ARMENIAN JOURNAL OF MATHEMATICS Volume 2, Number 3, 2009, 94–101

On Some Formulas for the Index of a Linear Bounded Operator

I. G. Khachatryan^{*}

* Department of Mathematics, Yerevan State University Alex Manoogian 1, 0025, Yerevan, Armenia. khachatryanis@yahoo.com

Dedicated to the memory of Prof. V. B. Lidskii

Abstract

We consider a linear bounded operator in infinite dimensional separable Hilbert space satisfying some conditions. We prove formulas that can be used to calculate the index of this operator.

Key Words: Operator, index, trace, absolute norm. Mathematics Subject Classification 2000: Primary 58J20 Secondary 45P05.

Let V be a linear bounded operator, acting in an infinite dimensional Hilbert space H, V^* — the adjoint operator, ker V and ker V^* — their null-spaces, dim(ker V) and dim(ker V^*)— dimensions of corresponding subspaces. The index of the operator V is the number

$$\operatorname{ind} V = \dim(\ker V) - \dim(\ker V^*), \qquad (1)$$

assuming that these dimensions are finite.

Under some conditions on V we prove some formulas, which can be used to calculate ind V. The conditions on V and the received formulas for ind V differ from the known ones (see [1]).

Lemma 1 Let I be the identity operator and $\lambda \neq 0$ be some number. Then

$$ker(V^*V) = kerV, \quad ker(VV^*) = kerV^*, \tag{2}$$

$$ker(V^*V - \lambda I) \cap kerV = \{0\}, \quad ker(VV^* - \lambda I) \cap kerV^* = \{0\}, \tag{3}$$

$$V(ker(V^*V - \lambda I)) = ker(VV^* - \lambda I), \quad V^*(ker(VV^* - \lambda I)) = ker(V^*V - \lambda I), \quad (4)$$

$$dim(ker(V^*V - \lambda I)) = dim(ker(VV^* - \lambda I)).$$
(5)

Proof. If $x \in \ker(V^*V)$, then $(Vx, Vx) = (V^*Vx, x) = 0$. Therefore Vx = 0. It follows that $x \in \ker V$ and $\ker(V^*V) \subset \ker V$. From this and from obvious inclusion $\ker V \subset \subset \ker(V^*V)$ we get the first equality of (2). The second equality of (2) can be proved in the same way. Let $x \in \ker V$ and $x \neq 0$. Then $V^*Vx - \lambda x = -\lambda x \neq 0$, i. e. $x \notin \ker(V^*V - \lambda I)$. This implies the first equality of (3). The second equality of (3) can be proved in the same way. If $y \in \ker(V^*V - \lambda I)$, then for z = Vy we have $VV^*z - \lambda z = V(V^*Vy - \lambda y) = 0$, i. e. $z \in \ker(VV^* - \lambda I)$. Thus, $V(\ker(V^*V - \lambda I)) \subset \ker(VV^* - \lambda I)$. Let $x \in \ker(VV^* - \lambda I)$ and $y = \frac{1}{\lambda}V^*x$. Then x = Vy and $V^*Vy - \lambda y = \frac{1}{\lambda}V^*(VV^*x - \lambda x) = 0$, i. e. $y \in \ker(V^*V - \lambda I)$ and $x \in V(\ker(V^*V - \lambda I))$. Therefore, $\ker(VV^* - \lambda I) \subset V(\ker(V^*V - \lambda I))$. From these inclusions we obtain the first equality of (4). The second equality of (4) can be proved by similar reasoning. If $x \in \ker(V^*V - \lambda I)$, then $(Vx, Vy) = \lambda(x, y)$ for all $y \in H$, and if $x \in \ker(VV^* - \lambda I)$, then $(V^*x, V^*y) = \lambda(x, y)$. Hence, using (3) and (4) we obtain that the operator V transforms any orthogonal non zero system of elements from $\ker(V^*V - \lambda I)$ into an orthogonal non zero system of elements from $\ker(V^*V - \lambda I)$, and V^* performs this transformation in reversed order. Consequently, (5) holds.

