On Some Formulas for the Index of a Linear Bounded Operator

I. G. Khachatryan*
* Department of Mathematics, Yerevan State University
Alex Manoogian 1, 0025, Yerevan, Armenia.
khachatryanis@yahoo.com

Dedicated to the memory of Prof. V. B. Lidskii

Abstract

We consider a linear bounded operator in infinite dimensional separable Hilbert space satisfying some conditions. We prove formulas that can be used to calculate the index of this operator.

Key Words: Operator, index, trace, absolute norm.
Mathematics Subject Classification 2000: Primary 58J20 Secondary 45P05 .

Let V be a linear bounded operator, acting in an infinite dimensional Hilbert space H, V^{*} - the adjoint operator, $\operatorname{ker} V$ and $\operatorname{ker} V^{*}$ - their null-spaces, $\operatorname{dim}(\operatorname{ker} V)$ and $\operatorname{dim}\left(\operatorname{ker} V^{*}\right)$ — dimensions of corresponding subspaces. The index of the operator V is the number

$$
\begin{equation*}
\operatorname{ind} V=\operatorname{dim}(\operatorname{ker} V)-\operatorname{dim}\left(\operatorname{ker} V^{*}\right) \tag{1}
\end{equation*}
$$

assuming that these dimensions are finite.
Under some conditions on V we prove some formulas, which can be used to calculate ind V. The conditions on V and the received formulas for ind V differ from the known ones (see [1]).

Lemma 1 Let I be the identity operator and $\lambda \neq 0$ be some number. Then

$$
\begin{array}{cl}
\operatorname{ker}\left(V^{*} V\right)=\operatorname{ker} V, & \operatorname{ker}\left(V V^{*}\right)=\operatorname{ker} V^{*}, \\
\operatorname{ker}\left(V^{*} V-\lambda I\right) \cap \operatorname{ker} V=\{0\}, & \operatorname{ker}\left(V V^{*}-\lambda I\right) \cap \operatorname{ker} V^{*}=\{0\}, \\
V\left(\operatorname{ker}\left(V^{*} V-\lambda I\right)\right)=\operatorname{ker}\left(V V^{*}-\lambda I\right), & V^{*}\left(\operatorname{ker}\left(V V^{*}-\lambda I\right)\right)=\operatorname{ker}\left(V^{*} V-\lambda I\right), \\
\operatorname{dim}\left(\operatorname{ker}\left(V^{*} V-\lambda I\right)\right)=\operatorname{dim}\left(k e r\left(V V^{*}-\lambda I\right)\right) . \tag{5}
\end{array}
$$

Proof. If $x \in \operatorname{ker}\left(V^{*} V\right)$, then $(V x, V x)=\left(V^{*} V x, x\right)=0$. Therefore $V x=0$. It follows that $x \in \operatorname{ker} V$ and $\operatorname{ker}\left(V^{*} V\right) \subset \operatorname{ker} V$. From this and from obvious inclusion $\operatorname{ker} V \subset$ $\subset \operatorname{ker}\left(V^{*} V\right)$ we get the first equality of (22). The second equality of (2) can be proved in the same way. Let $x \in \operatorname{ker} V$ and $x \neq 0$. Then $V^{*} V x-\lambda x=-\lambda x \neq 0$, i. e. $x \notin \operatorname{ker}\left(V^{*} V-\lambda I\right)$. This implies the first equality of (3). The second equality of (3) can be proved in the same way. If $y \in \operatorname{ker}\left(V^{*} V-\lambda I\right)$, then for $z=V y$ we have $V V^{*} z-\lambda z=V\left(V^{*} V y-\lambda y\right)=0$, i. e. $z \in \operatorname{ker}\left(V V^{*}-\lambda I\right)$. Thus, $V\left(\operatorname{ker}\left(V^{*} V-\lambda I\right)\right) \subset \operatorname{ker}\left(V V^{*}-\lambda I\right)$. Let $x \in \operatorname{ker}\left(V V^{*}-\lambda I\right)$ and $y=\frac{1}{\lambda} V^{*} x$. Then $x=V y$ and $V^{*} V y-\lambda y=\frac{1}{\lambda} V^{*}\left(V V^{*} x-\lambda x\right)=0$, i. e. $y \in \operatorname{ker}\left(V^{*} V-\lambda I\right)$ and $x \in V\left(\operatorname{ker}\left(V^{*} V-\lambda I\right)\right)$. Therefore, $\operatorname{ker}\left(V V^{*}-\lambda I\right) \subset V\left(\operatorname{ker}\left(V^{*} V-\lambda I\right)\right)$. From these inclusions we obtain the first equality of (4). The second equality of (4) can be proved by similar reasoning. If $x \in \operatorname{ker}\left(V^{*} V-\lambda I\right)$, then $(V x, V y)=\lambda(x, y)$ for all $y \in H$, and if $x \in \operatorname{ker}\left(V V^{*}-\lambda I\right)$, then $\left(V^{*} x, V^{*} y\right)=\lambda(x, y)$. Hence, using (3) and (4) we obtain that the operator V transforms any orthogonal non zero system of elements from $\operatorname{ker}\left(V^{*} V-\lambda I\right)$ into an orthogonal non zero system of elements from $\operatorname{ker}\left(V V^{*}-\lambda I\right)$, and V^{*} performs this transformation in reversed order. Consequently, (5) holds.

