Weighted integral representations of harmonic functions in the unit disc by means of Mittag-Leffler type kernels

F. V. Hayrapetyan

Abstract. For weighted L^p-classes of functions harmonic in the unit disc, we obtain a family of weighted integral representations with weight function of the type $|w|^{2p} \cdot (1 - |w|^{2p})^\beta$.

Key Words: Harmonic Functions in the Unit Disc, Weighted Function Space, Weighted Integral Representation

Mathematics Subject Classification 2010: 30F15, 30C40, 30H20, 30E20

1 Introduction

It is well-known that the Cauchy integral formula has numerous applications in complex analysis. This formula makes it possible to reproduce values of holomorphic functions inside of a domain by integration of function along the boundary of the domain. First results are contained in [1, 2], where the values of holomorphic functions inside of a domain were obtained by integration of functions over the whole domain. In [3, 4] for the weighted spaces $H^p(\alpha)$ ($1 \leq p < \infty, \alpha > -1$) of functions f holomorphic in the unit disc \mathbb{D} and satisfying the condition

$$\int_{\mathbb{D}} |f(\zeta)|^p (1 - |\zeta|^2)^\alpha |dudv| < +\infty, \quad \zeta = u + iv,$$

the following result was established:

Theorem 1. Each function $f \in H^p(\alpha)$ has the integral representation

$$f(z) = \frac{\alpha + 1}{\pi} \int_{\mathbb{D}} \frac{f(\zeta)(1 - |\zeta|^2)^\alpha}{(1 - z\zeta)^{2+\alpha}} dudv, \quad z \in \mathbb{D}, \quad (1)$$

$$f(0) = \frac{\alpha + 1}{\pi} \int_{\mathbb{D}} \frac{f(\zeta)(1 - |\zeta|^2)^\alpha}{(1 - z\zeta)^{2+\alpha}} dudv, \quad z \in \mathbb{D}. \quad (2)$$
These representations had numerous applications in the theory of factorization of meromorphic functions in the unit disc (see [3, 4] as well as [5]).

Assume that $0 < p < +\infty$, $\rho > 0$, $\alpha > -1$, $\gamma > -1$. Denote by $L^p_{\alpha,\rho,\gamma}(D)$ the set of all complex-valued measurable functions $f(\zeta), \zeta \in D$, for which

$$M^p_{\alpha,\rho,\gamma}(f) \equiv \iint_D |f(\zeta)|^p (1 - |\zeta|^2 \rho)^\alpha |\zeta|^2 \gamma dm(\zeta) < +\infty.$$

Also we will use the following notations:

$$H^p_{\alpha,\rho,\gamma}(D) = \{ f \in H(D) : M^p_{\alpha,\rho,\gamma}(f) < +\infty \},$$

$$h^p_{\alpha,\rho,\gamma}(D) = \{ f \in h(D) : M^p_{\alpha,\rho,\gamma}(f) < +\infty \},$$

where $H(D)$ and $h(D)$ are the sets of all holomorphic and harmonic functions in D, respectively.

The spaces above were introduced in [6]. Moreover, for these spaces an analogue of representations (1) and (2) were written out by means of special reproducing kernels adapted to new weight functions (see [6] and [7]):

Let $\rho > 0, Re\beta > -1, Re\varphi > -1$ and $\mu = \frac{1 + \varphi}{\rho}$. Then put

$$S_{\beta,\rho,\varphi}(z, \zeta) = \frac{\rho}{\pi \Gamma(\beta + 1)} \sum_{k=0}^{\infty} \frac{\Gamma(\mu + \beta + 1 + \frac{k}{\rho})}{\Gamma(\mu + \frac{k}{\rho})} z^k \zeta^{-k},$$

where $z \in D$ and $\zeta \in \overline{D}$.

The main properties of the kernel $S_{\beta,\rho,\varphi}(z, \zeta)$ can be summarized in the following theorem (see [6], [7]):

Theorem 2. 1. For all $z \in D$ and $\zeta \in \overline{D}$, the series $S_{\beta,\rho,\varphi}(z, \zeta)$ is absolutely convergent.

