 1, which shows that L is a
Fredholm operator of index zero.

Let us prove that

Kp : ImL→ domL ∩KerP

is the inverse of L|domL∩KerP . Let y ∈ ImL. We have that (Kpy)(a) =
0 = (Kpy)′(a), and since y ∈ ImL, we obtain (Kpy)′(b) = 0, and thus,
(Kpy)′(a) = (Kpy)′(b). Moreover, (Kpy)′′(a) = 0. Hence, Kp ∈ domL.
Furthermore,

P (Kpy)(t) = (Kpy)′(a)(t− a+ β) = 0,

which shows that Kpy ∈ KerP . Thus, the definition of Kp is reasonable.
For y ∈ ImL, we have

(LKpy)(t) = (CDαa+Iαa y)(t) = y(t). (6)

For x ∈ domL∩KerP , we have x′(a) = x(a) = x′(b) = x′′(a). By Lemma 1,

(KpLx)(t) = (Iαa
CDαa+x)(t) = x(t) + c1 + c2(t− a) + c3(t− a)2, c0, c1, c2 ∈ R,
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which yields
(KpLx)(t) = (Iαa

CDαa+x)(t) = x(t). (7)

Combining (6) and (7), we conclude that Kp = (L|domL∩KerP )−1, and the
proof is complete. �

Lemma 5 Let

η =
(b− a)α

Γ(α + 1)
+

(b− a)α−1

Γ(α)
+

(b− a)α−2

Γ(α− 1)
. (8)

Then
‖Kpy‖X ≤ η‖y‖∞

for any y ∈ ImL.

Proof. For each y ∈ ImL and t ∈ [a, b],

‖Kpy‖X = ‖Kpy‖∞ + ‖(Kpy)′‖∞ + ‖(Kpy)′′‖∞
= ‖Iαa y‖∞ + ‖Iα−1a y‖∞ + ‖Iα−2a y‖∞

≤
(

(b− a)α

Γ(α + 1)
+

(b− a)α−1

Γ(α)
+

(b− a)α−2

Γ(α− 1)

)
‖y‖∞.

�

2.1 Existence of solutions

In order to prove the existence of solutions of the FBVP (1), consider the
following conditions:

(H1) There exist nonnegative functions γ1, γ2, γ3 and δ such that for all
(u, v, w) ∈ R3,

|f(t, u, v, w)| ≤ γ1(t)|u(t)|+ γ2(t)|v(t)|+ γ3(t)|w(t)|+ δ(t), t ∈ [a, b]

with p1 = ‖γ1‖∞, p2 = ‖γ2‖∞, p3 = ‖γ3‖∞, q = ‖δ‖∞ such that
η ·maxt∈[a,b]{p1, p2, p3} < 1 (with η as defined in (8)).

(H2) There exists a constant R > 0 such that for x ∈ domL, if |x′(t)| > R
for all t ∈ [a, b], then∫ b

a

(b− s)α−2f(s, x(s), x′(s), x′′(s))ds 6= 0.

(H3) There exists a positive constant R∗ such that for c1 ∈ R, if |c1| > R∗

for t ∈ [a, b], either

c1f(t, c1(t− a+ β), c1, 0) > 0, t ∈ [a, b], (9)

or
c1f(t, c1(t− a+ β), c1, 0) < 0, t ∈ [a, b]. (10)
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Lemma 6 Assume Ω ⊂ X is an open bounded subset such that domL∩Ω 6=
∅, then N is L-compact on Ω.

Proof. By the continuity of f , QN(Ω) and Kp(I − Q)N(Ω) are bounded.
According to Arzelà-Ascoli theorem, it is sufficient to prove that Kp(I −
Q)N(Ω) ⊂ X is equicontinuous.

Since f is continuous, there exists a constant M > 0 such that

|((I −Q)Nx)(t)| ≤M

for x ∈ Ω, t ∈ [a, b]. Denote KP,Q = Kp(I − Q)N . For a ≤ t1 < t2 ≤ b,
x ∈ Ω, we have

|(KP,Qx)(t2)− (KP,Qx)(t1)|

=
1

Γ(α)

∣∣∣∣∫ t2

a

(t2 − s)α−1(I −Q)Nx(s)ds−∫ t1

a

(t1 − s)α−1(I −Q)Nx(s)ds

∣∣∣∣
≤ M

Γ(α)

[∫ t1

a

(t2 − s)α−1 − (t1 − s)α−1ds+

∫ t2

t1

(t2 − s)α−1ds
]

=
M

Γ(α + 1)
[(t2 − a)α − (t1 − a)α] ,

|(KP,Qx)′(t2)− (KP,Qx)′(t1)|

=
1

Γ(α− 1)

∣∣∣∣∫ t2

a

(t2 − s)α−2(I −Q)Nx(s)ds

−
∫ t1

a

(t1 − s)α−2(I −Q)Nx(s)ds

∣∣∣∣
≤ M

Γ(α− 1)