Theorem 1 Let for some number $c \neq 0$ operators $A = V^*V - cI$ and $B = VV^* - cI$ be compact. Then c > 0, and if the number -c is an eigenvalue of the multiplicity κ' for A and of the multiplicity κ'' for B (we do not exclude cases $\kappa' = 0$ or $\kappa'' = 0$), then

$$indV = \kappa' - \kappa''. \tag{6}$$

Moreover, if the space H is separable and one of the operators A and B is Hilbert–Schmidt operator, then the other one is also Hilbert–Schmidt operator, and for their absolute norms N(A) and N(B) the equality

$$indV = \frac{1}{c^2} \{ N^2(A) - N^2(B) \}$$
(7)

holds. If one of the operators A or B is nuclear, then the other one is also nuclear, and for their traces sp A and sp B the equality

$$indV = \frac{1}{c} \{ sp B - sp A \} = \frac{1}{c} sp (B - A) = \frac{1}{c} sp (VV^* - V^*V)$$
(8)

holds.

Proof. The spectrum $\sigma(A)$ of any compact operator A is at most a countable and bounded set containing zero, and any non-zero element of this set is an eigenvalue of finite multiplicity. Moreover, if the set $\sigma(A)$ is infinite, then zero is the only limiting point of $\sigma(A)$. Evidently the spectrum of the operator V^*V is the set $\sigma(V^*V) = \{\lambda + c : \lambda \in \sigma(A)\}$. Thus $c \in \sigma(V^*V)$. Since V^*V is a non-negative self-adjoint operator, then c > 0, and A is self-adjoint. Similar statements are true for operators B and VV^* . Particularly $\sigma(VV^*) = \{\lambda + c : \lambda \in \sigma(B)\}$. From this and the statement (5) it follows that $\sigma(A) \setminus \{-c\} =$ $= \sigma(B) \setminus \{-c\}$, and if the number $\lambda \neq -c$ is an eigenvalue for one of the operators A and B, then λ is an eigenvalue of the same multiplicity for the other one (in the case $\lambda \neq 0$ this multiplicity is finite). Let -c be an eigenvalue of multiplicity κ' for A and of multiplicity κ'' for B. These multiplicities, evidently are finite and

$$\kappa' = \dim(\ker(V^*V)), \quad \kappa'' = \dim(\ker(VV^*)).$$

From here, by (1) and (2) we get (6). Put $\sigma = \sigma(A) \setminus \{-c, 0\} = \sigma(B) \setminus \{-c, 0\}$. Any number $\lambda \in \sigma$ is an eigenvalue of the same multiplicity $\kappa(\lambda)$ for both operators A and B. Let A be a Hilbert–Schmidt operator, i. e. have finite absolute norm N(A) (see [2], pp. 96—103, 208—212). Since the operator A is self-adjoint, then (see [2], p. 209)

$$N^2(A) = c^2 \kappa' + \sum_{\lambda \in \sigma} \lambda^2 \kappa(\lambda)$$

Hence the absolute norm N(B) of the operator B is also finite and

$$N^2(B) = c^2 \kappa'' + \sum_{\lambda \in \sigma} \lambda^2 \kappa(\lambda)$$

Thus $N^2(A) - N^2(B) = c^2(\kappa' - \kappa'')$. From this and relation (6) we get (7).

Let the operator A be nuclear (see [2], p. 208—212), i. e.

$$\sum_{\lambda \,\in\, \sigma} \left|\lambda\right| \kappa(\lambda) < \infty$$

Then the operator B is also nuclear. According to the theorem of V. B. Lidskii (see [2], p. 212; [3], p. 101; [4]), for sp A and sp B the following equalities

$$\operatorname{sp} A = -c\kappa' + \sum_{\lambda \in \sigma} \lambda \kappa(\lambda), \quad \operatorname{sp} B = -c\kappa'' + \sum_{\lambda \in \sigma} \lambda \kappa(\lambda)$$

are true. Hence sp $B - \text{sp } A = c(\kappa' - \kappa'')$ and by (6) we get (8).

The theorem is proved.

