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Introduction

Deep neural networks are machine learning models that have achieved re-
markable success in a number of domains, from visual recognition and speech
to natural language processing and robotics (see [6]).

Recently, Sirignano and Spiliopoulos [7] proposed to solve PDEs using
a mesh-free deep learning algorithm. The method is similar in spirit to
the Galerkin method but with several key changes using ideas from ma-
chine learning. The Galerkin method is a widely-used computational method
which seeks a reduced-form solution to a PDE as a linear combination of
basis functions. The deep learning algorithm, or the deep Galerkin method
(DGM), uses a deep neural network instead of a linear combination of basis
functions. The deep neural network is trained to satisfy the differential op-
erator, initial condition, and boundary conditions using stochastic gradient
descent at randomly sampled spatial points. By randomly sampling spatial
points, the authors avoid the need to form a mesh and instead convert the
PDE problem into a machine-learning problem.
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Kailai and Eric [5] propose a new method that estimates the unknown
distribution by matching the statistical properties between observed and
simulated random processes. The authors approximate the unknown distri-
bution and use a discriminative neural network for computing the statistical
discrepancies between the observed and simulated random processes. Hyeon-
tae et al. [4] construct approximated solutions of differential equations using
the deep neural network. In the aim to resolve an inverse problem in medical
imaging, Chang et al. [3] provide a systematic basis for learning the causal
relationship regarding the structure of the training data suitable for deep
learning to solve highly underdetermined problems.

In this paper, based on the idea proposed in [7], we introduce a new
network architecture model for deep learning and apply it to solve an in-
verse source problem for a degenerate two-dimensional parabolic equation
from final observations. This new deep neural network is trained to sat-
isfy the differential operator, initial condition, boundary, and observability
conditions. Our algorithm is mesh-free.

This work is the continuation of [1], in which we identified the initial
state in a degenerate two-dimensional parabolic equation.

Now, we start by treating this inverse problem theoretically.
Consider the following problem:

∂tu(x, y, t)− div (a(x, y)I2∇u(x, y, t)) = h(t)R(x, y, t),
(x, y) ∈ Ω, t ∈]0;T [,

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈]0;T [,
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(1)

where Ω is an open bounded subset of R2, a ∈ C1(Ω̄), a > 0 everywhere
(a(·, ·) can be equal to zero at any point in Ω), R ∈ L2(Ω×]0, T [), and
h ∈ L2(0, T ).

Let us introduce the following functional space

H1
a(Ω) =

{
u ∈ L2(Ω) :

√
a∇u ∈ L2(Ω) and u(x, y) = 0 for any (x, y) ∈ ∂Ω

}
,

with
‖ u ‖2

H1
a(Ω)=‖ u ‖2

L2(Ω) + ‖
√
a∇u ‖2

L2(Ω) .

Then the weak formulation of problem (1) is∫
Ω

∂tuv dxdy +

∫
Ω

a(x, y)∇u∇vdxdy =

∫
Ω

fvdxdy, v ∈ H1
0 (Ω).

Let us define the bilinear form

B[u, v] =

∫
Ω

a(x, y)∇u∇vdxdy.

The bilinear form B is noncoercive.
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Denote U = {h ∈ H1(0, T ) : ‖h‖H1(0,T ) 6 r}, where r is a real strictly
positive constant. Obviously, the set U is a compact of L2(0, T ).

Inverse Source Problem (ISP). Let u be the solution to (1). Assuming
R is known, determine the time-dependent source part h from the measured
data uobs at the final time u(T, ·).

Remark 1 It should be mentioned that we do not need the supplement dis-
tributed measurements to obtain the numerical solution of the inverse prob-
lem.

We treat the ISP by interpreting its solution as a minimizer of the fol-
lowing optimization problem:

min
h∈U

J(u, h), J(u, h) =
1

2
‖u(·, T )− uobs‖2

L2(Ω) +
ε

2

∥∥h− h̄∥∥2

L2(0,T )

subject to u is a solution to (1),
(2)

where h̄ is an a priori (background state) knowledge of the state hexact, and
ε > 0 is the regularization parameter.

Minimization problem (2) can be equivalently formulated as follows:

min
h∈U
J (u, h),

J (u, h) = J(u, h) +
1

2
‖A(u)− f‖2

L2(Ω) +
1

2
‖u‖2

L2(∂Ω)×L2(0,T )

+
1

2
‖u(t = 0)− u0‖2

L2(Ω),

(3)

where

f(x, y, t) = h(t)R(x, y, t)

and

A(u) = ∂tu(x, y, t)− div (a(x, y)I2∇u(x, y, t)) , (x, y, t) ∈ Ω×]0;T [.

