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by systems of conditional distributions

L. A. Khachatryan

Abstract. In this paper, we consider the direct and inverse
problems of the description of lattice positive random fields by
various systems of finite-dimensional (as well as one-point) prob-
ability distributions parameterized by boundary conditions. In
the majority of cases, we provide necessary and sufficient condi-
tions for the system to be a conditional distribution of a (unique)
random field. The exception is Dobrushin-type systems for which
only sufficient conditions are known. Also, we discuss possible
applications of the considered systems.
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Introduction

A random field is a probability measure on the infinite-dimensional space
of its realizations. This definition, which is of great theoretical importance,
is not always suitable for applications. From a practical point of view, it is
much more convenient to deal with systems of finite-dimensional (conditional
or unconditional) distributions equivalently describing a random field.

Systems of finite-dimensional distributions can be subdivided into two
types: systems generated by a random field and those given autonomously
through the main system-forming property of its elements — consistency
conditions. Accordingly, two problems come to the fore. The direct problem
is the problem of unique determination (restoration) of a random field by the
system generated by it. The inverse problem is the problem of the existence
of a random field with an a priori given system of distributions.

Kolmogorov [19] was the first one who considered both the direct and the
inverse problems of the description of random processes by a system of un-
conditional finite-dimensional distributions. Over time, it became clear that
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in many cases, it is convenient to impose restrictions not on unconditional
distributions but on their relations, that is, on conditional distributions.

The idea of specifying a random object through conditional probabilities
is very old and goes back to the concept of a Markov chain. At the end of the
1960s, the approach to describing random objects by systems of conditional
distributions was further developed. In connection with mathematical prob-
lems of statistical physics, Dobrushin [3] and, independently, Lanford and
Ruelle [21] introduced the fundamental concept of a Gibbs random field. Its
definition is based on the idea of specifying a random field through a spe-
cial system of finite-dimensional distributions parameterized by boundary
conditions — Gibbs specification.

Dobrushin’s approach was further developed by Dachian and Nahapetian
in [6–8], where it was shown that the description of Dobrushin-type specifi-
cations (and, consequently, random fields) can be carried out by systems of
consistent one-point distributions parameterized by infinite boundary con-
ditions. Systems of one-point distributions on general measurable spaces
were studied by Fernandez and Maillard [12]. The problem of describing a
random field by a system of consistent one-point distributions with finite
boundary conditions was solved by Dalalyan and Nahapetian [11].

In this paper, we consider various systems of conditional probability dis-
tributions, study their properties, and present for such systems solutions for
both direct and inverse problems. Some of the systems are fully studied for
the first time: the system of finite-dimensional distributions parameterized
by finite boundary conditions (Section 3.1), the system of Palm-type distri-
butions (Section 3.3), and the systems of finite-dimensional and one-point
distributions parameterized by various boundary conditions (Section 4). For
the system of one-point distributions with finite boundary conditions, we
slightly improve known results (Section 3.2). Also, we consider the sys-
tems of finite-dimensional and one-point distributions parameterized by Do-
brushin’s type boundary conditions and formulate the corresponding results
within the framework of the approach developed in the paper (Section 5).

The work is mainly theoretical, but possible areas of application of the
obtained results will be outlined. Some of the statements of this paper (with
proof ideas) are given in [16] (see also [1]). Here, for the sake of simplicity,
we restrict ourselves to considering only positive random fields with a finite
phase space. However, the results can be carried over more general settings.

1 Preliminaries

Let X ⊂ R be a non-empty finite set, 1 < |X| < ∞, and let Zd be a
d-dimensional integer lattice (the set of d-dimensional vectors with integer
components), d ≥ 1.



DESCRIPTION OF RANDOM FIELDS BY SYSTEMS OF CONDITIONAL DISTRIBUTIONS 3

For S ⊂ Zd, denote by W (S) = {V ⊂ S : |V | < ∞} the set of all finite
subsets of S, and let Wn(S) = {V ⊂ S : |V | = n} be the set of n-element
subsets of S, n ≥ 1. When S = Zd, we will use simpler notations W and
Wn, respectively. For convenience of notations, we will usually omit braces
for one-point sets {t}, t ∈ Zd.

A neighborhood system in Zd is a system ∂ = {∂t, t ∈ Zd} of finite-
dimensional subsets ∂t of the lattice Zd such that t /∈ ∂t and s ∈ ∂t if and
only if t ∈ ∂s, s ∈ Zd. If a neighborhood system ∂ is defined, for any V ∈ W ,
put ∂V = {s ∈ Zd\V : s ∈ ∂t, t ∈ V }.

Denote by XS = {x = (xt, t ∈ S) : xt ∈ X{t}, t ∈ S} the set of configura-
tions on S, S ⊂ Zd, i.e., the set of functions defined on S with values in X.
If S = Ø, we assume that XØ = {Ø} where Ø is an empty configuration.
For any S, T ⊂ Zd such that S ∩ T = Ø and any x ∈ XS and y ∈ XT , de-
note by xy the concatenation of x and y, that is, the configuration on S ∪T
coinciding with x on S and with y on T . We assume that concatenation
of x with an empty configuration Ø coincides with x, i.e., xØ = x for all
x ∈ XS, S ⊂ Zd. Finally, for T ⊂ S, denote by xT the restriction of the
configuration x ∈ XS to T .

When some enumeration V = {t1, t2, ..., tn} of the points of V ∈ W is
fixed, for brevity, we will denote by (xu)j the concatenation of configurations
x{t1,...,tj−1} and u{tj+1,...,tn}, that is

(xu)j = x1...xj−1uj+1...un, 1 < j < n,

(xu)1 = u2u3...utn , (xu)n = x1x2...xn−1,
(1)

where xj = xtj , uj = utj , 1 ≤ j ≤ n, n = |V |, and x, u ∈ XV .
For x ∈ XS, S ⊂ Zd, we call the set S the support of configuration x and

denote it by s(x). For any V ∈ W , for sets of configurations with supports
not intersecting with V (or, simply, for configurations outside V ), we will
use the following notations

X̂V =
⋃

Ø 6=S⊂Zd\V

XS, X̂f
V =

⋃
Ø6=S∈W (Zd\V )

XS, X̂f0
V =

⋃
S∈W (Zd\V )

XS.

It is clear that X̂f
V ⊂ X̂V and X̂f

V ⊂ X̂f0
V .

For a sequence Λ = {Λn}n≥1 of sets Λn ∈ W and for S ⊂ Zd, the notation
Λn ↑ S means that the sequence Λ is increasing and converges to S, i.e.,

Λn ⊂ Λn+1 and
∞⋃
n=1

Λn = S. For a family {gΛ,Λ ∈ W (S)} of functions, the

notation lim
Λ↑S

gΛ(xΛ) = a, x ∈ XS, means that for any increasing sequence

{Λn}n≥1 of finite sets converging to S, we have lim
n→∞

gΛn(xΛn) = a. A real-

valued function g on XS is called quasilocal if

lim
Λ↑S

sup
x,y∈XS :xΛ=yΛ

∣∣g(x)− g(y)
∣∣ = 0.
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For any S ⊂ Zd, denote by BS the σ-algebra generated by cylinder
subsets of XS. In the case of a finite subset V ∈ W of the lattice, BV is the
σ-algebra of all subsets of XV .

Probability distribution on (XS,BS) will be denoted by Latin letters
indexed by the set S, for example, PS. In the case S = Zd, the subscript
will be omitted, i.e., we will write P instead of PZd . If S = Ø, there exists
only one probability distribution PØ(Ø) = 1. For T ⊂ S ⊂ Zd and any
probability distribution PS on (XS,BS), denote by PT its restriction (PS)T
on (XT ,BT ). In the case of finite subsets of the lattice V ⊂ Λ ∈ W , one
has

PV (x) = (PΛ)V (x) =
∑

y∈XΛ\V

PΛ(xy), x ∈ XV .

A probability distribution P on (XZd
,BZd

) is called a random field.
For a random field P , the set of probability distributions {PV , V ∈ W}
with PV = (P )V is called its system of finite-dimensional (unconditional)
distributions.

It is well known (see, for instance, the classical work [19] by Kolmogorov)
that any random field is restored by its system of finite-dimensional un-
conditional distributions. In this regard, we will often identify a random
filed P with the system of its finite-dimensional distributions and will write
P = {PV , V ∈ W}. An autonomously given system of finite-dimensional
distributions {PV , V ∈ W} satisfying Kolmogorov’s consistency condition
(PΛ)V = PV for all V ⊂ Λ ∈ W uniquely determines a random field P such
that (P )V = PV , V ∈ W .

A random field P is called positive if its finite-dimensional distributions
are strictly positive, that is, for any V ∈ W , one has PV (x) > 0 for all
x ∈ XV . In the framework of this paper, we will consider only positive
random fields.

For a random field P , a conditional probability Qz
V on XV under a finite

boundary condition z ∈ XS, S ∈ W (Zd\V ), is defined as follows:

Qz
V (x) =

PV ∪S(xz)

PS(z)
, x ∈ XV , V ∈ W. (2)

In the case of infinite boundary condition z ∈ XS, S ⊂ Zd\V , put

Qz
V (x) = lim

Λ↑S
QzΛ
V (x) = lim

Λ↑S

PV ∪Λ(xzΛ)

PΛ(zΛ)
, x ∈ XV , V ∈ W, (3)

where the limit exists for almost all (with respect to the measure P ) config-
urations z. The term “boundary condition” for the configuration z is used
in mathematical statistical physics. In the future, we will adhere to this
terminology.
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Finally, note that conditional probabilities of a random field satisfy the
following Sullivan’s inequalities (see [23])

inf
y∈XS :yΛ=z

Qy
V (x) ≤ Qz

V (x) ≤ sup
y∈XS :yΛ=z

Qy
V (x), (4)

where V,Λ ∈ W , Λ ⊂ S ⊂ Zd\V and x ∈ XV , z ∈ XΛ.

2 Systems of conditional distributions. The

direct and inverse problems

Further, we will study various systems of finite-dimensional probability dis-
tributions parameterized by boundary conditions. Their general structure
(regardless of whether they were generated by a random field or not) has
the following form:

Q = {qzV , z ∈ ΥV , V ∈ W },

where ΥV ⊂ X̂V is the set of admissible boundary conditions defined out-
side V , W ⊂ W is a family of finite subsets of the lattice Zd, and for any
fixed V and boundary condition z ∈ ΥV , the function qzV is a probability
distribution on XV .

Any such system of probability distributions is specified by two sets: W
and Υ = {ΥV , V ∈ W }. As W , one can consider, for example, the set W
of all finite subsets of the lattice Zd or the set Wn of its n-element subsets
(n ≥ 1). A special place here is occupied by the case n = 1, corresponding
to which the system of sets W1 = {{t}, t ∈ Zd} is the collection of all lattice

nodes. As boundary conditions, one can consider the set Υf = {X̂f
V , V ∈ W }

of configurations with finite supports or the set Υ = {X̂V , V ∈ W } of
configurations admitting infinite supports.

The main systems considered in the present paper are the system Qf =

{qzV , z ∈ X̂
f
V , V ∈ W} of finite-dimensional distributions parameterized by

finite boundary conditions and the system Q = {qzV , z ∈ X̂V , V ∈ W} which
is the completion of the system Qf by distributions with infinite boundary
conditions.