Consider in the space $L^2(a, b)$ with finite or infinite interval (a, b) the following integral operator \mathcal{K} :

$$(\mathcal{K} x)(\xi) = \int_{a}^{b} K(\xi, \eta) x(\eta) \, d\eta, \quad x \in L^{2}(a, b), \ \xi \in (a, b),$$

where the function $K(\xi, \eta)$ satisfies the following condition:

$$\int_a^b \int_a^b |K(\xi, \eta)|^2 \, d\eta \, d\xi < \infty \, .$$

It is known (see [2], pp. 101–102), that \mathcal{K} is Hilbert–Schmidt operator and its absolute norm $N(\mathcal{K})$ is equal to

$$N^{2}(\mathcal{K}) = \int_{a}^{b} \int_{a}^{b} |K(\xi, \eta)|^{2} d\eta d\xi$$

If the operator \mathcal{K} is self-adjoint, then $K(\xi, \eta) = \overline{K(\eta, \xi)}$. For the sake of definiteness we consider the case, where the self-adjoint compact operator \mathcal{K} has an infinite set of eigenvalues. Enumerate non-zero eigenvalues λ_n $(n = 1, 2, \cdots)$ in order of decreasing moduli: $|\lambda_1| \ge |\lambda_2| \ge \cdots$, repeating each eigenvalue according to its multiplicity. Denote by φ_n $(n = 1, 2, \cdots)$ the orthonormal set of corresponding eigenfunctions: $\mathcal{K} \varphi_n = \lambda_n \varphi_n$. It is known (see [2], pp. 102, 209), that

$$N^{2}(\mathcal{K}) = \sum_{n=1}^{\infty} \lambda_{n}^{2},$$

$$K(\xi, \eta) = \sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}(\xi) \overline{\varphi_{n}(\eta)},$$
(9)

and the functional series in (9) converges in the space $L^2((a, b) \times (a, b))$.

Let the self-adjoint operator \mathcal{K} be nuclear. Then

$$\sum_{n=1}^{\infty} |\lambda_n| < \infty, \quad sp \, \mathcal{K} = \sum_{n=1}^{\infty} \lambda_n$$

We extend each function $x \in L^2(a, b)$ onto $\mathbb{R} = (-\infty, \infty)$, putting $x(\xi) = 0$ for $\xi \notin (a, b)$. We extend also the function $K(\xi, \eta)$ onto \mathbb{R}^2 , putting $K(\xi, \eta) = 0$ for $(\xi, \eta) \notin (a, b) \times (a, b)$. By (9) we have

$$K(\xi + t, \,\xi) \,=\, \sum_{n=1}^{\infty} \lambda_n \,\varphi_n(\xi + t) \,\overline{\varphi_n(\xi)} \,, \tag{10}$$

and the functional series on variables ξ and t converges in the space $L^2(\mathbb{R}^2)$. Indeed, this fact follows from the equality:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \sum_{n=p}^{m} \lambda_n \varphi_n(\xi+t) \overline{\varphi_n(\xi)} \right|^2 dt \, d\xi = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \sum_{n=p}^{m} \lambda_n \varphi_n(\eta) \overline{\varphi_n(\xi)} \right|^2 d\eta \, d\xi =$$
$$= \sum_{n=p}^{m} \sum_{j=p}^{m} \lambda_n \lambda_j \left| \int_{-\infty}^{\infty} \overline{\varphi_n(\xi)} \varphi_j(\xi) \, d\xi \right|^2 = \sum_{n=p}^{m} \lambda_n^2$$

which is valid for any positive integers p < m.