We want to approximate (u(x, y, t), hexact) with a deep neural network

z = (ũ(x, y, t; θu), h̃(t; θh)),

where θu, θh ∈ Rk are the neural network’s parameters. The goal is to find
a set of parameters θ = (θu, θh) such that the function z minimizes the error
J (z). If the error J (z) is small, then ũ(x, y, t; θu) will closely satisfy the PDE
differential operator, boundary conditions, and initial condition. Therefore,
θu which minimizes J produces a reduced-form model ũ(x, y, t; θu) which
approximates the PDE’s solution u(x, y, t).
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1 Well-posedness of the problem

We recall the following result.

Theorem 1 [1] For all f ∈ L2(Ω×]0, T [) and u0 ∈ H1
a(Ω), there exists a

unique weak solution which solves problem (1) and is such that

u ∈ L2
(
0, T ;H1

a(Ω)
)
∩ L∞

(
0, T ;L2(Ω)

)
, ∂tu ∈ L2(0, T ;L2(Ω)),

and

sup
t∈[0,T ]

‖ u(t) ‖2
L2(Ω) +

∫ T

0

‖ ∂tu ‖2
L2(Ω) dt+

∫ T

0

‖
√
a∇u ‖2

L2(Ω)

6 C
(
‖ f ‖2

L2(0,T ;L2(Ω)) + ‖ u0 ‖2
H1

a(Ω)

)
,

with constant C depending on Ω and T .

Lemma 1 Let u be the weak solution of (1) corresponding to a given initial
state u0. Then the input-output operator

ϕ : L2(0, T ) −→ L2
(
0, T ;H1

a(Ω)
)
∩ L∞

(
0, T ;L2(Ω)

)
, ϕ(h) := u, (4)

is Lipschitz continuous.

Proof. Let δh ∈ L2(0, T ) be a small variation such that h + δh ∈ U . Con-
sider δu = uδ − u, where u is the weak solution of (1) with initial state u0

and uδ is the weak solution of (1) with source term hδ = h+ δh. Then δu is
the solution to the following problem:

∫
Ω

∂tδuvdxdy +

∫
Ω

a(x, y)∇δu∇vdxdy =

∫
Ω

δhRvdxdy, v ∈ H1
0 (Ω),

δu(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈]0;T [,
δu(x, y, 0) = 0, (x, y) ∈ Ω.

Hence, δu is a weak solution of (1). By Theorem 1, there exists C, depending
only on Ω and T, such that

‖ δu ‖2
L2(0,T ;H1

a(Ω))6 C ‖ δh ‖2
L2(0,T )

and
‖ δu ‖2

L∞(0,T ;L2(Ω))6 C ‖ δh ‖2
L2(0,T ) .

This implies the Lipschitz continuity of the input-output operator (4). �

An immediate consequence of Lemma 1 is the following result.
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Proposition 1 The functional J is continuous on U , and there exists a
unique minimizer h? ∈ U of J(h), i.e.,

J(h?) = min
h∈U

J(h).

The differentiability of the functional J is deduced from the differentia-
bility of the input-output operator (4) where u is the weak solution of (1)
with time-dependent source part h.

We have the following result.

Proposition 2 Let u be the weak solution of (1) with time-dependent source
part h. Then the input-output operator (4) is G-derivable.

Proof. Let h ∈ U and δh ∈ L2(0, T ) be a small variation such that h+δh ∈
U . Define the function

ϕ′(h) : δh ∈ L2(0, T ) −→ δu,

where δu is the solution to the following variational problem:
∫

Ω

∂tδuvdxdy +

∫
Ω

a(x, y)∇δu∇vdxdy =

∫
Ω

δhRvdxdy, v ∈ H1
0 (Ω),

δu(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈]0;T [,
δu(x, y, 0) = 0, (x, y) ∈ Ω,

and put

φ(h) = ϕ(h+ δh)− ϕ(h)− ϕ′(h)δh.

We want to show that φ(h) = o(δh).
It can be easily verified that function φ is a solution to following varia-

tional problem:
∫

Ω

∂tφvdxdy +

∫
Ω

a(x, y)∇φ∇vdxdy =

∫
Ω

(δh− (δh)2)Rdxdy, v ∈ H1
0 (Ω),

φ(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈]0;T [,
φ(x, y, 0) = 0, (x, y) ∈ Ω.

By the same way that was used in the proof of Lemma 1, we deduce that

‖ φ ‖2
L2(0,T ;H1

a(Ω))6 C ‖ δh− (δh)2 ‖2
L2(0,T )

and

‖ φ ‖2
L∞(0,T ;L2(Ω))6 C ‖ δh− (δh)2 ‖2

L2(0,T ) .

Hence, the input-output operator ϕ : h −→ u is G-derivable. �
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2 Model and algorithm

To approximate (u, hexact), we present a new model described by Fig. 1,
where ũ is the output of layers fully connected and h̃ is a multi-layered
composition output that gives a Taylor series approximation of the time-
dependent source part.

