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Abstract. In this paper, we consider a discontinuous piecewise
smooth system involving four parameters and two asymptotes,
recently introduced as a model in engineering sciences. We clas-
sify and investigate its bifurcation behaviour. A local bifurcation
analysis of the system in the range of parameters which has not
been studied so far is undertaken and then supported by numeri-
cal computations. This reveals the existence of a flip bifurcation
depends on the power singularity. Moreover, we state that a set
of positive measure of points with divergent dynamic behaviour
exists.
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Introduction

Traditional analysis of dynamical systems has restricted its attention to
smooth problems. It has become increasingly clear that there are distinctive
phenomena unique to discontinuous systems that can be analyzed mathe-
matically but which fall outside the usual methodology for smooth dynam-
ical systems. Hence, it is of primary importance to study piecewise smooth
dynamical systems, continuous or discontinuous, and investigate their bifur-
cation structures (see, for instance, [6, 8]). In piecewise smooth (PWS for
short) systems, the discrete phase space is divided into compartments within
which the map is smooth, and the compartments are separated by border
lines at which the map may not be differentiable [6]. These systems represent
a large number of engineering systems with nonsmooth vector fields. Their
applications include switching electronic circuits [3], impacting mechanical
systems [18, 22], stick-slip oscillations [5], piecewise smooth nonlinear oscil-
lators [19, 20], cardiac dynamics [4, 12], etc.
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The studies on the dynamics of PWS maps have mostly been done using a
piecewise linear approximation in the neighbourhood of the border [1, 2, 11].
However, many applications in engineering and control strategies demand
one to predict the behaviour by including the nonlinearities in the map,
at least up to the leading-order term. For example, in the most famous
Nordmark systems associated with grazing bifurcations, the leading order
term in the nonlinear side has the power of 1/2 (see [18]). In this case, the
normal form mapping in the neighbourhood of the border is linear on one
side and has a square-root term on the other. In analyzing the stick-slip
motion with dry friction, it has been shown that the leading-order nonlinear
term has a power of 3/2 (see [5]). For the normal form mapping of sliding
bifurcations, the authors in [7] manifested the powers of 3/2, 2 and 3 in
the leading-order nonlinear terms for different cases of sliding bifurcations.
However, the dynamics of such PWS maps, where the function is linear in
one of the partitions and nonlinear in the other, are still far from being
understood.

Based on the above premise, we consider the PWS map in a generalized
sense, given by

x 7−→ f(x) =

{
fL(x) = αx+ µ if x ≤ 0,
fR(x) = βx−γ + µ if x > 0,

(1)

where the power of the nonlinear side γ can take any arbitrary real value
and α, β and µ are real parameters.

In all the cases mentioned above, we can see that the power term in (1),
which is obtained through a Taylor series expansion of a nonlinear function,
can take only particular positive values. Hence, the system is a continuous
PWS map (in general, for γ < 0) which has been studied for several years.
Note that the map f in (1) with real negative power, that is to γ > 0,
is a discontinuous PWS map in which the function fR(x), defined on the
right branch, has a vertical asymptote at the discontinuity point x = 0. The
discontinuous system has dynamic properties and bifurcations very much
different from those happening in the continuous map. The main results
for the discontinuous system, in both invertible and noninvertible cases, for
the parameters β < 0 and µ > 0 have been obtained recently in [9, 14,
15, 16, 17, 21]. The discontinuous case with µ < 0 has been studied in
[10]. However, in the discontinuous system, the classification of the possible
different results of smooth and nonsmooth bifurcations, under parameter
variation in the corresponding space, is still to be investigated. Due to its
numerous applications in engineering systems, in this paper, we subject the
discontinuous map f in (1) to multi-parametric bifurcation study for the
various ranges β > 0 and µ > 0, which have not been considered so far,
exploring the dynamics of this family of maps and describing its bifurcation
structure in a theoretical way with proper illustrations.
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The paper is organized as follows. In Section 1, we provide some prelim-
inaries and recall notations and basic concepts. In Section 2, main results
about bifurcation structures of the system are presented analytically and
illustrated explicitely. In Section 3, the existence of divegent dynamical
behaviour is proved. Section 4 provides the conclusion.