Besides, for any t the functional series on the variable ξ in (10) converges in the space $L^1(\mathbb{R})$. Indeed, this follows from the estimate:

$$\int_{-\infty}^{\infty} \left| \sum_{n=p}^{m} \lambda_n \varphi_n(\xi+t) \overline{\varphi_n(\xi)} \right| d\xi \leqslant \sum_{n=p}^{m} |\lambda_n| \int_{-\infty}^{\infty} |\varphi_n(\xi+t) \overline{\varphi_n(\xi)}| d\xi \leqslant$$
$$\leqslant \sum_{n=p}^{m} |\lambda_n| \left(\int_{-\infty}^{\infty} |\varphi_n(\xi+t)|^2 d\xi \right)^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} |\varphi_n(\xi)|^2 d\xi \right)^{\frac{1}{2}} =$$
$$= \sum_{n=p}^{m} |\lambda_n| \int_{-\infty}^{\infty} |\varphi_n(\xi)|^2 d\xi = \sum_{n=p}^{m} |\lambda_n| .$$

Define the function $K(\xi, \xi)$ by the equality

$$K(\xi, \xi) = \sum_{n=1}^{\infty} \lambda_n |\varphi_n(\xi)|^2,$$
(11)

where the functional series converges in the space $L^1(\mathbb{R})$. Evidently,

$$\int_{a}^{b} K(\xi, \xi) d\xi = \sum_{n=1}^{\infty} \lambda_n = \operatorname{sp} \mathcal{K}.$$
(12)

Taking into account (10) and (11), we get

$$\int_{-\infty}^{\infty} |K(\xi+t,\xi) - K(\xi,\xi)| d\xi = \int_{-\infty}^{\infty} \left| \sum_{n=1}^{\infty} \lambda_n \overline{\varphi_n(\xi)} \{\varphi_n(\xi+t) - \varphi_n(\xi)\} \right| d\xi \leq \\ \leq \sum_{n=1}^{\infty} |\lambda_n| \int_{-\infty}^{\infty} |\overline{\varphi_n(\xi)}|^2 d\xi \Big|_{-\infty}^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} |\varphi_n(\xi+t) - \varphi_n(\xi)|^2 d\xi \right)^{\frac{1}{2}} = \\ = \sum_{n=1}^{\infty} |\lambda_n| \left(\int_{-\infty}^{\infty} |\varphi_n(\xi)|^2 d\xi \right)^{\frac{1}{2}} (\varphi_n(\xi+t) - \varphi_n(\xi)|^2 d\xi \Big)^{\frac{1}{2}}.$$

But (see [5], pp. 499—502)

$$\lim_{t \to 0} \int_{-\infty}^{\infty} |\varphi_n(\xi + t) - \varphi_n(\xi)|^2 d\xi = 0,$$
$$\left(\int_{-\infty}^{\infty} |\varphi_n(\xi + t) - \varphi_n(\xi)|^2 d\xi \right)^{\frac{1}{2}} \leqslant$$
$$\leqslant \left(\int_{-\infty}^{\infty} |\varphi_n(\xi + t)|^2 d\xi \right)^{\frac{1}{2}} + \left(\int_{-\infty}^{\infty} |\varphi_n(\xi)|^2 d\xi \right)^{\frac{1}{2}} = 2.$$

Hence

$$\lim_{t \to 0} \int_{-\infty}^{\infty} |K(\xi + t, \,\xi) - K(\xi, \,\xi)| \, d\xi \,=\, 0 \,.$$

Thus for any finite or infinite interval (α, β) the equality

$$\int_{\alpha}^{\beta} K(\xi,\,\xi) \,d\xi \,=\, \lim_{h \to 0} \,\frac{1}{h} \int_{0}^{h} \int_{\alpha}^{\beta} K(\xi+t,\,\xi) \,d\xi \,dt \tag{13}$$

holds. Particularly,

$$\operatorname{sp} \mathcal{K} = \lim_{h \to 0} \frac{1}{h} \int_{0}^{h} \int_{a}^{b} K(\xi + t, \,\xi) \, d\xi \, dt \,.$$
(14)

It is evident that if the function $K(\xi, \eta)$ is continuous in the domain $(a, b) \times (a, b)$, then the function $K(\xi, \xi)$, defined in the usual sense, satisfies the equality (13) for any finite interval (α, β) . Thus, for the function $K(\xi, \xi)$ the equality (12) is also true, as

$$\operatorname{sp} \mathcal{K} = \lim_{h \to 0} \frac{1}{h} \int_{0}^{h} \int_{-\infty}^{\infty} K(\xi + t, \xi) \, d\xi \, dt =$$
$$= \lim_{\alpha \to -\infty} \lim_{\beta \to \infty} \left(\lim_{h \to 0} \frac{1}{h} \int_{0}^{h} \int_{\alpha}^{\beta} K(\xi + t, \xi) \, d\xi \, dt \right).$$

It is clear that above assertions remain true also for the case, where the set of eigenvalues of \mathcal{K} is finite.