                   

Figure 1: New model

The Taylor cell represented in Fig. 1 gives the following network archi-
tecture:

h =
∑
k6n

Wkt
k,

which presents an expansion in Taylor series of order n.
The deep learning method for the inverse source problem (DL-ISP) ap-

proach approximates h and u by two deep neural networks with common
inputs and loss function. Fig. 1 shows a visualization of the overall archi-
tecture given by

h(t) ' h̃(t) = Nh(t; θh), θh = (W1,W2, ..,Wn),

u(x, y, t) ' ũ(x, y, t) = Nu(x, y, t; θu),

where θu and θh are the parameters of neural networks.
Our goal now is to find θ = (θu, θh) such that uob is an observation of

Nu, and h̄ is the a priori knowledge of Nh.
The cost function is constructed as follows:

J̃ (θ) =
1

2
‖A(ũ)− f‖2

L2(Ω) +
1

2
‖ũ‖2

L2(∂Ω)×L2(0,T ) +
1

2
‖ũ(t = T )− uobs‖2

L2(Ω)

+
1

2
‖ũ(t = 0)− u0‖2

L2(Ω) +
ε

2
‖h̃− h̄‖2

L2(0,T ).

(5)
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The derivatives of ũ can be evaluated using automatic differentiation
(see [2]) since it is parametrizing as a neural network.

Remark 2 During the optimization, we observe that for all given h̃, one
searches ũ which minimizes the difference A(ũ) − h̃(t)R(x, y, t). For that,
the approximation h̃ is involved in the computation of ũ.

DL-ISP Algorithm:

1. Define boundary conditions.

2. Define the architecture of neutral networks by setting the number of
layers, number of neurons in each layer, and activation functions.

3. Generate random training set DM .

4. Initialize the parameter set θ0 and the learning rate α0.

5. Repeat the following until convergence criterion is satisfied:

1. Randomly sample a mini-batch dm of training examples from DM .

2. Compute the loss functional J̃(θn, dm) for the sampled mini-batch dm.

3. Compute the gradient ∇θn J̃(θn, dm) for the sampled mini-batch dm
using backpropagation.

4. Use the estimated gradient to take a descent step at dm with learning
rates to update θn+1:

θn+1 = θn − αn∇θn J̃(θn, dm).

The parameters are updated using the well-known ADAM algorithm
with a decaying learning rate schedule.

6. Save model to be used for any x ∈ Ω and t ∈ ]0, T [ .

We implement the algorithm using TensorFlow, which is software li-
braries for deep learning. TensorFlow has reverse mode automatic differ-
entiation, which allows the calculation of derivatives for a broad range of
functions. For example, TensorFlow can be used to calculate the gradient
of the neural network 1 with respect to x or t, or θ. TensorFlow also allows
the training of models on graphics processing units (GPUs).
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3 Numerical results

For the simulations, in all tests below, we take the hyper parameters L = 3
(i.e., four hidden layers), M = 50 (number of units in each layer) for ũ,
and L = 6 for h̃. The neural network parameters are initialized using the
keras.initializers.glorot normal initialization.

We do several tests, in order to show the performance of our approach.
After training, we test the trained model on a testing data of 3000 couples of
(t, x) which are uniformly generated. After 6000 epoch, we find the following
results.

For the case hexact(t) = sin(πt)cos(πt) + 2 and n = 6, see Fig. 2–4.

 

Figure 2: For t = 0, u constructed (left), uexact (middle) and absolute error
construction (right).

 
Figure 3: For t = T , u constructed (left), uobs (middle) and absolute error
construction (right).

 
Figure 4: h constructed and hexact (left), absolute errors between exact and
predicted sources (right).

For the case hexact(t) = sin(πt)eπt + 2 and n = 6, see Fig. 5–7.
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Figure 5: For t = 0, u constructed (left), uexact (middle) and absolute error
construction (right).

 
Figure 6: For t = T , u constructed (left), uobs (middle) and absolute error
construction (right).

 
Figure 7: h constructed and hexact (left), absolute errors between exact and
predicted sources (right).

Finally, for the case hexact(t) = esin(πt) and n = 6, see Fig. 8–10.

 
Figure 8: For t = 0, u constructed (left), uexact (middle) and absolute error
construction (right).
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Figure 9: For t = T , u constructed (left), uobs (middle) and absolute error
construction (right).

 
Figure 10: h constructed and hexact (left), absolute errors between exact and
predicted sources (right).

4 Conclusion

The deep learning DL-ISP Algorithm for solving PDEs presented in this
paper is mesh-free, which is a key point since meshes become infeasible in
higher dimensions. Instead of forming a mesh, the neural network is trained
on batches of randomly sampled time and space points. Moreover, suggested
algorithm does not have a rounding errors caused by the discretization which
have a very important role for the construction of solution.

The ease of implementing the DL-ISP Algorithm and the independence
of this algorithm to PDEs make the method very efficient. Also, it presents
an efficient way to solve nonlinear equations. But there remains the problem
of the parametrization of the algorithm. The choice of the number of layers,
number of units in each layer, and activation function turns out to be very
important to have a good approximation of the solution.
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