1 One-dimensional discontinuous

piecewise smooth map

The one-dimensional (1D) discontinuous map that we are interested in comes
from an applied context. Recent applications in engineering lead to nonlinear
piecewise smooth dynamical systems among which much attention has been
given to the system first proposed by Nordmark (see [18]) and defined by
(1) for µ > 0. As can be seen in (1), it is linear on the left side of the border
x = 0 and nonlinear with singularity of the power γ on the right side. The
values of two sides at x = 0, µ = 0 are defined as

f(0) =

{
f−(0) = α · 0 = 0,
f+(0) = β/0γ = sign(β) · ∞,

Thus, the piecewise map is discontinuous, and the gap on two sides of the
border tends to infinity, leading to a map with a vertical asymptote which
is not new in the literature (see, for example, [13, 23]). To investigate the
dynamics of map f in (1), it is preferable to reduce the number of system’s
parameters. Without loss of generality, the value of the parameter µ can
be scaled to µ = 0, µ = +1 or µ = −1. Thus, for any µ > 0, by using
the transformation (x, α, β, µ) −→ (x/µ, α, βµ−γ−1, 1) for the map in (1),
we obtain the following map

x 7−→ f(x) =

{
fL(x) = αx+ 1 if x ≤ 0,
fR(x) = βx−γ + 1 if x > 0,

(2)

while for any µ < 0, by applying the similar transformation (x, α, β, µ) −→
(−x/µ, α, β(−µ)−γ−1,−1), we have the similar map with −1 instead of +1.
Throughout this work, we investigate the dynamics of map f given in (2) in
the following parameters’ range

Range I = {(α, β, γ) : α ∈ R, β > 0, γ > 0}.

Note that map f with µ = −1 has been studied in [10].
In this parameters’ region, function fR(x) is decreasing with the range

(1,+∞), while function fL(x) is increasing when α > 0 with the range
(−∞, 1) and decreasing when α < 0 with the range (1,+∞). In the case
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α > 0, map f in (2) is invertible, while for α < 0 it is noninvertible. Note
that 1D invertible maps can not be chaotic and may have simple dynamics.

We recall that by using the symbolic notation based on the letters L
and R corresponding to the two partitions IL = (−∞, 0], IR = (0,+∞),
respectively, we may associate to each trajectory its itinerary by using the
letter L when a point belongs to the partition IL and R when a point belongs
to the partition IR. The fixed points of map f are denoted by x = x∗L ∈ IL
and x = x∗R ∈ IR.

2 Local bifurcation analysis

A graphical representation exhibits the richness of the dynamics of map f
given by (2). In some graphical representations of the dynamic behaviors
of system f in (2), it may be useful to consider the parameter space in
the complete range for the parameter β, which means β ∈ (−∞,+∞), to
emphasize the occurrence of relevant bifurcations (particularly bifurcations
with codimension larger than one). Hence, the nonlinear transformation
S(β) = arctan(β) has been considered which maps an unbounded inter-
val (−∞,+∞) into a bounded one, (−π/2, π/2). Fig. 1 shows the two-
dimensional bifurcation diagram in the parameter space (α, S(β)) at the
fixed values γ = 0.5 in Fig. 1a and γ = 1.5 in Fig. 1b. Examples of map f
are shown in Fig. 1c.

The colored regions in Fig. 1 represent sets of values of the parameters
in which map f has an attracting cycle, and different colors are related to
different periods (n ≤ 60). White regions represent parameter sets at which
we have either higher periodicity or chaos. Note that these regions are visible
for the noninvertible case α > 0 and β < 0.

Figure 1: 2D bifurcation diagram of map f in (α, S(β))−parameter plane. (a) γ = 0.5;
(b) γ = 1.5; (c) examples of map f .

It can be seen instantly in Fig. 1 that the dynamics of map f is much
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simpler for β > 0 than for β < 0. Comparing Fig. 1a and Fig. 1b one can
note that the bifurcation structure of map f depends also on the value of
γ. In what follows, we explain the two different structures and what kind of
transition occurs as the parameter γ varies through the value γ = 1.

The fixed point on the right side of the border exists for β > 0 and is
expressed as follows.

Proposition 1 Let α ∈ R, β > 0 and γ > 0. Then there exists a unique
fixed point x∗R ∈ IR for map f in (2), such that 1 < x∗R < β + 1.

Proof. Regarding the equations of first and second derivatives of the func-
tion fR(x), we have that for x > 0, f ′R(x) = −βγx−γ−1 < 0 and f ′′R(x) =
βγ(γ + 1)x−γ−2 > 0. Thus, the function fR(x) is continuous, monotone de-
creasing and convex. Moreover, limx−→0+ fR(x) = +∞, limx−→+∞ fR(x) =
+1 and fR(1) = β + 1 > 1. Therefore, there exists x∗R ∈ IR such that
fR(x∗R) = x∗R, that is,

β + (x∗R)γ = (x∗R)γ+1, (3)

leading to 1 < x∗R < β + 1. �

The bifurcations of the fixed point x∗R are described in the following

Theorem 1 Let α ∈ R, β > 0 and γ > 0. For 0 < γ ≤ 1, the unique fixed
point of map f in (2), namely x∗R ∈ IR, is globally attracting. For γ > 1,
map f in (2) undergoes a smooth flip bifurcation at the fixed point x∗R and
at

β =
γγ

(γ − 1)γ+1
:= βfR. (4)

In addition,

x∗R |β=βfR=
γ

γ − 1
= x∗Rf .