All the other studied systems are the subsystems of the mentioned sys-
tems. For example, we will consider a Palm-type system QΠ = {qzV , z ∈
X{t}, t ∈ Zd\V, V ∈ W} and Dobrushin-type system QD = {qzV , z ∈ XZd\V ,

V ∈ W}. Also, we will consider one-point systems Qf
1 = {qzt , z ∈ X̂f

t , t ∈
Zd}, Q1 = {qzt , z ∈ X̂t, t ∈ Zd} and QD

1 = {qzt , z ∈ XZd\{t}, t ∈ Zd}.
The relationships of the studied systems are shown in the following dia-

gram.
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QΠ ⊂ Qf ⊂ Q ⊃ QD

∪ ∪ ∪
Qf

1 ⊂ Q1 ⊃ QD
1

Systems generated by a random field P will be denoted by QP or Q(P ).
The natural requirement for such systems is that QP restores P . In the case
it is necessary to emphasize that the random field P is restored by QP , we
will use the notation PQP

. For a given random field P , we call the problem
of the existence of a system QP such that PQP

= P a direct problem of the
description of random fields. A system QP is a solution to the direct problem
for the given random field P if PQP

= P . Note that for any random field,
there may exist many (equivalent) solutions to the direct problem.

For an a priori given system Q of finite-dimensional probability distribu-
tions, we will call an inverse problem of the description of random fields the
problem of the existence of a random field P such that QP = Q. A random
field P is a solution to the inverse problem for a given system Q if QP = Q.
For the system Q, any solution to the inverse problem will be denoted by PQ.
In this case, QPQ

= Q, and we will say that Q defines the random field PQ.
If PQ is unique, then we will say that Q specifies it. A random field P for
which QP = Q will be called compatible with the system Q.

The solution of the direct problem makes it possible to define various
classes of random fields by imposing corresponding restrictions. For example,
under suitable conditions, Kolmogorov’s system defines classes of Gaussian
random fields, processes with independent increments or stationary random
processes, while the restrictions on the systems of conditional probabilities
lead to such important classes of random fields as Markov and Gibbs random
fields, martingales, etc. The solution of the inverse problem provides the
possibility to construct models of random fields with required properties.

Finally, note that both direct and inverse problems can be formulated
not only for the pair “random field” – “system of finite-dimensional distri-
butions”, but also for the pair “system” – “subsystem”.

3 Systems of distributions with finite bound-

ary conditions

We start by considering systems of finite-dimensional distributions parame-
terized by finite boundary conditions. We will show that each of such systems
specifies (uniquely determines) compatible with it random field. The general
case (Subsection 3.1) and the Palm-type distributions (Subsection 3.3) are
studied in full in the present paper for the first time. One-point distribu-
tions with finite boundary conditions (Subsection 3.2) were the subject of
the work [11] by Dalalyan and Nahapetian.
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3.1 System of finite-dimensional distributions with fi-
nite boundary conditions

Let P = {PV , V ∈ W} be a random field and let Qf
P = {Qz

V , z ∈ X̂
f
V , V ∈

W} be a system of its conditional probabilities (distributions) with finite
boundary conditions (see (2)). The system Qf

P will be called the finite-
conditional distribution of the random field P or, in short, its f–distribution.

From the probabilistic point of view, the definition of the system Qf
P is

quite natural. This system is mentioned, for example, in [9].
Let us show that Qf

P is a solution to the direct problem for the random
field P .

Theorem 1 Any random field is restored by its f–distribution.

Proof. It is enough to note that finite-dimensional distributions {PV , V ∈
W} of the random field P and its finite-conditional probabilities Qf

P =

{Qz
V , z ∈ X̂

f
V , V ∈ W} are connected by the following relation

PV (x) =

∑
y∈XI

Qx
I (y)

Qy
V (x)

−1

, x ∈ XV , V ∈ W, (5)

where I ∈ W (Zd\V ). Indeed, taking (2) into account, we can write∑
y∈XI

Qx
I (y)

Qy
V (x)

=
∑
y∈XI

PI(y)

PV (x)
=

1

PV (x)
.

�

To solve the inverse problem associated with the system Qf
P , first of

all, it is necessary to answer the following question: does the system Qf
P

possess such properties (consistency conditions) which allow restoring the
random field P without taking into account the fact that the elements of
Qf
P are generated by P? If such characterizing properties are found, one can

expect that for an a priori given system Qf of distributions satisfying these
properties, the inverse problem will have a solution. That is, there will exist
a random field PQf , the f–distribution Qf (PQf ) of which coincides with Qf .

As it will be shown below, for the system Qf
P , such characterizing prop-

erty is the following one: for any disjoint sets V, I ∈ W and boundary

conditions z ∈ X̂f
V ∪I , it holds

Qz
V ∪I(xy) = Qz

V (x)Qzx
I (y), x ∈ XV , y ∈ XI . (6)

The verification of these relations for the conditional probabilities of a ran-
dom field is trivial.
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A system Qf = {qzV , z ∈ X̂f
V , V ∈ W} of strictly positive probability

distributions qzV on XV parameterized by finite boundary conditions z ∈ X̂f
V ,

V ∈ W , will be called a specification with finite boundary conditions (or f–
specification) if its elements satisfy the following consistency conditions: for

all disjoint sets V, I ∈ W and all configurations x ∈ XV , y ∈ XI , z ∈ X̂V ∪I ,
it holds

qzV ∪I(xy) = qzV (x)qzxI (y). (7)

It is not difficult to see that f–distribution Qf
P of a random field P forms

an f–specification.
Note that the positivity condition imposed on the elements of the con-

sidered system is due to the fact that in this paper, we concentrate on the
problem of the description of positive random fields. The inverse problem
can be solved under less restrictive positivity conditions using the ideas ap-
plied in [8] (see also [18]).

The following result takes place.

Theorem 2 Any f–specification specifies compatible with it random field.

To prove this theorem, we need the following properties of the elements
of f–specification.

Lemma 1 Let Qf = {qzV , z ∈ X̂f
V , V ∈ W} be an f–specification. Then

for any disjoint sets V, I ∈ W and all configurations x, u ∈ XV , y, v ∈ XI ,

z ∈ X̂f0
V ∪I , it holds

qzyV (x)qzxI (v)qzvV (u)qzuI (y) = qzyV (u)qzuI (v)qzvV (x)qzxI (y). (8)

Further, for any pairwise disjoint sets V, I, J ∈ W and any configurations

x ∈ XV , y ∈ XI , w ∈ XJ , z ∈ X̂f0
V ∪I∪J , one has

qzwV (x)qzxI (y)qzyJ (w) = qzwI (y)qzyV (x)qzxJ (w). (9)

Proof. Tacking into account the consistency of the elements of Qf , for any

disjoint sets V, I ∈ W and all configurations x, u ∈ XV , y, v ∈ XI , z ∈ X̂f
V ∪I ,

we can write

qzyV (x)qzxI (v)qzvV (u)qzuI (y) =
qzV ∪I(xy)

qzI (y)
· q

z
V ∪I(xv)

qzV (x)
· q

z
V ∪I(uv)

qzI (v)
· q

z
V ∪I(uy)

qzV (u)
=

=
qzV ∪I(uy)

qzI (y)
· q

z
V ∪I(uv)

qzV (u)
· q

z
V ∪I(xv)

qzI (v)
· q

z
V ∪I(xy)

qzV (x)
= qzyV (u)qzuI (v)qzvV (x)qzxI (y).
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To verify relation (8) in the case z = Ø, note that due to (7), for any pairwise
disjoint sets V, I,Λ ∈ W and any configurations x ∈ XV , y ∈ XI , z ∈ XΛ,
we have

qyV ∪Λ(xz)

qxI∪Λ(yz)
=
qyV (x)

qxI (y)
. (10)

Then, using (10), (7) and (8) with z 6= Ø, we can write

qyV (x)

qxI (y)
· q

v
V (u)

quI (v)
=
qyV ∪Λ(xz)

qxI∪Λ(yz)
· q

v
V ∪Λ(uz)

quI∪Λ(vz)
=
qyΛ(z)qzyV (x)

qxΛ(z)qzxI (y)
· q

v
Λ(z)qzvV (u)

quΛ(z)qzuI (v)
=

=
qyΛ(z)qzyV (u)

quΛ(z)qzuI (y)
· q

v
Λ(z)qzvV (x)

qxΛ(z)qzxI (v)
=
qyV ∪Λ(uz)

quI∪Λ(yz)
· q

v
V ∪Λ(xz)

qxI∪Λ(vz)
=
qyV (u)

quI (y)
· q

v
V (x)

qxI (v)
.

Further, from the consistency conditions (7), it follows that for any pair-
wise disjoint sets V, I, J ∈ W and any configurations x ∈ XV , y ∈ XI ,

w ∈ XJ , z ∈ X̂f
V ∪I∪J , we have

qzwV (x)qzxI (y)qzyJ (w) =
qzV ∪J(xw)

qzJ(w)
· q

z
V ∪I(xy)

qzV (x)
· q

z
I∪J(yw)

qzI (y)
=

=
qzI∪J(yw)

qzJ(w)
· q

z
V ∪I(xy)

qzI (y)
· q

z
V ∪J(xw)

qzV (x)
= qzwI (y)qzyV (x)qzxJ (w).

To verify relation (9) in the case z = Ø, note that due to (7), it follows
that for any disjoint sets V, I ∈ W and all configurations x ∈ XV , y ∈ XI ,

z ∈ X̂V ∪I , it holds
qzV (x)qzxI (y) = qzI (y)qzyV (x). (11)

Then for any pairwise disjoint sets V, I, J ∈ W and any configurations x ∈
XV , y ∈ XI , w ∈ XJ , we can write

qwV (x)qwxI (y) = qwI (y)qwyV (x),
qyJ(w)qywV (x) = qyV (x)qyxJ (w),
qxI (y)qxyJ (w) = qxJ(w)qxwI (y).

Multiplying these relations, we obtain (9) with z = Ø. �

Proof of Theorem 2 Let Qf = {qzV , z ∈ X̂
f
V , V ∈ W} be an f–specification.

For any V ∈ W and x ∈ XV , put

PV (x) =
qyV (x)

qxI (y)

(∑
α∈XV

qyV (α)

qαI (y)

)−1

, (12)

where y ∈ XI , I ∈ W
(
Zd\V

)
. Let us show that this formula is correct (the

values of PV do not depend on the choice of y and I), and the family PQf =
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{PV , V ∈ W} is a consistent in Kolmogorov’s sense system of probability
distributions.

First, we verify that the values of PV do not depend on the choice of y.
From (8), it follows that for any configuration v ∈ XI , we have

qyV (x)

qxI (y)
· q

v
V (u)

quI (v)
=
qvV (x)

qxI (v)
· q

y
V (u)

quI (y)
,

and hence,

qyV (x)

qxI (y)

(∑
u∈XV

qyV (u)

quI (y)

)−1

=
qvV (x)

qxI (v)

(∑
u∈XV

qvV (u)

quI (v)

)−1

.