Note that in the case of finite interval [a, b] and continuous function $K(\xi, \eta)$ the formula (12) has been obtained also in [3], pp. 115–118.

Corollary 1 Let $H = L^2(a, b)$ with finite or infinite interval (a, b), and for some number c > 0 the operators $A = V^*V - cI$ and $B = VV^* - cI$ are integral operators, defined for $x \in L^2(a, b)$ by

$$(Ax)(\xi) = \int_a^b \mathcal{A}(\xi, \eta) x(\eta) \, d\eta, \quad (Bx)(\xi) = \int_a^b \mathcal{B}(\xi, \eta) x(\eta) \, d\eta, \quad \xi \in (a, b),$$

where the functions $\mathcal{A}(\xi, \eta)$ and $\mathcal{B}(\xi, \eta)$ satisfy the following conditions:

$$\int_a^b \int_a^b |\mathcal{A}(\xi, \eta)|^2 \, d\eta \, d\xi < \infty \,, \quad \int_a^b \int_a^b |\mathcal{B}(\xi, \eta)|^2 \, d\eta \, d\xi < \infty \,.$$

Then

$$indV = \frac{1}{c^2} \int_a^b \int_a^b \{ |\mathcal{A}(\xi, \eta)|^2 - |\mathcal{B}(\xi, \eta)|^2 \} \, d\eta \, d\xi \, .$$

Besides, if operators A and B are nuclear, then

$$indV = \lim_{h \to 0} \frac{1}{hc} \int_{0}^{h} \int_{a}^{b} \left\{ \mathcal{B}(\xi + t, \, \xi) - \mathcal{A}(\xi + t, \, \xi) \right\} d\xi \, dt$$

(we suppose that $\mathcal{A}(\xi, \eta)$ and $\mathcal{B}(\xi, \eta)$ are equal to zero outside of $(a, b) \times (a, b)$), and if the functions $\mathcal{A}(\xi, \eta)$ and $\mathcal{B}(\xi, \eta)$ are continuous in $(a, b) \times (a, b)$, then

$$indV = \frac{1}{c} \int_{a}^{b} \{ \mathcal{B}(\xi, \,\xi) - \mathcal{A}(\xi, \,\xi) \} \, d\xi \,.$$
(15)

As an example of a bounded linear operator V in $L^2(0, \infty)$, for which $A = V^*V - I$ and $B = VV^* - I$ are integral operators, we can take the operator, defined for $x \in L^2(0, \infty)$ by

$$(V x)(\xi) = \frac{1}{\sqrt{2\pi}} \sum_{k=0}^{m} \int_{0}^{\infty} x(\eta) S_k(\eta) e^{i\omega_k \xi \eta} d\eta, \quad \xi \in (0, \infty),$$
(16)

where $m \ge 1$ is a integer, *i* is the imaginary unit,

$$\omega_k = exp(\frac{i\pi k}{m}), \quad k = 0, 1, \cdots, m,$$

the functions $S_k(\eta)$ are continuous and bounded on $(0, \infty)$, with $S_m(\eta) \equiv 1$, $|S_0(\eta)| \equiv 1$, the function $S_0(\eta)$ has continuous and integrable on $(0, \infty)$ derivative $S'_0(\eta)$, and the limits $S_0(0)$ and $S_0(\infty)$ of $S_0(\eta)$ at $\eta \to 0$ and $\eta \to \infty$ are real numbers.