Theorem 1 Let for some number $c \neq 0$ operators $A=V^{*} V-c I$ and $B=V V^{*}-c I$ be compact. Then $c>0$, and if the number $-c$ is an eigenvalue of the multiplicity κ^{\prime} for A and of the multiplicity $\kappa^{\prime \prime}$ for B (we do not exclude cases $\kappa^{\prime}=0$ or $\kappa^{\prime \prime}=0$), then

$$
\begin{equation*}
i n d V=\kappa^{\prime}-\kappa^{\prime \prime} . \tag{6}
\end{equation*}
$$

Moreover, if the space H is separable and one of the operators A and B is Hilbert-Schmidt operator, then the other one is also Hilbert-Schmidt operator, and for their absolute norms $N(A)$ and $N(B)$ the equality

$$
\begin{equation*}
\text { ind } V=\frac{1}{c^{2}}\left\{N^{2}(A)-N^{2}(B)\right\} \tag{7}
\end{equation*}
$$

holds. If one of the operators A or B is nuclear, then the other one is also nuclear, and for their traces sp A and sp B the equality

$$
\begin{equation*}
i n d V=\frac{1}{c}\{s p B-s p A\}=\frac{1}{c} s p(B-A)=\frac{1}{c} s p\left(V V^{*}-V^{*} V\right) \tag{8}
\end{equation*}
$$

holds.

Proof. The spectrum $\sigma(A)$ of any compact operator A is at most a countable and bounded set containing zero, and any non-zero element of this set is an eigenvalue of finite multiplicity. Moreover, if the set $\sigma(A)$ is infinite, then zero is the only limiting point of $\sigma(A)$. Evidently the spectrum of the operator $V^{*} V$ is the set $\sigma\left(V^{*} V\right)=\{\lambda+c: \lambda \in \sigma(A)\}$. Thus $c \in \sigma\left(V^{*} V\right)$. Since $V^{*} V$ is a non-negative self-adjoint operator, then $c>0$, and A is self-adjoint. Similar statements are true for operators B and $V V^{*}$. Particularly $\sigma\left(V V^{*}\right)=\{\lambda+c: \lambda \in \sigma(B)\}$. From this and the statement (5) it follows that $\sigma(A) \backslash\{-c\}=$
$=\sigma(B) \backslash\{-c\}$, and if the number $\lambda \neq-c$ is an eigenvalue for one of the operators A and B, then λ is an eigenvalue of the same multiplicity for the other one (in the case $\lambda \neq 0$ this multiplicity is finite). Let $-c$ be an eigenvalue of multiplicity κ^{\prime} for A and of multiplicity $\kappa^{\prime \prime}$ for B. These multiplicities, evidently are finite and

$$
\kappa^{\prime}=\operatorname{dim}\left(\operatorname{ker}\left(V^{*} V\right)\right), \quad \kappa^{\prime \prime}=\operatorname{dim}\left(\operatorname{ker}\left(V V^{*}\right)\right)
$$

From here, by (1) and (2) we get (6). Put $\sigma=\sigma(A) \backslash\{-c, 0\}=\sigma(B) \backslash\{-c, 0\}$. Any number $\lambda \in \sigma$ is an eigenvalue of the same multiplicity $\kappa(\lambda)$ for both operators A and B. Let A be a Hilbert-Schmidt operator, i. e. have finite absolute norm $N(A)$ (see [2], pp. 96-103, 208-212). Since the operator A is self-adjoint, then (see [2], p. 209)

$$
N^{2}(A)=c^{2} \kappa^{\prime}+\sum_{\lambda \in \sigma} \lambda^{2} \kappa(\lambda) .
$$