Now we show that the values of PV do not depend on the choice of I.
Let J ∈ W (Zd\V ) be another set. First, suppose that J ∩I = Ø. According
to (9) with z = Ø, for any x, α ∈ XV , y ∈ XI , w ∈ XJ , we have

qwV (x)qxI (y)qyJ(w) = qwI (y)qyV (x)qxJ(w)

and
qwV (α)qαI (y)qyJ(w) = qwI (y)qyV (α)qαJ (w).

Taking the ratio of the corresponding parts of these two equalities, we obtain

qwV (x)

qxJ(w)
· q

y
V (α)

qαI (y)
=
qyV (x)

qxI (y)
· q

w
V (α)

qαJ (w)
.

From here it follows that

qwV (x)

qxJ(w)

(∑
α∈XV

qwV (α)

qαJ (w)

)−1

=
qyV (x)

qxI (y)

(∑
α∈XV

qyV (α)

qαI (y)

)−1

.

Suppose now that I ∩ J = S 6= Ø. It is sufficient to show that for any
x, α ∈ XV , y ∈ XI\S, w ∈ XJ\S and z ∈ XS, one has

qzwV (x)

qxJ(zw)
· q

zy
V (α)

qαI (zy)
=
qzyV (x)

qxI (zy)
· q

zw
V (α)

qαJ (zw)
.

According to (7), this relation is equivalent to

qzwV (x)

qzxJ\S(w)
· q

zy
V (α)

qzαI\S(y)
=

qzyV (x)

qzxI\S(y)
· q

zw
V (α)

qzαJ\S(w)
,

which holds true due to (9).
From (12), it obviously follows that the function PV is a probability

distribution on XV , V ∈ W . Further, let us verify that the system {PV , V ∈
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W} is consistent in Kolmogorov’s sense. Using (7) and (11), for any disjoint
sets V,Λ ∈ W and all x ∈ XV , we can write

∑
v∈XΛ

PV ∪Λ(xv) =
∑
v∈XΛ

qyV ∪Λ(xv)

qxvI (y)

 ∑
α∈XV ,β∈XΛ

qyV ∪Λ(αβ)

qαβI (y)

−1

=

=
∑
v∈XΛ

qyV (x)qyxΛ (v)qxΛ(v)

qxI (y)qxyΛ (v)

 ∑
α∈XV ,β∈XΛ

qyV (α)qyαΛ (β)qαΛ(β)

qαI (y)qαyΛ (β)

−1

=

=
qyV (x)

qxI (y)

∑
v∈XΛ

qxΛ(v)

∑
α∈XV

qyV (α)

qαI (y)

∑
β∈XΛ

qαΛ(β)

−1

=

=
qyV (x)

qxI (y)

( ∑
α∈XV

qyV (α)

qαI (y)

)−1

= PV (x),

where y ∈ XI and I ∈ W
(
Zd\(V ∪ Λ)

)
. Thus, we showed that there exists

a random field PQf = {PV , V ∈ W} constructed by f–specification Qf .
Let us show that PQf is compatible with Qf , that is, that the f–distri-

bution Qf (PQf ) = {Qz
V , z ∈ X̂

f
V , V ∈ W} of the random field PQf coincides

with Qf . Applying (2), (12) and (11), for any disjoint sets V,Λ ∈ W and all
x ∈ XV , z ∈ XΛ, we can write

Qz
V (x) =

PV ∪Λ(xz)

PΛ(z)
=

=
qyV ∪Λ(xz)

qxzI (y)

 ∑
α∈XV ,β∈XΛ

qyV ∪Λ(αβ)

qαβI (y)

−1

· q
z
I (y)

qyΛ(z)

∑
β∈XΛ

qyΛ(β)

qβI (y)
=

=
qyΛ(z)qyzV (x)qzV (x)

qzI (y)qzyV (x)

 ∑
α∈XV ,β∈XΛ

qyΛ(β)qyβV (α)qβV (α)

qβI (y)qβyV (α)

−1

qzI (y)

qyΛ(z)

∑
β∈XΛ

qyΛ(β)

qβI (y)
=

= qzV (x)

∑
β∈XΛ

qyΛ(β)

qβI (y)

∑
α∈XV

qβV (α)

−1 ∑
β∈XΛ

qyΛ(β)

qβI (y)
= qzV (x),

where y ∈ XI and I ∈ W
(
Zd\(V ∪ Λ)

)
.

It remains to note that PQf is a unique random field compatible with

Qf . Indeed, if P̂ is another random field compatible with Qf , then Qf

P̂
=
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Qf = Qf
P , and by Theorem 1, P̂ = P . Therefore, Qf specifies PQf . �

Note that formula (12) can be written in the following equivalent form

PV (x) =

∑
β∈XI

qxI (β)

qβV (x)

−1

, x ∈ XV , V ∈ W, (13)

where I ∈ W
(
Zd\V

)
. Indeed, for any y ∈ XI , we can writeqyV (x)

qxI (y)

(∑
α∈XV

qyV (α)

qαI (y)

)−1
−1

=
∑
α∈XV

qxI (y)qyV (α)

qyV (x)qαI (y)
=

=
∑
α∈XV

qxI (y)qyV (α)
∑
β∈XI

qαI (β)

qyV (x)qαI (y)
=
∑
α∈XV

∑
β∈XI

qxI (y)qyV (α)qαI (β)qβV (x)

qyV (x)qαI (y)qβV (x)
=

=
∑
α∈XV

∑
β∈XI

qxI (β)qβV (α)qαI (y)qyV (x)

qyV (x)qαI (y)qβV (x)
=
∑
β∈XI

qxI (β)

qβV (x)

∑
α∈XV

qβV (α) =
∑
β∈XI

qxI (β)

qβV (x)
,

where we used (8) and the fact that
∑
β∈XI

qαI (β) =
∑

α∈XV

qβV (α) = 1.

Note also that the results of Theorems 1 and 2 can be formulated in the
following equivalent form.

Theorem 3 A system Qf = {qzV , z ∈ X̂
f
V , V ∈ W} of strictly positive finite-

dimensional distributions parameterized by finite boundary conditions is an
f–distribution of the unique random field P compatible with it if and only if
the elements of Qf satisfy the consistency conditions (7).

From the theorems above, it follows that there is a one-to-one correspon-
dence between a random field P and an f–specification Qf . In this regard,
the random field P can be identified with its system of finite-conditional

distributions, and one can write P = {Qz
V , z ∈ X̂f

V , V ∈ W}. Therefore,
there are no statements about random fields that cannot be expressed in
terms of their f–distributions.

For example, in terms of Qf , estimates for mixing coefficients for random
fields with weakly dependent components can be obtained. Following Do-
brushin, Dalalyan and Nahapetian (see Theorem 2 in [11]) gave an estimate
for the difference between the conditional and unconditional distributions of
a random field, expressed by the difference between its one-point conditional
distributions with finite boundary conditions that differ at a point. Below
we present another proof of this result.
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Proposition 1 Let P = {Qz
V , z ∈ X̂f

V , V ∈ W} be a random field. Then
for any V,Λ ∈ W , V ∩ Λ = Ø, the following relation holds

sup
x∈XV ,z∈XΛ

|PV (x)−Qz
V (x)| ≤

∑
t∈V

∑
s∈Λ

ρts,

where

ρts = sup

w∈X̂f
{t,s}

sup
y,v∈Xs

sup
x∈Xt

|Qwy
t (x)−Qwv

t (x)| , t, s ∈ Zd.

Proof. For any disjoint sets V,Λ ∈ W and any x ∈ XV , z ∈ XΛ, we have

PV (x)−Qz
V (x) =

∑
w∈XΛ

PΛ(w) (Qw
V (x)−Qz

V (x)) .

Let Λ = {s1, s2, ..., sm} be some enumeration of the points of Λ, m = |Λ| ≥ 1.
Using notations (1), we can write

Qw
V (x)−Qz

V (x) =
m∑
k=1

(
Q

(zw)kwk

V (x)−Q(zw)kzk
V (x)

)
.

Let now V = {t1, t2, ..., tn} be some enumeration of the points of V , n =
|V | ≥ 1. For each k, 1 ≤ k ≤ m, denoting for brevity y = (zw)k, α = zk and
β = wk, we have

Q
(zw)kwk

V (x)−Q(zw)kzk
V (x) = Qyβ

V (x)−Qyα
V (x) =

=
(
Qyβ
t1 (x1)−Qyα

t1 (x1)
)
Qyβx1

V \{t1}(xV \{t1})+

+Qyα
t1 (x1)

(
Qyαx1

V \{t1}(xV \{t1})−Q
yαx1

V \{t1}(xV \{t1})
)
.

Similarly, for the bracketed expression in the right-hand summand, we obtain

Qyαx1

V \{t1}(xV \{t1})−Q
yαx1

V \{t1}(xV \{t1}) =

=
(
Qyx1β
t2 (x2)−Qyx1α

t2 (x2)
)
Qyx1x2β
V \{t2}(xV \{t1,t2})+

+Qyαx1
t2 (x2)

(
Qyx1x2β
V \{t2}(xV \{t1,t2})−Q

yx1x2α
V \{t2} (xV \{t1,t2})

)
.
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Continuing this process the required number of times, we get

Qyβ
V (x)−Qyα

V (x) =
n∑
j=1

Qyα
t1 (x1)Qyαx1

t2 (x2) · ... ·Qyαx1x2...xj−2

tj−1
(xj−1)·

·
(
Q
yx1...xj−1β
tj (xj)−Q

yx1...xj−1α
tj (xj)

)
Q
yβx1...xj
V \{t1,...,tj}(xV \{t1,...,tj}) =

=
n∑
j=1

Qyα
{t1,...,tj−1}(x{t1,...,tj−1})·

·
(
Q
yx1...xj−1β
tj (xj)−Q

yx1...xj−1α
tj (xj)

)
Q
yβx1...xj
{tj+1,...,tn}(x{tj+1,...,tn}).

Finally, we obtain

Qw
V (x)−Qz

V (x) =
m∑
k=1

n∑
j=1

Q
(zw)kzk
{t1,...,tj−1}(x{t1,...,tj−1})·

·
(
Q
x1...xj−1(zw)kwk

tj (xj)−Q
x1...xj−1(zw)kzk
tj (xj)

)
Q
x1...xj(zw)kwk

{tj+1,...,tn} (x{tj+1,...,tn}).

From here it follows that

sup
x∈XV ,z∈XΛ

|PV (x)−Qz
V (x)| ≤

≤ sup
x∈XV ,z∈XΛ

∑
w∈XΛ

PΛ(w)
m∑
k=1

n∑
j=1

Q
(zw)kzk
{t1,...,tj−1}(x{t1,...,tj−1})·

·
∣∣∣Qx1...xj−1(zw)kwk

tj (xj)−Q
x1...xj−1(zw)kzk
tj (xj)

∣∣∣Qx1...xj(zw)kwk

{tj+1,...,tn} (x{tj+1,...,tn}) ≤

≤
m∑
k=1

n∑
j=1

ρtjsk =
∑
t∈V

∑
s∈Λ

ρts.