The fixed point x∗R is repelling for β > βfR and globally attracting for 0 <
β ≤ βfR.

Proof. Considering the derivative function f ′R(x) = −βγ/xγ+1 < 0 and
using equation (3) we obtain

f
′

R(x∗R) = − β

(x∗R)γ
γ

x∗R
= −

(
1− 1

x∗R

)
γ. (5)

From 0 < 1 − 1/x∗R < 1, we have that for 0 < γ ≤ 1, the fixed point
is attracting. On the other hand, for γ > 1, the fixed point x∗R may be
attracting or repelling. Due to the nonlinearity, the fixed point on the right
side of the border may undergo a smooth bifurcation. Taking into account
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that at a flip bifurcation, f
′
R(x∗Rf ) = −βγ/(x∗Rf )γ+1 = −1, we obtain the

condition (x∗Rf )
γ+1 = βγ, or

x∗Rf = (βγ)
1

(γ+1) . (6)

On the other hand, from (5), we get that f
′
R(x∗R) ≥ −1 for x∗R ≤ γ/γ − 1.

Along with (6) the inequality βγ ≤ (γ/γ − 1)γ+1 holds. Regarding βfR as the
bifurcation value given in (4), we can state that f

′
R(x∗R) ≥ −1 iff β ≤ βfR.

Thus, for β > 0 and γ > 1, the equation of the smooth flip bifurcation curve,
denoted by ΨR, can be written in explicit form as follows (see Fig. 2)

ΨR : β =
γγ

(γ − 1)γ+1
. (7)

By substituting (4) into (6), the equation for the fixed point at the flip
bifurcation value is obtained as:

x∗Rf =
γ

γ − 1
> 1. (8)

�

Figure 2: The flip bifurcation curve ΨR. Yellow region represents the stability region
of the fixed point on the R side.

It is worth to note that the flip bifurcation of the fixed point x∗R in map f
occurs independently on the value of the parameter α (α R 0). In particular,

we demonstrate that system (2) undergoes a flip bifurcation at (x∗Rf , β
f
R).

Generically, a flip bifurcation is characterized by the loss of stability of a
periodic orbit as a parameter crosses a critical value from above or below.
The flip bifurcation is supercritical if, locally, there exist stable periodic
orbits with double the period for parameter values near the critical value
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forming a new branch that emerges at this value. If unstable periodic orbits
with double the period coalesce with and are destroyed by stable periodic
orbits, the flip bifurcation is subcritical. Now, one can mention that the flip
bifurcation of map f in (2) is supercritical since for any fixed value γ > 1,
the fixed point x∗R is attracting for 0 < β ≤ βfR and repelling for β > βfR.

Theorem 2 Let α ∈ R, β > 0 and γ > 1. Then the map f given in (2)
undergoes a supercritical flip bifurcation at the fixed point (x∗Rf , β

f
R).

Proof. In order to find out which kind of the flip bifurcation (subcritical,
supercritical or degenerate) of the fixed point occurs, we should consider the
second iterate of the function fR(x) in (2), namely,

f 2
R(x) = fR ◦ fR(x) =

β(
β
xγ

+ 1
)γ + 1,

and determine the sign of the third derivative of the function f 2
R(x), calcu-

lated at the fixed point x = x∗Rf in (8) and at the bifurcation value β = βfR.
Recall that (see, for example, [24]):

� if (f 2
R)′′′(x∗R) < 0, then the flip bifurcation of the fixed point is super-

critical ;

� if (f 2
R)′′′(x∗R) > 0, then the flip bifurcation of the fixed point is subcrit-

ical.