Hence the absolute norm $N(B)$ of the operator B is also finite and

$$
N^{2}(B)=c^{2} \kappa^{\prime \prime}+\sum_{\lambda \in \sigma} \lambda^{2} \kappa(\lambda) .
$$

Thus $N^{2}(A)-N^{2}(B)=c^{2}\left(\kappa^{\prime}-\kappa^{\prime \prime}\right)$. From this and relation (6) we get (7).
Let the operator A be nuclear (see [2], p. 208-212), i. e.

$$
\sum_{\lambda \in \sigma}|\lambda| \kappa(\lambda)<\infty
$$

Then the operator B is also nuclear. According to the theorem of V. B. Lidskii (see [2], p. 212; [3], p. 101; [4]), for $\operatorname{sp} A$ and $\operatorname{sp} B$ the following equalities

$$
\operatorname{sp} A=-c \kappa^{\prime}+\sum_{\lambda \in \sigma} \lambda \kappa(\lambda), \quad \operatorname{sp} B=-c \kappa^{\prime \prime}+\sum_{\lambda \in \sigma} \lambda \kappa(\lambda)
$$

are true. Hence $\operatorname{sp} B-\operatorname{sp} A=c\left(\kappa^{\prime}-\kappa^{\prime \prime}\right)$ and by (6) we get (8).
The theorem is proved.
Consider in the space $L^{2}(a, b)$ with finite or infinite interval (a, b) the following integral operator \mathcal{K} :

$$
(\mathcal{K} x)(\xi)=\int_{a}^{b} K(\xi, \eta) x(\eta) d \eta, \quad x \in L^{2}(a, b), \quad \xi \in(a, b),
$$

where the function $K(\xi, \eta)$ satisfies the following condition:

$$
\int_{a}^{b} \int_{a}^{b}|K(\xi, \eta)|^{2} d \eta d \xi<\infty
$$

It is known (see [2], pp. 101-102), that \mathcal{K} is Hilbert-Schmidt operator and its absolute norm $N(\mathcal{K})$ is equal to

$$
N^{2}(\mathcal{K})=\int_{a}^{b} \int_{a}^{b}|K(\xi, \eta)|^{2} d \eta d \xi
$$

If the operator \mathcal{K} is self-adjoint, then $K(\xi, \eta)=\overline{K(\eta, \xi)}$. For the sake of definiteness we consider the case, where the self-adjoint compact operator \mathcal{K} has an infinite set of eigenvalues. Enumerate non-zero eigenvalues $\lambda_{n}(n=1,2, \cdots)$ in order of decreasing moduli: $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant \cdots$, repeating each eigenvalue according to its multiplicity. Denote by φ_{n} ($n=1,2, \cdots$) the orthonormal set of corresponding eigenfunctions: $\mathcal{K} \varphi_{n}=\lambda_{n} \varphi_{n}$. It is known (see [2], pp. 102, 209), that

$$
\begin{gather*}
N^{2}(\mathcal{K})=\sum_{n=1}^{\infty} \lambda_{n}^{2} \\
K(\xi, \eta)=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}(\xi) \overline{\varphi_{n}(\eta)}, \tag{9}
\end{gather*}
$$

and the functional series in (9) converges in the space $L^{2}((a, b) \times(a, b))$.
Let the self-adjoint operator \mathcal{K} be nuclear. Then

$$
\sum_{n=1}^{\infty}\left|\lambda_{n}\right|<\infty, \quad \text { sp } \mathcal{K}=\sum_{n=1}^{\infty} \lambda_{n} .
$$