�

Further, it seems more natural to give the definition of a Markov random
field in terms of the elements of its f–distribution (see, for example, [14]).
Namely, a random field P will be called a Markov random field (with respect
to a neighborhood system ∂ on Zd) if the elements of its f–distribution Qf

P

satisfy the following conditions: for all V ∈ W and z ∈ X̂f
V such that

∂V ⊂ s(z), it holds

Qz
V (x) = Qz∂V

V (x), x ∈ XV . (14)
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Note that Dobrushin [2] defined a Markov random field somewhat differently,
imposing restrictions on its conditional probabilities with infinite boundary
conditions. In Section 5, we will show the equivalence of these definitions.

Remark 1 The collection of the elements of Qf with the same boundary
condition is consistent in Kolmogorov’s sense. Namely, for fixed Λ ∈ W and
z ∈ XΛ, it holds ∑

y∈XI

qzV ∪I(xy) = qzV (x), x ∈ XV , (15)

where V, I ∈ W (Zd\Λ), V ∩ I = Ø. This means that the system QΛ,z =
{qzV , V ∈ W (Zd\Λ)} of probability distributions defines a unique random
field PΛ,z on (XZd\Λ,BZd\Λ).

Remark 2 It follows directly from (7) that for the elements of Qf , it holds

qzV ∪I(xy)qzxI (v) = qzV ∪I(xv)qzxI (y), (16)

where x ∈ XV , y, v ∈ XI , z ∈ X̂f
V ∪I , V, I ∈ W , V ∩ I = Ø.

On the other hand, if the elements of some system of strictly positive
finite-dimensional distributions parameterized by finite boundary conditions
satisfy conditions (15) and (16), then they satisfy conditions (7) as well. To
verify this, it is enough to take a sum of both sides of (16) over all v ∈ XI .

Relations (16), in their turn, hold if and only if for any V ∈ W , s ∈ Zd\V
and x, u ∈ XV , y ∈ Xs, z ∈ X̂f

V ∪{s}, the following equality takes place

qzV ∪{s}(xy)qzyV (u) = qzV ∪{s}(uy)qzyV (x). (17)

Remark 3 The elements of Qf for any V ∈ W and z ∈ X̂f
V , satisfy the

following relations

qzV (x) =
qzyV (x)

qzxI (y)

(∑
α∈XV

qzyV (α)

qzαI (y)

)−1

, x ∈ XV , (18)

where y ∈ XI , I ∈ W
(
Zd\(V ∪ s(z))

)
. Note that for z = Ø, these relations

lead to (12).

Since f–distribution Qf
P of any random field P forms an f–specification,

all the above remarks stay true for Qf
P .

The connection between unconditional and finite-conditional distribu-
tions of a random field P can be also expressed in the following form:

PV (x) =
∑
z∈XΛ

Qz
V (x)PΛ(z), x ∈ XV ,
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where V,Λ ∈ W , V ∩ Λ = Ø. These relations can be considered as a
finite-dimensional analogue of the well-known DLR–equations (named after
Dobrushin, Lanford and Ruelle) in statistical physics. It is easy to see that
the solution to the direct problem given by formula (5), when substituted
into this equation, leads to an identity. In terms of DLR–equations, the
solution to the inverse problem for Qf can be stated as follows.

Theorem 4 Let Qf be an f–specification. Then there exists a unique ran-
dom field P satisfying the finite-volume DLR-equations

PV (x) =
∑
z∈XΛ

qzV (x)PΛ(z), x ∈ XV , V,Λ ∈ W,V ∩ Λ = Ø. (19)

In this case, Qf
P = Qf .

Proof. Let us show that the functions defined by (12) form a solution to
equations (19). Taking into account (12) and (13), for any pairwise disjoint
sets V, I,Λ ∈ W , we obtain

∑
z∈XΛ

qzV (x)PΛ(z) =
∑
z∈XΛ

qzV (x)
qxΛ(z)

qzV (x)
·

(∑
α∈XΛ

qxΛ(α)

qαV (x)

)−1

=

=

(∑
α∈XΛ

qxΛ(α)

qαV (x)

)−1

= PV (x).

Therefore, there exists a random field P finite-dimensional distributions
of which are defined by formula (12). As it was shown in the proof of
Theorem 2, Qf

P = Qf . Finally, since any random field is uniquely determined
by its finite-conditional distribution, the random field P is unique. �

3.2 System of one-point distributions with finite bound-
ary conditions

For a random field P , the set Qf
1(P ) = {Qz

t , z ∈ X̂
f
t , t ∈ Zd} of one-point

conditional probabilities with finite boundary conditions will be called the
one-point finite-conditional distribution of the random field P , or, in short,
its 1f–distribution. The system Qf

1(P ) was introduced in [11].
Let us consider the direct problem for a random field P in terms of the

system Qf
1(P ).

Theorem 5 Any random field is restored by its 1f–distribution.



DESCRIPTION OF RANDOM FIELDS BY SYSTEMS OF CONDITIONAL DISTRIBUTIONS 17

Proof. It is sufficient to note that the finite-dimensional distributions {PV ,
V ∈ W} of the random field P and its one-point finite-conditional probabil-

ities Qf
1(P ) = {Qz

t , z ∈ X̂
f
t , t ∈ Zd} are connected in the following way

PV (x) =

(∑
y∈Xs

Q
xt1
s (y)

Qy
t1(xt1)

)−1

Q
xt1
t2 (xt2) ·Qxt1xt2

t3 (xt3) · ... ·Qxt1 ...xt|V |−1

t|V |
(xt|V |),

where x ∈ XV , y ∈ Xs, s ∈ Zd\V , and V = {t1, t2, ..., t|V |} is some enumer-
ation of the points of V ∈ W . �

The inverse problem for a system of one-point distributions parameter-
ized by finite boundary conditions was first considered in [11]. Below we
slightly improve the result of [11].

As the main characterizing property of the elements of the system Qf
1(P ),

we consider the following easily verifiable property: for all t, s ∈ Zd and

x ∈ X t, y ∈ Xs, z ∈ X̂f
{t,s}, it holds

Qz
t (x)Qzx

s (y) = Qz
s(y)Qzy

t (x). (20)

A system Qf
1 = {qzt , z ∈ X̂

f
t , t ∈ Zd} of strictly positive one-point prob-

ability distributions qzt on X t parameterized by finite boundary conditions

z ∈ X̂f
t , t ∈ Zd, will be called a 1–specification with finite boundary condi-

tions (or 1f–specification) if its elements satisfy the following consistency

conditions: for all t, s ∈ Zd and x ∈ X t, y ∈ Xs, z ∈ X̂f
{t,s}, it holds

qzt (x)qzxs (y) = qzs(y)qzyt (x). (21)

Theorem 6 Any 1f–specification specifies compatible with it random field.

In the proof of this result, we need the following properties of the elements
of Qf

1 .

Lemma 2 The elements of 1f–specification Qf
1 satisfy the following relation

qzyt (x)qzxs (v)qzvt (u)qzus (y) = qzyt (u)qzus (v)qzvt (x)qzxs (y) (22)

for all t, s ∈ Zd and x, u ∈ X t, y, v ∈ Xs, z ∈ X̂f0
{t,s}. Further, for any points

t, s, r ∈ Zd and any configurations x ∈ X t, y ∈ Xs, w ∈ Xr, one has

qwt (x)qxs (y)qyr (w) = qws (y)qyt (x)qxr (w). (23)
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Proof. For any t, s ∈ Zd and x, u ∈ X t, y, v ∈ Xs, z ∈ X̂f
{t,s}, by (21), we

can write

qzs(y)qzyt (x) · qzt (x)qzxs (v) · qzs(v)qzvt (u) · qzt (u)qzus (y) =

= qzt (x)qzxs (y) · qzs(v)qzvt (x) · qzt (u)qzus (v) · qzs(y)qzyt (u),

whence, after the necessary reductions, follows (22). Now let us show
that (22) stays true for z = Ø as well. For different points t, s, r ∈ Zd
and any configurations x, u ∈ X t, y, v ∈ Xs, z ∈ Xr, according to (21), we
have

qyt (x)qxyr (z) · qxs (v)qxvr (z) · qvt (u)quvr (z) · qus (y)quyr (z) =

= qyr (z)qzyt (x) · qxr (z)qzxs (v) · qvr (z)qzvt (u) · qur (z)qzus (y)

and

qxs (y)qxyr (z) · qyt (u)quyr (z) · qus (v)quvr (z) · qvt (x)qxvr (z) =

= qxr (z)qzxs (y) · qyr (z)qzyt (u) · qur (z)qzus (v) · qvr (z)qzvt (x).

Dividing the first of these equalities by the second one, we obtain

qyt (x)qxs (v)qvt (u)qus (y)

qxs (y)qyt (u)qus (v)qvt (x)
=
qzyt (x)qzxs (v)qzvt (u)qzus (y)

qzxs (y)qzyt (u)qzus (v)qzvt (x)
.

It remains to note that the right-hand side of the relation above is equal to
one.

The validity of (23) can be shown using the same reasonings that we
used to verify (9). �

Proof of Theorem 6 Let Qf
1 = {qzt , z ∈ X̂

f
t , t ∈ Zd} be a 1f–specification.

For all V ∈ W and x ∈ XV , put

PV (x) = Pt1(xt1)q
xt1
t2 (xt2) · qxt1xt2t3 (xt3) · ... · qxt1 ...xt|V |−1

t|V |
(xt|V |), (24)

where

Pt(u) =
qyt (u)

qus (y)

(∑
α∈Xt

qyt (α)

qαs (y)

)−1

, u ∈ X t, (25)

y ∈ Xs, s ∈ Zd\V , and V = {t1, t2, ..., t|V |} is some enumeration of the
points of V . First, let us verify the correctness of these formulas.

Using the same reasoning as in the proof of Theorem 2 and relations (22)
and (23), one can verify that the right-hand side of (25) does not depend
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on the choice of y ∈ Xs and s ∈ Zd\V . Further, note (see the derivation of
formula (13)) that

Pt(u) =

(∑
β∈Xs

qus (β)

qβt (u)

)−1

, u ∈ X t. (26)

Let us show that the right-hand side of (24) does not depend on the
enumeration of the elements of V . It is sufficient to verify this statement for
enumerations t1, ..., tk−1, tk, ..., t|V | and t1, ..., tk, tk−1, ..., t|V | differing in the
position of two successive points tk−1 and tk, 2 ≤ k ≤ |V |. Thus, we need to
check that the following equalities hold true:

q
xt1 ...xtk−2

tk−1
(xtk−1

)q
xt1 ...xtk−2

xtk−1

tk
(xtk) = q

xt1 ...xtk−2

tk
(xtk)q

xt1 ...xtk−2
xtk

tk−1
(xtk−1

)

and
Pt1(xt1)q

xt1
t2 (xt2) = Pt2(xt2)q

xt2
t1 (xt1).

The first relation directly follows from the consistency conditions (21). The
second one becomes obvious if we use formula (26) with s = t2 and y = xt2
to express Pt1 and formula (25) with s = t1 and y = xt1 for Pt2 .