The adjoint operator V^* is defined by the formula

$$(V^* x)(\xi) = \frac{1}{\sqrt{2\pi}} \sum_{k=0}^m \overline{S_k(\xi)} \int_0^\infty x(\eta) e^{-i\overline{\omega}_k \xi \eta} d\eta.$$

It is easy to see that

$$(Ax)(\xi) = \int_0^\infty \mathcal{A}(\xi, \eta) x(\eta) \, d\eta, \quad (Bx)(\xi) = \int_0^\infty \mathcal{B}(\xi, \eta) x(\eta) \, d\eta,$$

where

$$\begin{aligned} \mathcal{A}(\xi,\,\eta) \,&=\, \frac{1}{2\pi i} \sum_{k,j=0}^{m} \frac{\overline{S_{k}(\xi)} \, S_{j}(\eta)}{\overline{\omega}_{k}\xi - \omega_{j}\eta} \,, \\ \mathcal{B}(\xi,\,\eta) \,&=\, \frac{1}{2\pi i(\xi+\eta)} \Big\{ \int_{0}^{\infty} \overline{S'_{0}(t)} \, e^{-it(\xi+\eta)} \, dt \,-\, \int_{0}^{\infty} S'_{0}(t) \, e^{it(\xi+\eta)} \, dt \Big\} \,+ \\ &+\, \frac{1}{2\pi} \sum_{k=1}^{m-1} \int_{0}^{\infty} \Big\{ S_{k}(t) \, e^{it(\omega_{k}\xi+\eta)} \,+\, \overline{S_{k}(t)} \, e^{-it(\xi+\overline{\omega}_{k}\eta)} \Big\} \, dt \,+ \\ &+\, \frac{1}{2\pi} \sum_{k=1}^{m-1} \int_{0}^{\infty} \Big\{ S_{k}(t) \, \overline{S_{0}(t)} \, e^{it(\omega_{k}\xi-\eta)} \,+\, \overline{S_{k}(t)} \, S_{0}(t) \, e^{it(\xi-\overline{\omega}_{k}\eta)} \Big\} \, dt \,+ \\ &+\, \frac{1}{2\pi} \sum_{k,j=1}^{m-1} \int_{0}^{\infty} \overline{S_{k}(t)} \, \overline{S_{j}(t)} \, e^{it(\omega_{j}\xi-\overline{\omega}_{k}\eta)} \, dt \,. \end{aligned}$$

Under some additional restrictions on the functions S_k , the equality (15) can be proved and reduced to the form

ind
$$V = \frac{1}{2\pi i} \int_{0}^{\infty} \frac{S'_{0}(\xi)}{S_{0}\xi} d\xi - \frac{1}{4} (S_{0}(\infty) - S_{0}(0)).$$

In the case of m = 1 at least one of the operators V and V^{*} has inverse even if the function S_0 is only measurable and bounded (see [6]).

Operator of the form (16) arise in the investigations of the scattering inverse problem for differential operator of order 2m, and the equality (15) expresses a relation between scattering data (see [7]—[9]).

References

- B. V. Fedosov, Index theorems, In *Partial differential equations*, 8 (Russian), Itogi Nauki i Tekhniki, pages 165–268, 275. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1991.
- [2] N. I. Akhiezer and I. M. Glazman Theory of linear operators in Hilbert space, Moscow, Nauka, 1966 (in Russian).
- [3] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, AMS, Providence, R.I. 1969.
- [4] V. B. Lidskii, Non self-adjoint operators, having trace, DAN SSSR, 125(1959), no. 3, 485–488 (in Russian).

- [5] L. A. Lusternik and V. J. Sobolev, *Elements of functional analysis*, Moscow, Nauka, 1965 (in Russian).
- [6] I. G. Khachatryan, On the invertibility of some Fourier type integral operators, Proceedings of Yerevan State University, 2004, No 2, pp. 3–6 (in Russian).
- [7] I. G. Khachatryan, On a trace formula, Izvestia AN Arm SSR, Matematika, 20(1985), no 1, pp. 41–52 (in Russian).
- [8] V. A. Marchenko, *Sturm-Liouville operators and applications*, Naukova Dumka, Kiev, 1977 (in Russian).
- [9] Z. S. Agranovich and V. A. Marchenko, *The inverse problem of the scattering theory*, Kharkov, 1960 (in Russian).