We extend each function $x \in L^{2}(a, b)$ onto $\mathbb{R}=(-\infty, \infty)$, putting $x(\xi)=0$ for $\xi \notin(a, b)$. We extend also the function $K(\xi, \eta)$ onto \mathbb{R}^{2}, putting $K(\xi, \eta)=0$ for $(\xi, \eta) \notin(a, b) \times(a, b)$. By (9) we have

$$
\begin{equation*}
K(\xi+t, \xi)=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}(\xi+t) \overline{\varphi_{n}(\xi)} \tag{10}
\end{equation*}
$$

and the functional series on variables ξ and t converges in the space $L^{2}\left(\mathbb{R}^{2}\right)$. Indeed, this fact follows from the equality:

$$
\begin{gathered}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\sum_{n=p}^{m} \lambda_{n} \varphi_{n}(\xi+t) \overline{\varphi_{n}(\xi)}\right|^{2} d t d \xi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\sum_{n=p}^{m} \lambda_{n} \varphi_{n}(\eta) \overline{\varphi_{n}(\xi)}\right|^{2} d \eta d \xi= \\
=\sum_{n=p}^{m} \sum_{j=p}^{m} \lambda_{n} \lambda_{j}\left|\int_{-\infty}^{\infty} \overline{\varphi_{n}(\xi)} \varphi_{j}(\xi) d \xi\right|^{2}=\sum_{n=p}^{m} \lambda_{n}^{2}
\end{gathered}
$$

which is valid for any positive integers $p<m$.
Besides, for any t the functional series on the variable ξ in converges in the space $L^{1}(\mathbb{R})$. Indeed, this follows from the estimate:

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left|\sum_{n=p}^{m} \lambda_{n} \varphi_{n}(\xi+t) \overline{\varphi_{n}(\xi)}\right| d \xi \leqslant \sum_{n=p}^{m}\left|\lambda_{n}\right| \int_{-\infty}^{\infty}\left|\varphi_{n}(\xi+t) \overline{\varphi_{n}(\xi)}\right| d \xi \leqslant \\
\leqslant \sum_{n=p}^{m}\left|\lambda_{n}\right|\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi+t)\right|^{2} d \xi\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}= \\
=\sum_{n=p}^{m}\left|\lambda_{n}\right| \int_{-\infty}^{\infty}\left|\varphi_{n}(\xi)\right|^{2} d \xi=\sum_{n=p}^{m}\left|\lambda_{n}\right|
\end{gathered}
$$

Define the function $K(\xi, \xi)$ by the equality

$$
\begin{equation*}
K(\xi, \xi)=\sum_{n=1}^{\infty} \lambda_{n}\left|\varphi_{n}(\xi)\right|^{2} \tag{11}
\end{equation*}
$$

where the functional series converges in the space $L^{1}(\mathbb{R})$. Evidently,

$$
\begin{equation*}
\int_{a}^{b} K(\xi, \xi) d \xi=\sum_{n=1}^{\infty} \lambda_{n}=\operatorname{sp} \mathcal{K} . \tag{12}
\end{equation*}
$$

Taking into account (10) and (11), we get

$$
\begin{gathered}
\int_{-\infty}^{\infty}|K(\xi+t, \xi)-K(\xi, \xi)| d \xi=\int_{-\infty}^{\infty}\left|\sum_{n=1}^{\infty} \lambda_{n} \overline{\varphi_{n}(\xi)}\left\{\varphi_{n}(\xi+t)-\varphi_{n}(\xi)\right\}\right| d \xi \leqslant \\
\leqslant \sum_{n=1}^{\infty}\left|\lambda_{n}\right| \int_{-\infty}^{\infty}\left|\overline{\varphi_{n}(\xi)}\left\{\varphi_{n}(\xi+t)-\varphi_{n}(\xi)\right\}\right| d \xi \leqslant \\
\leqslant \sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi+t)-\varphi_{n}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}= \\
=\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi+t)-\varphi_{n}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}
\end{gathered}
$$

But (see [5], pp. 499-502)

$$
\begin{gathered}
\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}\left|\varphi_{n}(\xi+t)-\varphi_{n}(\xi)\right|^{2} d \xi=0 \\
\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi+t)-\varphi_{n}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}} \leqslant \\
\leqslant\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi+t)\right|^{2} d \xi\right)^{\frac{1}{2}}+\left(\int_{-\infty}^{\infty}\left|\varphi_{n}(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}=2
\end{gathered}
$$

Hence

$$
\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}|K(\xi+t, \xi)-K(\xi, \xi)| d \xi=0
$$

Thus for any finite or infinite interval (α, β) the equality

$$
\begin{equation*}
\int_{\alpha}^{\beta} K(\xi, \xi) d \xi=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \int_{\alpha}^{\beta} K(\xi+t, \xi) d \xi d t \tag{13}
\end{equation*}
$$

holds. Particularly,

$$
\begin{equation*}
\operatorname{sp} \mathcal{K}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \int_{a}^{b} K(\xi+t, \xi) d \xi d t \tag{14}
\end{equation*}
$$