It is not difficult to see that for each V ∈ W , the function PV defined
by (24) is a probability distribution on XV , and the system {PV , V ∈ W}
is consistent in Kolmogorov’s sense. Thus, there exists a random field PQf

1

such that
(
PQf

1

)
V

= PV , V ∈ W . For this random field, for any t ∈ Zd and

z ∈ X̂f
t , we have

Qz
t (x) =

P{t}∪s(z)(xz)

Ps(z)(z)
=
Ps(z)(z)qzt (x)

Ps(z)(z)
= qzt (x), x ∈ X t,

and hence, Qf
1(PQf

1
) = Qf

1 . According to Theorem 5, PQf
1

is the unique

random field compatible with Qf
1 . �

Note that in Theorem 1 in [11], the conditions (21) together with the
relations (22) with z = Ø were considered as consistency conditions for the
system Qf

1 . However, as we have seen in Lemma 2, the relations (22) follow
from (21), and thus, for the existence of the unique random field PQf

1
it

is necessary and sufficient to require the fulfilment only of the consistency
conditions (21).

From the theorems above, it follows that there is a one-to-one correspon-
dence between a random field P and an 1f–specification Qf

1 . In this regard,
the random field P can be identified with its system of one-point finite-

conditional distributions, and one can write P = {Qz
t , z ∈ X̂

f
t , t ∈ Zd}.

Now let us consider the relation between the systems Qf
1 and Qf . The

following statement holds true.
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Theorem 7 A set Qf
1 = {qzt , z ∈ X̂

f
t , t ∈ Zd} of strictly positive one-point

probability distributions parameterized by finite boundary conditions is a one-

point subsystem of an f–specification Qf = {qzV , z ∈ X̂f
V , V ∈ W} if and

only if Qf
1 is a 1f–specification. The specification Qf is uniquely determined

by Qf
1 .

Proof. The necessity follows from the fact that the consistency condi-
tions (21) of the elements of 1f–specification Qf

1 coincide with the prop-
erty (11) of the elements of f–specification Qf for V = {t} and I = {s}.
Let us prove the sufficiency.

Let Qf
1 = {qzt , z ∈ X̂

f
t , t ∈ Zd} be a 1f–specification. For any V ∈ W ,

put

qzV (x) = qzt1(xt1)q
zxt1
t2 (xt2) · ... · q

zxt1xt2 ...xt|V |−1

t|V |
(xt|V |), (27)

where V = {t1, t2, ..., t|V |} is some enumeration of the points of the set V .
By (21), the values of qzV do not depend on the way of enumeration of the

points of V . Moreover, as it is easy to see, for each V ∈ W and z ∈ X̂f
V , the

function qzV is a strictly positive probability distribution on XV .

Let us show that the system Qf = {qzV , z ∈ X̂f
V , V ∈ W} forms an f–

specification. For any disjoint sets V = {t1, t2, ..., t|V |}, I = {s1, s2, ..., s|I|} ∈
W and configurations x ∈ XV , y ∈ XI , z ∈ X̂f

V ∪I , one has

qzV ∪I(xy) = qzt1(xt1)q
zxt1
t2 (xt2) · ... · q

zxt1xt2 ...xt|V |−1

t|V |
(xt|V |)·

·qzxs1 (ys1)q
zxys1
s2 (ys2) · ... · q

zxys1ys2 ...ys|I|−1
s|I| (ys|I|) = qzV (x)qzxI (y).

Hence, the elements of Qf satisfy the consistency conditions (7).
The uniqueness of Qf follows from the construction of its elements. �

The elements of an f–specification Qf can be also constructed by the
elements of 1f–specification Qf

1 in the following way first introduced in [8]
for Dobrushin-type specifications. Note that this approach can be also used
under less restrictive conditions than strict positivity of the elements of
specifications.

Proposition 2 Let Qf
1 = {qzt , z ∈ X̂f

t , t ∈ Zd} be a 1f–specification. For

any V ∈ W and x ∈ XV , z ∈ X̂f
V , put

qzV (x) =
n∏
j=1

q
z(xu)j
tj (xj)

q
z(xu)j
tj (uj)

·

(∑
α∈XV

n∏
j=1

q
z(αu)j
tj (αj)

q
z(αu)j
tj (uj)

)−1

, (28)
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where u ∈ XV , V = {t1, t2, ..., tn} is some enumeration of the points of the
set V , |V | = n, and we used notations (1). Then the system Qf = {qzV , z ∈
X̂f
V , V ∈ W} forms an f–specification.

Formula (28) can be equivalently written in the following recurrent form

qz{s}∪V (yx) =
qzus (y)qzyV (u)

qzus (v)qzyV (x)

 ∑
α∈XV ,β∈Xs

qzus (β)qzβV (α)

qzus (v)qzβV (u)

−1

,

x, u ∈ XV , y, v ∈ Xs, z ∈ X̂f
V ∪{s}, s ∈ Zd\V , V ∈ W .

The correctness of formula (28) can be checked in the same way as it
was done in the paper [8] (see also [18]). The equivalence of formulas (27)
and (28) derives from the following chain of equalities

qz{s}∪V (yx) =
qzus (y)qzyV (x)

qzus (v)qzyV (u)

 ∑
α∈XV ,β∈Xs

qzus (β)qzβV (α)

qzus (v)qzβV (u)

−1

=

=
qzus (y)

qzyV (u)

(∑
β∈Xs

qzus (β)

qzβV (u)

)−1

qzyV (x) = qzs(y)qzyV (x).

were we used (18).

Constructed by Qf
1 f–specification Qf inherits properties of Qf

1 , for ex-
ample, Morkov property. We say that an f–specification Qf is Markov if its
elements satisfy the Markov property (14). The following statement holds
true.

Proposition 3 For an f–specification Qf to be Markov it is necessary and
sufficient that its one-point subsystem Qf

1 satisfy the Markov property.

Proof. The necessity is obvious. Let us prove the sufficiency. Let the

elements of Qf
1 satisfy the Markov property: for all t ∈ Zd and z ∈ X̂f

t such
that ∂t ⊂ s(z), it holds

qzt (x) = qz∂tt (x), x ∈ X t,

where ∂ = {∂t, t ∈ Zd} is a neighborhood system in Zd. For V ∈ W , let
Λ ∈ W (Zd\V ) be such that ∂V ⊂ Λ. Since for any t ∈ V , one has

∂t ⊂ ∂V ∪ (V \{t}) ⊂ Λ ∪ (V \{t}),
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for all z ∈ XΛ and x, u ∈ XV , we can write

n∏
j=1

q
z∂V (xu)j
tj (xj)

q
z∂V (xu)j
tj (uj)

=
n∏
j=1

q
(z∂V (xu)j)∂tj
tj (xj)

q
(z∂V (xu)j)∂tj
tj (uj)

=
n∏
j=1

q
(zΛ(xu)j)∂tj
tj (xj)

q
(zΛ(xu)j)∂tj
tj (uj)

=

=
n∏
j=1

q
z(xu)j
tj (xj)

q
z(xu)j
tj (uj)

,

where V = {t1, t2, ..., tn} is some enumeration of the points of V , n = |V |.
Hence, using (28) and the Markov property of the elements of Qf

1 , we obtain

qzV (x) =
n∏
j=1

q
z(xu)j
tj (xj)

q
z(xu)j
tj (uj)

·

(∑
α∈XV

n∏
j=1

q
z(αu)j
tj (αj)

q
z(αu)j
tj (uj)

)−1

=

=
n∏
j=1

q
z∂V (xu)j
tj (xj)

q
z∂V (xu)j
tj (uj)

·

(∑
α∈XV

n∏
j=1

q
z∂V (αu)j
tj (αj)

q
z∂V (αu)j
tj (uj)

)−1

= qz∂VV (x).

�

Moreover, the following statement is true.

Proposition 4 Let Qf
1 be a 1f–specification and let Qf be the constructed

by it f–specification. Then PQf
1

= PQf .

Proof. It is sufficient to note that f–specification Qf is uniquely defined
by 1f–specification Qf

1 , while each of the systems Qf
1 and Qf specifies a

compatible with it random field. �

3.3 System of Palm-type distributions

Let P = {PV , V ∈ W} be a random field and let QΠ
P = {Qz

V , z ∈ X t, t ∈
Zd\V, V ∈ W} be a family of its conditional probabilities under the condition
at a point defined by (2) for S = {t}, t ∈ Zd. The system QΠ

P will be called
the Palm distribution of the random field P .

Theorem 8 Any random field is restored by its Palm distribution.

Proof. It is sufficient to note that for any V ∈ W and x ∈ XV , the following
relations hold

PV (x) =

(∑
y∈Xs

Qxt
s (y)

Qy
t (xt)

)−1

Qxt
V \{t}

(
xV \{t}

)
,

where t ∈ V , s ∈ Zd\V . �
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It is clear that under a fixed boundary condition, conditional probabilities
are consistent in Kolmogorov’s sense. Moreover,

Qy
t (x)Qx

s∪V (yu) = Qx
s(y)Qy

t∪V (xu),

where t, s ∈ Zd, V ∈ W (Zd\{t, s}) and x ∈ X t, y ∈ Xs, u ∈ XV . It is
these two relations between the Palm-type conditional probabilities that we
propose to consider as consistency conditions for the elements of a system
of distributions parameterized by a boundary condition at a point.

A set QΠ =
{
qzV , z ∈ X t, t ∈ Zd\V, V ∈ W

}
of strictly positive probabil-

ity distributions qzV on XV parameterized by boundary condition z ∈ X t at
a point t, t ∈ Zd will be called a Palm specification if its elements satisfy the
following consistency conditions:
1. for all t, s ∈ Zd, V ∈ W (Zd\{t, s}) and x ∈ X t, y ∈ Xs, u ∈ XV , it holds

qyt (x)qxs∪V (yu) = qxs (y)qyt∪V (xu); (29)

2. for all disjoint sets I, V ∈ W , t ∈ Zd\(V ∪ I) and x ∈ XV , z ∈ X t, it
holds ∑

y∈XI

qzV ∪I(xy) = qzV (x). (30)

The solution to the inverse problem for the system QΠ is given in the
next theorem.

Theorem 9 Any Palm specification specifies compatible with it random field.

Proof. Let QΠ =
{
qzV , z ∈ X t, t ∈ Zd, V ∈ W (Zd\{t})

}
be a Palm specifi-

cation. For any t ∈ Zd, define Pt by formula (25), and for any V ∈ W ,
|V | > 1, put

PV (x) = Pt(xt)q
xt
V \{t}(xV \{t}), x ∈ XV , (31)

where t ∈ V .
First, let us verify the correctness of these formulas. By (29), for all

t, s ∈ Zd, V ∈ W (Zd\{t, s}) and x, u ∈ X t, y, v ∈ Xs, z ∈ XV , we have

qyt (x)qxs∪V (yz) · qxs (v)qvt∪V (xz) · qvt (u)qus∪V (vz) · qus (y)qyt∪V (uz) =

= qxs (y)qyt∪V (xz) · qvt (x)qxs∪V (vz) · qus (v)qvt∪V (uz) · qyt (u)qus∪V (yz),

and thus,
qyt (x)qxs (v)qvt (u)qus (y) = qyt (u)qus (v)qvt (x)qxs (y).

Moreover, for any t, s, r ∈ Zd and x ∈ X t, y ∈ Xs, v ∈ Xr, we can write

qyt (x)qx{s,r}(yv) · qxr (v)qv{t,s}(xy) · qvs (y)qy{t,r}(xv) =

= qxs (y)qx{t,r}(xv) · qvt (x)qx{s,r}(yv) · qyr (v)qv{t,s}(xy),
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and hence,

qvt (x)qxs (y)qyr (v) = qvs (y)qyt (x)qxr (v).