For the sake of simplicity, we can use the notation F instead of fR and
F 2 instead of f 2

R. Hence, we get

(F 2)′′′(x) = F ′′′(F (x))(F ′(x))3 + 3F ′(x)F ′′(x)F ′′(F (x)) + F ′(F (x))F ′′′(x)

which should be evaluated at (8). Since

F (x∗R) = x∗R,

F ′(x∗R) = −1,

F ′′(x∗R) = −F ′(x∗R)
γ + 1

x∗R
=
γ + 1

x∗R
,

F ′′′(x∗R) = −F ′′(x∗R)
γ + 2

x∗R
= −γ + 1

x∗R

γ + 2

x∗R
,

we have

(f 2
R)′′′(x∗R) =

γ + 1

x∗R

γ + 2

x∗R
− 3

γ + 1

x∗R

γ + 1

x∗R
+
γ + 1

x∗R

γ + 2

x∗R

= 2
γ + 1

x∗R

γ + 2

x∗R
− 3

γ + 1

x∗R

γ + 1

x∗R

=
γ + 1

(x∗R)2
(2(γ + 2)− 3(γ + 1))

=
γ + 1

(x∗R)2
(1− γ).
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Therefore, we can state that for γ > 1, it holds (f 2
R)′′′(x∗R) < 0, and this

completes the proof. Note that crossing the flip bifurcation curve ΨR from
the stability region, the fixed point becomes repelling leading to an attracting
2-cycle. �

Figure 3: (a) Example of 1D bifurcation diagram β vs x in map f , showing the super-
critical bifurcation of x∗R, for 0 < β < 5, α = 1.5, γ = 2; (b) map f at the bifurcation
value γ = 2, β = 4, α = 1.5.

As an example of 1D bifurcation diagram β vs x in map f , it is shown in
Fig. 3 the supercritical bifurcation of x∗R for the parameter values γ = 2, α =
1.5, β ∈ [0, 5]. Also, divergence trajectory on the L side and an attracting
2-cycle on the R side are shown.

3 Divergent dynamics

Now recall that the PWS map in (2) has a discontinuity point at x = 0; that
is also a vertical asymptote for the function on the right side. For this map,
the fixed point on the left side of the border is expressed as

x∗L = − 1

α− 1
< 0,

which exists obviously for α > 1, and it is a repelling fixed point. Therefore,
divergent trajectories certainly exist, with immediate basin (−∞, x∗L).

Differently, in the parameter range α < 1, in which the slope of the
straight line is not larger than 1, no fixed point exists on the L side. Hence,
for α < 0, any point on the left side is mapped in the R side in one iteration.
Also, for 0 < α ≤ 1, we can see that any point on the left side has an
increasing sequence reaching to the right side. That is, the trajectories
cannot be divergent.
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As mentioned above, for α > 1, due to the existence of the repelling fixed
point x∗L, the vertical asymptote is mainly related to divergent trajectories.
In fact, a set of positive measure of points with divergent dynamic behavior
exists, denoted B∞ (basin of −∞ or set of divergent trajectories). We can
state that −∞ is attracting with total basin (−∞, x∗L), so that

B∞ = (−∞, x∗L) =

(
−∞,− 1

α− 1

)
,

while any point belonging to the interval (x∗L, 0) has a trajectory which goes
to the right side in a finite number of iteration. An example is shown in
Fig. 3b.

One more feature that is worth to mention is that, any initial condition on
the L side for x > x∗L has a trajectory ending to the R side from which cannot
escape. In fact, any initial condition x > 0 has a trajectory which cannot
leave the right side and converges either to the attracting fixed point or to an
attracting 2-cycle. Moreover, note that for γ < 1, any point on the right side
converges to the attracting fixed point x∗R, and the basin of attraction of x∗R
for α ≤ 1 is (−∞,+∞), while for α > 1, it is (x∗L,+∞). Besides, for γ > 1
and 0 < β < γγ/(γ − 1)γ+1 (therefore, the fixed point x∗R is attracting),
we have the same dynamics as for γ < 1, while increasing β, we have an
unstable fixed point and an attracting 2-cycle whose basin of attraction is
(−∞,+∞)\{x∗R} for α ≤ 1 while for α > 1, it is (x∗L,+∞)\{x∗R}.

4 Conclusion

In this study, we investigated the dynamics of a 1D discontinuous PWS map
f in (2), recently introduced as a dynamic model in engineering sciences,
with real exponent γ > 0, which leads to the existence of a vertical asymptote
for map f . In this paper, the parameter space includes µ > 0 and β > 0,
that has not been examined in the previous publications. Using α and β
as our bifurcation parameters, we proved that depending on the parameter
γ, different bifurcation structures occured. For 0 < γ < 1, our numerical
results, as well as rigorous proofs, indicated that the dynamical behaviour
of map f is simple while for γ > 1, the bifurcation structure is related to
the supercritical flip bifurcation of the fixed point on the right side of the
border. For β > 0, we proved that the map can have only period-1 orbit of
double periods. The equation of the flip bifurcation curve has been given as
well. Finally, we noted that due to the existence of a repelling fixed point
x∗L, for α > 1, divergent trajectories exist. Hence, it is stated that a set of
positive measure of points with divergent trajectories must exist.
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