It is evident that if the function $K(\xi, \eta)$ is continuous in the domain $(a, b) \times(a, b)$, then the function $K(\xi, \xi)$, defined in the usual sense, satisfies the equality (13) for any finite interval (α, β). Thus, for the function $K(\xi, \xi)$ the equality 12$)$ is also true, as

$$
\begin{aligned}
& \operatorname{sp} \mathcal{K}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \int_{-\infty}^{\infty} K(\xi+t, \xi) d \xi d t= \\
= & \lim _{\alpha \rightarrow-\infty} \lim _{\beta \rightarrow \infty}\left(\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \int_{\alpha}^{\beta} K(\xi+t, \xi) d \xi d t\right) .
\end{aligned}
$$

It is clear that above assertions remain true also for the case, where the set of eigenvalues of \mathcal{K} is finite.

Note that in the case of finite interval $[a, b]$ and continuous function $K(\xi, \eta)$ the formula (12) has been obtained also in [3], pp. 115-118.

Corollary 1 Let $H=L^{2}(a, b)$ with finite or infinite interval (a, b), and for some number $c>0$ the operators $A=V^{*} V-c I$ and $B=V V^{*}-c I$ are integral operators, defined for $x \in L^{2}(a, b)$ by

$$
(A x)(\xi)=\int_{a}^{b} \mathcal{A}(\xi, \eta) x(\eta) d \eta, \quad(B x)(\xi)=\int_{a}^{b} \mathcal{B}(\xi, \eta) x(\eta) d \eta, \quad \xi \in(a, b),
$$

where the functions $\mathcal{A}(\xi, \eta)$ and $\mathcal{B}(\xi, \eta)$ satisfy the following conditions:

$$
\int_{a}^{b} \int_{a}^{b}|\mathcal{A}(\xi, \eta)|^{2} d \eta d \xi<\infty, \quad \int_{a}^{b} \int_{a}^{b}|\mathcal{B}(\xi, \eta)|^{2} d \eta d \xi<\infty .
$$

Then

$$
\text { indV }=\frac{1}{c^{2}} \int_{a}^{b} \int_{a}^{b}\left\{|\mathcal{A}(\xi, \eta)|^{2}-|\mathcal{B}(\xi, \eta)|^{2}\right\} d \eta d \xi
$$

Besides, if operators A and B are nuclear, then

$$
\text { ind } V=\lim _{h \rightarrow 0} \frac{1}{h c} \int_{0}^{h} \int_{a}^{b}\{\mathcal{B}(\xi+t, \xi)-\mathcal{A}(\xi+t, \xi)\} d \xi d t
$$

(we suppose that $\mathcal{A}(\xi, \eta)$ and $\mathcal{B}(\xi, \eta)$ are equal to zero outside of $(a, b) \times(a, b)$), and if the functions $\mathcal{A}(\xi, \eta)$ and $\mathcal{B}(\xi, \eta)$ are continuous in $(a, b) \times(a, b)$, then

$$
\begin{equation*}
\text { indV }=\frac{1}{c} \int_{a}^{b}\{\mathcal{B}(\xi, \xi)-\mathcal{A}(\xi, \xi)\} d \xi \tag{15}
\end{equation*}
$$

As an example of a bounded linear operator V in $L^{2}(0, \infty)$, for which $A=V^{*} V-I$ and $B=V V^{*}-I$ are integral operators, we can take the operator, defined for $x \in L^{2}(0, \infty)$ by

$$
\begin{equation*}
(V x)(\xi)=\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{m} \int_{0}^{\infty} x(\eta) S_{k}(\eta) e^{i \omega_{k} \xi \eta} d \eta, \quad \xi \in(0, \infty) \tag{16}
\end{equation*}
$$

where $m \geqslant 1$ is a integer, i is the imaginary unit,

$$
\omega_{k}=\exp \left(\frac{i \pi k}{m}\right), \quad k=0,1, \cdots, m
$$

the functions $S_{k}(\eta)$ are continuous and bounded on $(0, \infty)$, with $S_{m}(\eta) \equiv 1,\left|S_{0}(\eta)\right| \equiv 1$, the function $S_{0}(\eta)$ has continuous and integrable on $(0, \infty)$ derivative $S_{0}^{\prime}(\eta)$, and the limits $S_{0}(0)$ and $S_{0}(\infty)$ of $S_{0}(\eta)$ at $\eta \rightarrow 0$ and $\eta \rightarrow \infty$ are real numbers.