The application of the reasoning used in the proof of Theorem 6 and the
obtained relations allows one to verify the correctness of formula (25) and
the fact that for all t, s ∈ Zd and x ∈ X t, y ∈ Xs, it holds

Pt(x)qxs (y) = Ps(y)qyt (x).

Using this equality and the consistency conditions (29), for all t, s ∈ V ⊂ W
and x ∈ X t, y ∈ Xs, u ∈ XV \{t,s}, we obtain

Pt(x) · qxV \{t}(yu) = Pt(x)qxs (y) · qxyV \{t,s}(u) =

= Ps(y)qyt (x) · qxyV \{t,s}(u) = Ps(y) · qyV \{s}(xu).

Therefore, the values of PV do not depend on the choice of t ∈ V , V ∈ W ,
and hence, formula (31) is also correct.

It is easy to see that for all V ∈ W , the function PV defined by (31)
is a probability distribution on XV . Let us show that the elements of the
system {PV , V ∈ W} are consistent in Kolmogorov’s sense. For all V, I ∈ W ,
V ∩ I = Ø and x ∈ XV , with the usage of (30), we can write∑

y∈XI

PV ∪I(xy) = Pt(xt)
∑
y∈XI

qxt(V \{t})∪I(xV \{t}y) =

= Pt(xt)q
xt
V \{t}(xV \{t}) = PV (x),

where t ∈ V . Hence, there exists a random field PQΠ = {PV , V ∈ W}. It
remains to note that according to (31), one has QΠ(PQΠ) = QΠ, and by
Theorem 8, PQΠ is uniquely determined by QΠ. �

Obtained one-to-one correspondence between a random field P and a
Palm specification QΠ allows one to identify the random field P with its
Palm distributions and write P = {Qz

V , z ∈ X t, t ∈ Zd\V, V ∈ W}. This
approach, in a certain sense, is dual to the one using the system Qf

1 . Indeed,
the system Qf

1 consists of probability distributions indexed by one-point
subsets of the lattice and parameterized by boundary conditions in finite
subsets, while for the elements of QΠ, on the contrary, one-point sets of the
lattice are supports for the boundary conditions and finite subsets stand for
the indexes. Palm systems can be convenient for studying lattice models of
point random processes.

The relation between f– and Palm specifications is revealed in the fol-
lowing statements.
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Theorem 10 A set QΠ =
{
qzV , z ∈ X t, t ∈ Zd, V ∈ W (Zd\{t})

}
of strictly

positive finite-dimensional probability distributions parameterized by bound-
ary conditions at a point is a subsystem of an f–specification Qf = {qzV , z ∈
X̂f
V , V ∈ W} if and only if QΠ is a Palm specification. The specification Qf

is uniquely determined by QΠ.

Proof. Let us start with the necessity. According to (10), the elements of

an f–specification Qf = {qzV , z ∈ X̂
f
V , V ∈ W} satisfy the following relations

qyt∪V (xu)

qxs∪V (yu)
=
qyt (x)

qxs (y)

for all V ∈ W , t, s ∈ Zd\V and x ∈ X t, y ∈ Xs, u ∈ XV . These are the
consistency conditions (30) for the elements of Palm specification QΠ. The
consistency conditions (29) for the elements of QΠ are obtained by taking
the sum of both sides of (7) over all y ∈ XI (see Remark 1). Hence, a sub-
system of an f–specification, which consists of the elements parameterized
by boundary conditions at a point, form the Palm specification.

Now, let QΠ = {Qz
V , z ∈ X t, t ∈ Zd\V, V ∈ W} be a Palm specification.

For any V,Λ ∈ W , V ∩ Λ = Ø and z ∈ XΛ, put

qzV (x) =
qztV ∪(Λ\{t})(xzΛ\{t})

qztΛ\{t}(zΛ\{t})
, x ∈ XV , (32)

where t ∈ Λ. Let us show that the values of qzV do not depend on the
choice of t ∈ Λ. Indeed, according to the consistency conditions (29), for
any t, s ∈ Λ, we have

qztV ∪(Λ\{t})(xzΛ\{t}) =
qzts (zs)q

zs
V ∪(Λ\{s})(xzΛ\{s})

qzst (zt)
,

qztΛ\{t}(zΛ\{t}) =
qzts (zs)q

zs
Λ\{s}(zΛ\{s})

qzst (zt)
.

Then

qztV ∪(Λ\{t})(xzΛ\{t})

qztΛ\{t}(zΛ\{t})
=
qzts (zs)q

zs
V ∪(Λ\{s})(xzΛ\{s})q

zs
t (zt)

qzst (zt)qzts (zs)q
zs
Λ\{s}(zΛ\{s})

=
qzsV ∪(Λ\{s})(xzΛ\{s})

qzsΛ\{s}(zΛ\{s})
.

Further, according to (30), for each V ∈ W and z ∈ X̂f
V , the function

qzV is a probability distribution on XV and strictly positive by construction.
To complete the proof, it remains to show that the elements of the system

Qf = {qzV , z ∈ X̂f
V , V ∈ W} satisfy the consistency conditions (7). Let



26 L. A. KHACHATRYAN

I, V,Λ ∈ W be pairwise disjoint non-empty sets. For any x ∈ XV , y ∈ XI ,
z ∈ XΛ and any point t ∈ Λ, using (32), we can write

qzV ∪I(xy) =
qztV ∪I∪(Λ\{t})(xyzΛ\{t})

qztΛ\{t}(zΛ\{t})
=

=
qztV ∪(Λ\{t})(xzΛ\{t})

qztΛ\{t}(zΛ\{t})
·
qztV ∪I∪(Λ\{t})(xyzΛ\{t})

qztV ∪(Λ\{t})(xzΛ\{t})
= qzV (x)qzxI (y).

�

Theorem 11 Let QΠ be a Palm specification and Qf be the one constructed
by it f–specification. Then PQΠ = PQf .

4 Systems with various boundary conditions

In this section, we introduce and study systems of finite-dimensional and
one-point distributions parameterized by various (both finite and infinite)
boundary conditions.

4.1 System of finite-dimensional distributions with var-
ious boundary conditions

For a given random field P = {PV , V ∈ W}, consider the set QP = {Qz
V , z ∈

X̂V , V ∈ W} of its conditional probabilities that includes, in addition to
finite-conditional probabilities Qf

P , the conditional probabilities with infi-
nite boundary conditions, determined by formula (3). By the martingale
convergence theorem, the limits on the right-hand side of (3) exist for al-
most all (in measure P ) infinite boundary conditions. All other elements
of QP with infinite boundary conditions can be set arbitrary. Thus, for P ,
there are various systems QP , all of which will be called the full conditional
distribution of the random field P .

Note that in his now-classic work [2], Dobrushin defined a conditional
distribution of a random field as a subsystem QD

P of the system QP con-
sisting only of those conditional probabilities Qz

V for which s(z) = Zd\V ,
V ∈ W . It seems more natural to call the system QP , which includes condi-
tional probabilities parameterized by any (both infinite and finite) boundary
conditions, a conditional distribution of a random field. However, following
the tradition, we leave the term conditional distribution for the Dobrushin-
type conditional distribution considered in Section 5. The same approach is
applied to the terms specification and full specification.
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Since the full conditional distribution QP contains the subsystem Qf
P ,

which restores the random field P , the system QP is also a solution to the
direct problem.

Theorem 12 Any random field is restored by its full conditional distribu-
tion.

It is not difficult to see that the elements of QP are connected by the
relations (6) for all finite and P -a.e. infinite boundary conditions. Thus, the
relation (6) establishes a connection between those elements of QP whose
boundary conditions differ no more than in a finite set. The relation (3),
which is valid for P -a.e. configurations, reflects the connection between the
elements with finite and infinite boundary conditions. We consider these
relations as characterizing properties of QP .

The set Q = {qzV , z ∈ X̂V , V ∈ W} of strictly positive probability dis-
tributions qzV on XV parameterized by boundary conditions z outside V ,
V ∈ W , will be called a full specification if its elements satisfy the following
consistency conditions:
1. for all disjoint sets V, I ∈ W and all configurations x ∈ XV , y ∈ XI ,

z ∈ X̂V ∪I , it holds
qzV ∪I(xy) = qzV (x)qzxI (y); (33)

2. for all V ∈ W and S ⊂ Zd\V ,

qzV (x) = lim
Λ↑S

qzΛV (x), x ∈ XV , z ∈ XS. (34)

A full specification Q is called quasilocal if its elements are quasilocal as
functions on boundary conditions. Note that for a quasilocal specification
Q, the convergence in (34) is uniform with respect to the boundary condition
z ∈ XS for all V ∈ W and S ⊂ Zd\V .

Let us consider now the inverse problem of the description of random
fields for a given full specification.

Theorem 13 Any full specification Q specifies a random field PQ such that
QPQ

= Q (for PQ-a.e. boundary conditions).

Proof. Let Q = {qzV , z ∈ X̂V , V ∈ W} be a full specification. Using the
same reasoning as in the proof of Theorem 2, we construct a random field
PQ = {PV , V ∈ W} such that Qz

V = qzV for any V ∈ W and any finite

boundary condition z ∈ X̂f
V .

Further, for any z ∈ X̂V and any increasing sequence of (finite) sets
Λ = {Λn}n≥1 such that Λ ↑ s(z), we have

PV ∪Λn(xzΛn)

PΛn(zΛn)
= q

zΛn
V (x), x ∈ XV , n ≥ 1.
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As n → ∞, the left part of the obtained relation PQ-a.e. converges to the
conditional probability Qz

V (x) of the random field PQ, while its right-hand

side converges to qzV (x) by (34). Hence, for PQ–a.e. z ∈ X̂V , we have

Qz
V (x) = lim

n→∞

PV ∪Λn(xzΛn)

PΛn(zΛn)
= lim

n→∞
q
zΛn
V (x) = qzV (x), x ∈ XV , V ∈ W,

that is, QPQ
= Q for PQ-a.e. infinite boundary conditions. According to

Theorem 12, the random field PQ is uniquely determined by Q. �

Let us return to the consideration of the conditional distribution QP of
the random field P . Since the elements ofQP are defined for P -a.e. boundary
conditions, the random field P may have many versions of its full conditional
distribution. As it was mentioned above, the elements of any version of the
conditional distribution satisfy relations (33) and (34) for P -a.e. boundary
conditions. Moreover, the following statement takes place.

Proposition 5 For any random field P , there exists a version QP of its
full conditional distribution, the elements of which satisfy the consistency
conditions (33) for all boundary conditions.

Proof. Let QP = {Qz
V , z ∈ X̂V , V ∈ W} be a version of the full conditional

distribution of the random field P . Denote by XV the set of such configu-
rations z ∈ XS, S ⊂ Zd\V , for which the limit in the right-hand side of (3)
exists, V ∈ W , and let X =

⋃
V ∈W

XV . In this case, P (X ) = 1.