[∫ t1

a

(t2 − s)α−2 − (t1 − s)α−2ds+

∫ t2

t1

(t2 − s)α−2ds
]

=
M

Γ(α)

[
(t2 − a)α−1 − (t1 − a)α−1

]
,

and

|(KP,Qx)′′(t2)− (KP,Qx)′′(t1)|

=
1

Γ(α− 2)

∣∣∣∣∫ t2

a

(t2 − s)α−3(I −Q)Nx(s)ds

−
∫ t1

a

(t1 − s)α−3(I −Q)Nx(s)ds

∣∣∣∣
≤ M

Γ(α− 2)

[∫ t1

a

(t1 − s)α−3 − (t2 − s)α−3ds+

∫ t2

t1

(t2 − s)α−3ds
]
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≤ M

Γ(α− 1)

[
(t2 − a)α−2 − (t1 − a)α−2 + 2(t2 − t1)α−2

]
.

Thus, when t1 → t1, we have

|(KP,Qx)(t2)− (KP,Qx)(t1)| → 0,

|(KP,Qx)′(t2)− (KP,Qx)′(t1)| → 0,

|(KP,Qx)′′(t2)− (KP,Qx)′′(t1)| → 0.

Consequently, it follows that (KP,Qx)(Ω) ⊂ C([a, b]), (KP,Qx)′(Ω) ⊂ C([a, b])
and (KP,Qx)′′(Ω) ⊂ C([a, b]) are equicontinuous. Thus, KP,Qx : Ω → X is
compact, and we conclude that N is L-compact. �

Lemma 7 Let Ω1 = {x ∈ domL\KerL : Lx = λNx, λ ∈ (0, 1)}. If
conditions (H1) and (H2) hold, then Ω1 is bounded.

Proof. Let x ∈ Ω1, then x ∈ domL\KerL and Lx = λNx, hence λ 6= 0 and
Nx ∈ ImL = KerQ ⊂ Y . Thus, Q(Nx)(t) = 0, which means that∫ b

a

(b− s)α−2f(s, x(s), x′(s), x′′(s))ds = 0.

From hypothesis (H2), we conclude that |x′(t)| ≤ R for all t ∈ [a, b], and
thus, in particular, |x′(a)| ≤ R. Furthermore, for x ∈ Ω1, we have

‖Px‖X = max
t∈[a,b]

{|Px(t)|+ |(Px)′(t)|+ |(Px)′′(t)|}

≤ |x′(a)(t− a+ β)|+ |x′(a)|
≤ |x′(a)|(b− a+ |β|) + |x′(a)|
≤ (b− a+ |β|+ 1)R

and

‖(I − P )x‖X = ‖KpL(I − P )x‖X
≤ η‖L(I − P )x‖∞
= η‖Lx‖∞
≤ η‖Nx‖∞.

Thus,

‖x‖X = ‖x− Px+ Px‖X
≤ ‖Px‖X + ‖(I − P )x‖X
≤ (b− a+ |β|+ 1)R + η‖Nx‖∞. (11)
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with η defined in (8). Under condition (H1), for each x ∈ Ω1, it follows that

‖Nx‖∞ = max
t∈[a,b]

|f(t, x(t), x′(t), x′′(t))|

≤ p(|x(t)|+ |x′(t)|+ |x′′(t)|) + q

= p‖x‖X + q, (12)

where p = maxt∈[a,b]{p1, p2, p3}. From (11) and (12), recalling that ηp < 1
(cf. (H1)), one obtains

‖x‖X ≤
(b− a+ |β|+ 1)R + ηq

1− ηp
,

which shows that Ω1 is bounded. �

Lemma 8 Suppose that (H2) holds. Then the set Ω2 = {x ∈ KerL : Nx ∈
ImL} is bounded.

Proof. Assume that x ∈ Ω2. Then, Nx ∈ ImL and x(t) = c1(t − a + β).
Therefore,∫ b

a

(b− s)α−2(Nx)(s)ds =

∫ b

a

(b− s)α−2f(s, c1(s− a+ β), c1, 0)ds = 0

and thus, from hypothesis (H2), |x′(t)| = |c1| ≤ R for t ∈ [a, b]. This leads
to

‖x‖X = sup
t∈[a,b]
{|c1(t− a+ β)|+ |c1|} ≤ (b− a+ |β|+ 1)R,

and we conclude that Ω2 is bounded. �

Lemma 9 Suppose that (H2) and (9) hold. Then the set Ω3 = {x ∈ KerL :
λx+ (1− λ)QNx = 0, λ ∈ [0, 1]} is bounded.

Proof. For x ∈ Ω3, we have x(t) = c1(t− a+ β) and

λc1(t−a+β)+(1−λ)
α− 1

(b− a)α−1

∫ b

a

(b−s)α−2f(s, c1(s−a+β), c1, 0)ds = 0.