The adjoint operator V^{*} is defined by the formula

$$
\left(V^{*} x\right)(\xi)=\frac{1}{\sqrt{2 \pi}} \sum_{k=0}^{m} \overline{S_{k}(\xi)} \int_{0}^{\infty} x(\eta) e^{-i \bar{\omega}_{k} \xi \eta} d \eta .
$$

It is easy to see that

$$
(A x)(\xi)=\int_{0}^{\infty} \mathcal{A}(\xi, \eta) x(\eta) d \eta, \quad(B x)(\xi)=\int_{0}^{\infty} \mathcal{B}(\xi, \eta) x(\eta) d \eta
$$

where

$$
\begin{gathered}
\mathcal{A}(\xi, \eta)=\frac{1}{2 \pi i} \sum_{k, j=0}^{m} \frac{\overline{S_{k}(\xi)} S_{j}(\eta)}{\bar{\omega}_{k} \xi-\omega_{j} \eta}, \\
\mathcal{B}(\xi, \eta)=\frac{1}{2 \pi i(\xi+\eta)}\left\{\int_{0}^{\infty} \overline{S_{0}^{\prime}(t)} e^{-i t(\xi+\eta)} d t-\int_{0}^{\infty} S_{0}^{\prime}(t) e^{i t(\xi+\eta)} d t\right\}+ \\
+\frac{1}{2 \pi} \sum_{k=1}^{m-1} \int_{0}^{\infty}\left\{S_{k}(t) e^{i t\left(\omega_{k} \xi+\eta\right)}+\overline{S_{k}(t)} e^{-i t\left(\xi+\bar{\omega}_{k} \eta\right)}\right\} d t+ \\
+\frac{1}{2 \pi} \sum_{k=1}^{m-1} \int_{0}^{\infty}\left\{S_{k}(t) \overline{S_{0}(t)} e^{i t\left(\omega_{k} \xi-\eta\right)}+\overline{S_{k}(t)} S_{0}(t) e^{i t\left(\xi-\bar{\omega}_{k} \eta\right)}\right\} d t+ \\
+\frac{1}{2 \pi} \sum_{k, j=1}^{m-1} \int_{0}^{\infty} \overline{S_{k}(t)} S_{j}(t) e^{i t\left(\omega_{j} \xi-\bar{\omega}_{k} \eta\right)} d t
\end{gathered}
$$

Under some additional restrictions on the functions S_{k}, the equality (15) can be proved and reduced to the form

$$
\text { ind } V=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{S_{0}^{\prime}(\xi)}{\left.S_{0} \xi\right)} d \xi-\frac{1}{4}\left(S_{0}(\infty)-S_{0}(0)\right)
$$

In the case of $m=1$ at least one of the operators V and V^{*} has inverse even if the function S_{0} is only measurable and bounded (see [6]).

Operator of the form (16) arise in the investigations of the scattering inverse problem for differential operator of order $2 m$, and the equality (15) expresses a relation between scattering data (see [7]-[9]).

References

[1] B. V. Fedosov, Index theorems, In Partial differential equations, 8 (Russian), Itogi Nauki i Tekhniki, pages 165-268, 275. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1991.
[2] N. I. Akhiezer and I. M. Glazman Theory of linear operators in Hilbert space, Moscow, Nauka, 1966 (in Russian).
[3] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, AMS, Providence, R.I. 1969.
[4] V. B. Lidskii, Non self-adjoint operators, having trace, DAN SSSR, 125(1959), no. 3, 485-488 (in Russian).
[5] L. A. Lusternik and V. J. Sobolev, Elements of functional analysis, Moscow, Nauka, 1965 (in Russian).
[6] I. G. Khachatryan, On the invertibility of some Fourier type integral operators, Proceedings of Yerevan State University, 2004, No 2, pp. 3-6 (in Russian).
[7] I. G. Khachatryan, On a trace formula, Izvestia AN Arm SSR, Matematika, 20(1985), no 1, pp. 41-52 (in Russian).
[8] V. A. Marchenko, Sturm-Liouville operators and applications, Naukova Dumka, Kiev, 1977 (in Russian).
[9] Z. S. Agranovich and V. A. Marchenko, The inverse problem of the scattering theory, Kharkov, 1960 (in Russian).