Let us verify that z ∈X if and only if zx ∈X for any V ∈ W (Zd\s(z))
and x ∈ XV . Indeed, let z ∈ X . From the definition of X , it follows that
for any disjoint sets I, V ∈ W (Zd\s(z)), the following limits exist for all
x ∈ XV and y ∈ XI :

lim
Λ↑s(z)

PV ∪I∪Λ(xyzΛ)

PΛ(zΛ)
= Qz

V ∪I(xy), lim
Λ↑s(z)

PV ∪Λ(xzΛ)

PΛ(zΛ)
= Qz

V (x).

But in this case, there also exists the limit

Qzx
I (y) = lim

Λ↑s(z)

PV ∪I∪Λ(xyzΛ)

PV ∪Λ(xzΛ)
= lim

Λ↑s(z)

PV ∪I∪Λ(xyzΛ)

PΛ(zΛ)
· lim

Λ↑s(z)

PΛ(zΛ)

PV ∪Λ(xzΛ)
=

=
Qz
V ∪I(xy)

Qz
V (x)

.

Now, let zx /∈ X for any V ∈ W (Zd\s(z)) and x ∈ XV . If z ∈ X , then
from the fact proved above, it follows that zx ∈ X , which leads towards a
contradiction. Hence, z /∈X .
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Further, for all V ∈ W and x ∈ XV , put qzV (x) = Qz
V (x) if z ∈ X and

qzV (x) = |X|−|V | if z /∈X . It is clear that the system Q = {qzV , z ∈ X̂V , V ∈
W} is a version of the full conditional distribution of the random field P .
Let us show that the elements of Q satisfy the consistency conditions (33)
for all z.

If z ∈X , we have

qzV ∪I(xy) = Qz
V ∪I(xy) = Qz

V (x)Qzx
I (y) = qzV (x)qzxI (y)

for any I, V ∈ W (Zd\s(z)), I ∩ V = Ø and x ∈ XV , y ∈ XI . In the case
z /∈X , it also holds that zx /∈X , and hence,

qzV ∪I(xy) = |X|−|V ∪I| = |X|−|V | · |X|−|I| = qzV (x)qzxI (y).

�

In the case P has a quasilocal version of its full conditional distribution,
both sets of the consistency conditions hold true for all boundary conditions.
Moreover, the following result takes place, that first was proved in [9] for
Dobrushin-type boundary conditions only (see Proposition 11 below).

Proposition 6 If a random field P has a quasilocal version QP of its full
conditional distribution, then this version is unique and forms a full specifi-
cation.

Proof. Let QP be a quasilocal version of the full conditional distribution of
the random field P . Then the limits in the right-hand side of (3) exist for
all boundary conditions, that is, the elements of QP satisfy the consistency
conditions (34). The validity of the consistency conditions (33) directly
follows from the definition of conditional probabilities.

Let us verify that the quasilocal version is unique. Assume the opposite.
Let QP = {Qz

V , z ∈ X̂V , V ∈ W} and FP = {F z
V , z ∈ X̂V , V ∈ W} be two

quasilocal versions of the full conditional distribution of the random field P .
Then for all V ∈ W and x ∈ XV , the function

fS(z) = Qz
V (x)− F z

V (x), z ∈ XS, S ⊂ Zd\V,

equals to zero for P -a.e. z ∈ XS, i.e.,

P (XS
0 ) = P ({z ∈ XS : fS(z) 6= 0}) = 0.

Further, from the quasilocality of QP and FP , it follows the quasilocality
of fS, and thus, for any ε > 0, there exists Λ0 ∈ W (S) such that for all
Λ ⊃ Λ0, Λ ∈ W (S), it holds |fS(z)− fΛ(zΛ)| < ε. Hence, if z ∈ XS

0 , there
exists Λ ∈ W (S) large enough such that fΛ(zΛ) 6= 0. But in this case, by
positivity of P ,

P (XS
0 ) ≥ P (XΛ

0 ) ≥ P (zΛ) > 0,

and we come to the contradiction. �
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It is easy to see that the subsystem of a full specification Q, which consists
only of those elements which are parameterized by finite boundary condi-
tions, forms an f–specification Qf . On the other hand, an f–specification,
generally speaking, does not restore the full specification for which it is a
subsystem. However, the following statement holds true.

Proposition 7 Let Qf be an f–specification. Then there exists a system
Q∗ = {qzV , z ∈ X̂V , V ∈ W} of strictly positive probability distributions pa-
rameterized by various boundary conditions, all the elements of which satisfy
the consistency conditions (33). In this case, Qf ⊂ Q∗.

Proof. According to Theorem 1, for a given f–specification Qf , there ex-
ists a unique random field P such that Qf

P = Qf . By Proposition 5, this
random field P has a version QP of its full conditional distribution which
elements satisfy the consistency conditions (33) for all boundary conditions.
It remains to put Q∗ = QP . �

Note also, that for the elements of a full specification Q, Remarks 1–3
are also true.

4.2 System of one-point distributions parameterized
by various boundary conditions

The system Q1(P ) = {Qz
t , z ∈ X̂t, t ∈ Zd} of one-point conditional proba-

bilities of a random field P , defined by formulas (2) and (3) for V = {t},
t ∈ Zd, will be called a full one-point conditional distribution of the random
field P .

It is clear that Qf
1(P ) ⊂ Q1(P ), and hence, full one-point conditional

distribution of a random field is a solution to the direct problem.

Theorem 14 Any random field is restored by its full one-point conditional
distribution.

As the main characterizing properties of one-point conditional probabil-
ities we consider the property (20) as well as the relation (3) (for V = {t},
t ∈ Zd) establishing a connection between finite and infinite boundary con-
ditions.

A system Q1 = {qzt , z ∈ X̂t, t ∈ Zd} of strictly positive one-point prob-
ability distributions parameterized by various boundary conditions will be
called a full 1–specification if its elements satisfy the following consistency
conditions:
1. for all t, s ∈ Zd and x ∈ X t, y ∈ Xs, z ∈ X̂{t,s}, it holds

qzt (x)qzxs (y) = qzs(y)qzyt (x); (35)
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2. for any t ∈ Zd and S ⊂ Zd\{t},

qzt (x) = lim
Λ↑S

qzΛt (x), x ∈ X t, z ∈ XS. (36)

A full 1–specification Q1 is called quasilocal if its elements are quasilocal
as functions on boundary conditions. For a quasilocal full 1–specification Q1,
the convergence in (36) is uniform in z ∈ XS for all t ∈ Zd and S ⊂ Zd\{t}.

Let us consider the inverse problem of the description of random fields
for a full 1–specification.

Theorem 15 Any full 1–specification Q1 specifies a random field PQ1 such
that Q1(PQ1) = Q1 (for PQ1-a.e. boundary conditions).

The proof of this result is similar to the proof of Theorem 13 (using
Theorem 6) and, therefore, will be omitted.

Note that the elements of full 1–specification Q1 satisfy the following

conditions: for any t, s ∈ Zd and x, u ∈ X t, y, v ∈ Xs, z ∈ X̂0
{t,s}, the

following relations hold

qzyt (x)qzxs (v)qzvt (u)qzus (y) = qzyt (u)qzus (v)qzvt (x)qzxs (y). (37)

It is not difficult to see that the one-point subsystem of a full specification
forms a full 1–specification. Moreover, the following statement is true, which
can be shown analogously to the proof of Theorem 7.

Theorem 16 A set Q1 = {qzt , z ∈ X̂t, t ∈ Zd} of strictly positive one-point
probability distributions parameterized by various boundary conditions is a
one-point subsystem of a full specification Q = {qzV , z ∈ X̂V , V ∈ W} if and
only if Q1 is a full 1–specification. The specification Q is uniquely determined
by Q1.

As in the case of specifications with finite boundary conditions, the full
specification Q can be constructed by the elements of the full 1–specification
Q1 using either formula (27) or formula (28). The full specification Q con-
structed from Q1 inherits such properties of Q1 as being quasilocal or Marko-
vian. Moreover, the following fact takes place.

Theorem 17 Let Q1 be a full 1–specification and Q be the constructed by
it full specification. Then PQ1 = PQ.

Concluding this section, we note several properties of the full one-point
conditional distribution of a random field. These results directly follow from
the similar statements for a full conditional distribution or can be verified
independently using similar reasoning.
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Proposition 8 For any random field P , there exists a version Q1(P ) of
its full one-point conditional distribution, the elements of which satisfy the
relations (20) for all boundary conditions.

Proposition 9 If a random field P has a quasilocal version Q1(P ) of its
full one-point conditional distribution, this version is unique and forms a
full 1–specification.

5 Systems of Dobrushin-type conditional dis-

tributions

Among the subsystems of the full conditional distribution of a random field,
the system introduced by Dobrushin in [2] occupies a special place. Inter-
est in this system is caused, first of all, by the problems of mathematical
statistical physics.

Dobrushin was the first to consider the problem of the description of a
random field by conditional probabilities. Further, Dachian and Nahapetian
in the series of works [6–8] showed that Dobrushin’s theory can be equiva-
lently formulated in terms of the system of consistent one-point distributions
parameterized by boundary conditions.

In this section, we formulate the main results of the mentioned works
from the point of view developed in the present paper.

5.1 System of finite-dimensional distributions with in-
finite boundary conditions

For a random field P , considered by Dobrushin [2] the systemQD
P = {Qz

V , z ∈
XZd\V , V ∈ W} of conditional probabilities on XV parameterized by infinite
boundary conditions defined everywhere outside V , V ∈ W , will be called
infinite conditional distribution of the random field P , or just conditional
distribution of P .

Dobrushin’s system is not a solution to the direct problem, since different
random fields can have the same infinite conditional distribution (see, for
example, [10]). Nevertheless, one can single out a class of random fields that
can be restored by their conditional distribution (see Theorem 2 in [2]).

Theorem 18 Let a random field P be such that its conditional distribution
QD
P is quasilocal and satisfy the following condition∑

s∈Zd\{t}

ρs,t ≤ a < 1, (38)
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where

ρs,t = sup
z,y∈XZd\{t}:zZd\{t,s}=yZd\{t,s}

1

2

∑
x∈Xt

|Qz
t (x)−Qy

t (x)| .

Then the system QD
P restores P .

The main property of conditional probabilities considered by us can-
not be written for Dobrushin-type conditional probabilities directly in the
form (6). However, as it is not difficult to see, for the elements of QD

P ,
relations (6) can be written as follows

Qz
V ∪I(xy) = Qzx

I (y)
∑
β∈XI

Qz
V ∪I(xβ),

where V, I ∈ W , V ∩ I = Ø and x ∈ XV , y ∈ XI , z ∈ XZd\(V ∪I). It
is this relation that Dobrushin considered as the characterizing property of
conditional probabilities with infinite boundary conditions.

The set QD = {qzV , z ∈ XZd\V , V ∈ W} of strictly positive probability
distributions parameterized by infinite boundary conditions will be called a
specification in Dobrushin’s sense, or just specification if its elements satisfy
the following consistency conditions: for all disjoint sets V, I ∈ W and all
configurations x ∈ XV , y ∈ XI , z ∈ XZd\(V ∪I), it holds

qzV ∪I(xy) = qzxI (y)
∑
β∈XI

qzV ∪I(xβ). (39)

Dobrushin presented conditions under which a specification QD defines
a random field (see Theorem 1 in [2]). In this case, there may exist several
random fields whose conditional distribution a.e. coincides with QD. How-
ever, the conditions on the elements of QD under which it specifies (uniquely
determines) compatible with random field are known (see, for example, The-
orem 2 in [2]).