(13)
If λ = 0, then |c1| ≤ R∗ according to (H2). If λ ∈ (0, 1], we also obtains
|c1| < R∗. Otherwise, according to the first part of (H3), we have

c21(t−a+β)+(1−λ)
α− 1

(b− a)α−1

∫ b

a

(b−s)α−2c1f(s, c1(s−a+β), c1, 0)ds > 0

which contradicts (13). Therefore, Ω3 is bounded. �
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With identical arguments, we obtain the following result.

Lemma 10 Suppose that (H2) and (10) hold. Then the set Ω′3 = {x ∈
KerL : −λx+ (1− λ)QNx = 0, λ ∈ [0, 1]} is bounded.

Once we have gathered the essential results, we can prove the following
theorem, which is the main goal of this paper.

Theorem 3 Let f : [a, b]× R3 → R be continuous, and suppose conditions
(H1), (H2) and (H3) are verified. Then the fractional boundary value prob-
lem (1) has at least one solution in X.

Proof. Let Ω be a bounded open subset of Y such that
⋃3
i=1 Ωi ⊂ Ω. It

follows from Lemma 6 that N is L-compact on Ω, and by Lemma 4, L is
a Fredholm operator with index 0. By Lemmas 7, 8, 9 and 10, we get the
following:

1. Lx 6= λNx for every x ∈ ∂Ω ∩ (domL\KerL) and λ ∈ (0, 1);

2. Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;

3. Let H(x, λ) = ±λx + (1 − λ)QNx. We know that H(x, λ) 6= 0 for
x ∈ KerL∩∂Ω. Therefore, by homotopy property of degree, we obtain

deg(QN |KerL,Ω ∩KerL, 0) = deg(H(·, 0),KerL ∩ ∂Ω, 0)

= deg(H(·, 1),KerL ∩ ∂Ω, 0)

= deg(±I,KerL ∩ ∂Ω, 0) 6= 0,

where I is the identity operator.

From 1–3, according to Theorem 2, it follows that Lx = Nx has at least one
solution in domL∩Ω. Therefore, fractional boundary value problem (1) has
at least one solution in X, and the proof is complete. �

3 Example

Consider the following fractional boundary value

 CD
5
2
1+x(t) =

1

4
sinx(t) +

1

5
x′(t) +

1

10
e−|x

′′(t)|, t ∈ [1, 2],

x(1) = 1
2
x′(1), x′(1) = x′(2), x′′(1) = 0,

(14)

where α = 5/2, β = 1/2 and

f(t, x(t), x′(t), x′′(t)) =
1

4
sinx(t) +

1

5
x′(t) +

1

10
e−|x

′′(t)|
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is a continuous function. It follows that

|f(t, u, v, w)| ≤ 1

4
|u(t)|+ 1

5
|v(t)|+ 1

10
|w(t)|,

with p1 = 1/4, p2 = 1/5, p3 = 1/10 and q = 0. It follows that p =
max{p1, p2, p2} = 1/4. Moreover, η = 58/(15

√
π) and consequently, pη < 1.

Thus, condition (H1) is verified.
Let R = 2, and for any x ∈ domL, assume |x′(t)| > R holds for t ∈ [1, 2].

From the continuity of x′, either x′(t) > R or x′(t) < −R for t ∈ [1, 2].
If x′(t) > 2, one has∫ 2

1

(2− s)3/2
[

1

4
sinx(t) +

1

5
x′(t) +

1

10
e−|x

′′(t)|
]

ds

>

(
−1

4
+

2

5

)∫ 2

1

(2− s)3/2ds =
3

50
> 0.

If x′(t) < −2, one has∫ 2

1

(2− s)3/2
[

1

4
sinx(t) +

1

5
x′(t) +

1

10
e−|x

′′(t)|
]

ds

<

(
1

4
− 2

5
+

1

10

)∫ 2

1

(2− s)3/2ds = − 1

50
< 0

Thus, for |x′(t)| > 2,∫ 2

1

(2− s)3/2f(s, u(s), u′(s), u′′(s))ds 6= 0

and condition (H2) is verified.
Finally, we observe that

f

(
t, c1

(
t− 1

2

)
, c1, 0

)
=

1

4
sin

(
c1

(
t− 1

2

))
+

1

5
c1 +

1

10
.

Take R∗ = 1 and assume |c1| > 1. Thus, if c1 > 1,

c1f

(
t, c1

(
t− 1

2

)
, c1, 0

)
> −1

4
+

1

5
+

1

10
=

1

20
> 0

and if c1 < −1, one has

c1f

(
t, c1

(
t− 1

2

)
, c1, 0

)
< −

(
1

4
− 1

5
+

1

10

)
= − 3

20
< 0.

Therefore, condition (H3) is verified.
It follows from Theorem 3 that fractional boundary value problem (14)

has at least one solution.
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