Theorem 19 Let QD be a quasilocal specification. Then there exists a ran-
dom field PQD such that QD(PQD) = QD (PQD-a.e.). If, in addition, condi-
tion (38) is satisfied, then the random field PQD is unique.

Note that in the theory of Gibbs random fields, the inverse problem
for Dobrushin’s specification QD is usually formulated in terms of DLR–
equations. Namely, for a given (Gibbs) specification QD = {qzV , z ∈ XZd\V ,
V ∈ W}, one considers the question of the existence as well as the uniqueness
of a random field P = {PV , V ∈ W} satisfying the following equations

PV (x) =

∫
z∈XZd\V

qzV (x)PZd\V (z)

for all x ∈ XV and V ∈ W .
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Remark 4 The consistency conditions (39) can be written in the following
equivalent form: for all disjoint sets V, I ∈ W and all configurations x, u ∈
XV , y ∈ XI , z ∈ XZd\(V ∪I), it holds

qzV ∪I(xy)qzyV (u) = qzV ∪I(uy)qzyV (x).

These relations are true for the elements of f– and full specification as well
(see Remark 2).

Remark 5 The elements of a specification QD are connected with each other
by the following analogues of relations (18): for all I, V ∈ W , V ∩ I = Ø,
and z ∈ XZd\(V ∪I), it holds

∑
β∈XI

qzV ∪I(xβ) =
qzyV (x)

qzxI (y)

(∑
α∈XV

qzyV (α)

qzαI (y)

)−1

, x ∈ XV ,

where y ∈ XI .

Any full specification Q contains a subsystem QD which is a specification
in the sense of Dobrushin. However, not every specification QD defines a full
specification Q for which it is a subsystem. Moreover, if QD defines some full
specification Q and some random field PQD , it may turn out that PQ 6= PQD .

Let us mention some properties of conditional distribution QD
P of a ran-

dom filed P . It is clear, that P may have several versions of its infinite
conditional distribution QD

P . Also, the following statements take place (see,
for example, Theorem in [13] and Proposition 3.3 in [9], and compare with
Propositions 8 and 9 of the present paper).

Proposition 10 For a random field P , there exists a version QD
P of its

conditional distribution which forms a specification.

Proposition 11 If a random field P has a quasilocal version QD
P of its

conditional distribution, then this version is unique and forms a specification.

Dobrushin [2] defined a Markov random field P (with respect to a neigh-
borhood system ∂ = {∂t, t ∈ Zd} in Zd) as one for which the elements of
QD
P satisfy the following conditions: for all V ∈ W and P -a.e. z ∈ XZd\V , it

holds
Qz
V (x) = Qz∂V

V (x), x ∈ XV . (40)

Let us show that this definition is equivalent to the one given in Section 3.1.

Proposition 12 A random field P is Markovian if and only if the elements
of its conditional distribution QD

P satisfy the conditions (40).
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Proof. Let P be a Markov field. Then for any disjoint sets V,Λ ∈ W such
that ∂V ⊂ Λ, and any configuration z ∈ XZd\V , we have

QzΛ
V (x) = Qz∂V

V (x), x ∈ XV .

Passing in this relation to the limit as Λ ↑ Zd\V , we obtain

Qz
V (x) = Qz∂V

V (x) (P -a.e.), x ∈ XV ,

and hence, the elements of conditional distribution QD
P of the random field

P satisfy relations (40).
Now, let a random field P be such that the elements of its conditional

distribution QD
P satisfy (40). By Sullivan’s inequality (4), for any V,Λ ∈ W ,

V ∩ Λ = Ø and x ∈ XV , z ∈ XΛ, we have

inf
y∈XZd\V :yΛ=z

Qy
V (x) ≤ Qz

V (x) ≤ sup
y∈XZd\V :yΛ=z

Qy
V (x).

Thus, if Λ is such that ∂V ⊂ Λ, we obtain

sup
y∈XZd\V :yΛ=z

Qy
V (x) = sup

y∈XZd\V :yΛ=z

Qy∂V
V (x) = Qz∂V

V (x),

inf
y∈XZd\V :yΛ=z

Qy
V (x) = inf

y∈XZd\V :yΛ=z

Qy∂V
V (x) = Qz∂V

V (x),

and hence, Qz
V (x) = Qz∂V

V (x). Therefore, P is a Markov random field. �

5.2 System of Dobrushin-type one-point distributions

Considered in [6–8] system QD
1 (P ) = {Qz

t , z ∈ XZd\{t}, t ∈ Zd} of one-point
conditional distributions with infinite boundary conditions will be called the
Dobrushin-type one-point conditional distribution of the random field P , or,
in short, the one-point conditional distribution of P .

The distribution QD
1 (P ), generally speaking, does not restore the random

field P (see the corresponding remarks for the system QD
P ).

Theorem 20 Let a random field P be such that its one-point conditional
distribution QD

1 (P ) is quasilocal and satisfy the condition (38). Then the
system QD

1 (P ) restores P .

The main characterizing property (20) of one-point conditional probabil-
ities cannot be written down directly for the elements of QD

1 (P ). However,
as it is not difficult to verify, for the one-point conditional probabilities of
Dobrushin’s type, it holds

Qzy
t (x)Qzx

s (v)Qzv
t (u)Qzu

s (y) = Qzy
t (u)Qzu

s (v)Qzv
t (x)Qzx

s (y)
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for all t, s ∈ Zd, x, u ∈ X t, y, v ∈ Xs and P -a.e. boundary conditions
z ∈ XZd\{t,s}. It is this relation that was singled out in works [7, 8] as the
determining one for the systems of one-point distributions parameterized by
Dobrushin’s type boundary conditions.

A set QD
1 = {qzt , z ∈ XZd\{t}, t ∈ Zd} of strictly positive one-point prob-

ability distributions parameterized by infinite boundary conditions will be
called a 1–specification (in Dobrushin’s sense) if its elements satisfy the fol-
lowing consistency conditions: for all t, s ∈ Zd and x, u ∈ X t, y, v ∈ Xs,
z ∈ XZd\{t,s}, it holds

qzyt (x)qzxs (v)qzvt (u)qzus (y) = qzyt (u)qzus (v)qzvt (x)qzxs (y). (41)

The inverse problem for a 1–specification may not have a solution. How-
ever, the following statement holds true (see Theorem 4.2 in [7] and Theorem
21 in [8]).

Theorem 21 Let QD
1 be a quasilocal 1–specification. Then there exists a

random field PQD
1

such that QD
1 (PQD

1
) = QD

1 (P -a.e.). If, in addition, the
condition (38) is satisfied, then the random field PQD

1
is unique.

The connection between Dobrushin-type 1–specification and specification
is given in the following statements (see Theorem 19 in [8]).

Proposition 13 Let QD
1 be a 1–specification. Then there exists a unique

specification QD such that QD
1 ⊂ QD.

The proof of this result was obtained in [8], where the construction of
the elements of specification QD by the elements of 1–specification QD

1 was
carried out according to formula (28). From this formula, in particular, it
follows that the constructed specification QD inherits such properties of QD

1

as quasilocality and Markovness. Moreover, the following fact holds true.

Theorem 22 Let QD
1 be a 1–specification and let QD be the constructed by

it specification. Then the set of random fields compatible with QD
1 coincides

with the set of random fields compatible with QD.

At the same time, 1–specification, generally speaking, does not define a
full specification Q1 such that QD

1 ⊂ Q1.
Returning to the consideration of the one-point conditional distribution

of a random field, we note that the random field P may have many versions
of it, while the following statements are true (see Propositions 5 and 6 in
this paper and Proposition 3.3 in [9]).

Proposition 14 For a random field P , there exists a version QD
1 (P ) of its

one-point conditional distribution which forms a 1–specification.
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Proposition 15 If a random field P has a quasilocal version QD
1 (P ) of its

one-point conditional distribution, then this version is unique and forms a
1–specification.

It should be noted that Dobrushin-type 1–specification is a fundamental
object, in terms of which the foundations of the general theory of Gibbs
random fields were laid (see [9] and [10]).

Note also, that if one considers a finite-volume 1–specification QΛ
1 =

{qzt , z ∈ XΛ\{t}, t ∈ Λ} as a system of probability distributions consistent in
the sense of (41), then it specifies compatible with it finite random field PΛ,
Λ ∈ W . For details, see [18].

Concluding remarks

We considered various ways of describing random fields by systems of consis-
tent finite-dimensional distributions parameterized by boundary conditions.
We presented (in the majority of cases, necessary and sufficient) conditions
on the elements of these systems to coincide with the corresponding condi-
tional probabilities of a random field.

The preference for one or another system, of course, depends on the
task at hand. First of all, we note that the Dobrushin-type systems QD

and QD
1 are widely used in mathematical problems of statistical physics.

Despite the fact that these systems do not specify a random field, perhaps,
their main role is revealed in the theory of phase transitions. Namely, in
Dobrushin’s theory of description of Gibbs random fields, the non-uniqueness
of the solution to the inverse problem is interpreted as the presence of a phase
transition in the model under consideration (see the fundamental work [4]).

The system Qf of distributions parameterized by finite boundary con-
ditions uniquely determines a random field and, therefore, can be useful in
many theoretical considerations. It is especially convenient that it turns out
to be sufficient to have a one-point system Qf

1 of such distributions. First of
all, we note that this system seems to be the most natural for application in
the theory of Markov random fields. In particular, it can be used to describe
Gaussian Markov random fields that are ubiquitous in various applications
(corresponding paper is being prepared; see also [20]). In addition, many
properties of a random field are expressed in terms of conditions on Qf

1 .
Note, for example, the mixing conditions [11], the constructive uniqueness
criterion [5], and the fact that the probabilistic definition of a Gibbs random
field (without using the notion of potential) was given in [9] precisely in terms
of the system Qf

1 . As regards the system QΠ of Palm-type distributions, it
seems to be useful in studying discrete models of point processes.

The system Q (Q1), being the most general, is primarily of theoretical
interest. On the other hand, despite its generality, it admits a convenient
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representation: its elements can be represented in the Gibbsian form (this
issue will be considered in a separate publication).

As for the main property of conditional probabilities used as the consis-
tency conditions (see the relations (7) and (33), which differ only in restric-
tions on the supports of the boundary conditions), we note that this relation
was used by Renyi [22] as the third axiom in constructing his axiomatic of
probability theory by means of conditional probabilities. We also note that
in [1], it was shown how, based on the relation (33), to obtain the consis-
tency conditions for other systems of probability distributions considered in
the paper.

For the sake of simplicity, in this paper, we considered systems of strictly
positive probability distributions and positive random fields only. However,
the similar results can be obtained under less restrictive positivity conditions
applying the approach introduced in [8] (see also [18]). Our results carry
over in a natural way to the case of infinite (both countable and continuous)
measurable spaces X (under a suitable integrability condition).

Finally, let us note that both direct and inverse problems of the de-
scription of random fields can be solved in terms of systems of correlation
functions (see [17] and the references therein). Also, this problem can be
considered from the algebraic point of view as a problem of consistency of
an appropriate infinite system of linear equations (see [15]).
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