2. For all $z \in D$ and $\zeta \in \overline{D}$,

$$|S_{\beta,\rho,\varphi}(z, \zeta)| \leq \frac{\text{const}(\beta, \rho, \varphi)}{(1 - |z|)^{2 + Re\beta}}.$$

3. $S_{\beta,\rho,\varphi}(z, \zeta)$ can be majorated by a positive convergent series uniformly in $z \in K \subset D$ and $\zeta \in \overline{D}$, where K is a compact set.

4. For a fixed $\zeta \in \overline{D}$, S is holomorphic in $z \in D$. For a fixed $z \in D$, S is antiholomorphic in $\zeta \in D$ and continuous in $\zeta \in \overline{D}$.

5. For all \(z \in \mathbb{D} \) and \(\zeta \in \mathbb{D} \),

\[
S_{\beta,\rho,\varphi}(z,\zeta) = \frac{\rho}{\pi \Gamma(\beta + 1)} \int_0^\infty e^{-t\mu+\beta}E_\rho\left(t\frac{1}{\rho}z\bar{\zeta};\mu\right) dt,
\]

where \(E_\rho(\cdot;\mu) \) is the well-known Mittag-Leffler type entire function. Moreover, the function under the sign of the integral is majorated by a positive integrable function uniformly in \(z \in K \subset \mathbb{D} \) and \(\zeta \in \mathbb{D} \), where \(K \) is a compact set.

The corresponding generalization of (1) and (2) is formulated as follows (see [6], [7]):

Theorem 3. Assume that \(1 \leq p < +\infty, \rho > 0, \alpha > -1, \gamma > -1 \), complex numbers \(\beta \) and \(\varphi \) are satisfying the conditions

\[
Re \beta \geq \alpha, \quad Re \varphi \geq \gamma,
\]

when \(p = 1 \) and the conditions

\[
Re \beta > \frac{\alpha + 1}{p} - 1, \quad Re \varphi > \frac{\gamma + 1}{p} - 1,
\]

when \(p > 1 \), and put \(\mu = (\varphi + 1)/\rho \). Then each function \(f \in H^p_{\alpha,\rho,\gamma}(\mathbb{D}) \) has the following representation:

\[
f(z) = \int\int_{\mathbb{D}} f(\zeta)S_{\beta,\rho,\varphi}(z,\zeta)(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta), \quad z \in \mathbb{D},
\]

and

\[
\overline{f(0)} = \int\int_{\mathbb{D}} \overline{f(\zeta)}S_{\beta,\rho,\varphi}(z,\zeta)(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta), \quad z \in \mathbb{D}.
\]

In the present paper, we prove an analogous result of the theorem above for harmonic functions from the corresponding weighted \(L^p \)-spaces in the unit disc \(\mathbb{D} \).

2 Necessary Estimates

First of all, we intend to strengthen some assertions of the Theorem 2.

Theorem 4. Assume \(\rho > 0, Re \beta > -1, Re \varphi > -1, \mu = \frac{1 + \varphi}{\rho}, z \in \mathbb{D}, \zeta \in \overline{\mathbb{D}} \) and the kernel \(S_{\beta,\rho,\varphi}(z,\zeta) \) is defined by (3). If

\[
-1 < a_1 \leq Re \beta \leq a_2 < +\infty, \quad |Im \beta| \leq A < +\infty,
\]

\[
-1 < b_1 \leq Re \varphi \leq b_2 < +\infty, \quad |Im \varphi| \leq B < +\infty
\]
and $\zeta \in \mathbb{D}$, $|z| \leq \lambda < 1$, then the expression of $S_{\beta, \rho, \varphi}$ can be uniformly majorated by the convergent series

$$\text{const}(a_1, a_2, A, b_1, b_2, B, \rho) \sum_{k=0}^{\infty} (k + 1)^{a_2 + 1} \lambda^k. \quad (4)$$

Moreover,

$$|S_{\beta, \rho, \varphi}(z, \zeta)| \leq \frac{\text{const}(a_1, a_2, A, b_1, b_2, B, \rho)}{(1 - |z||\zeta|)^{2+\text{Re}\beta}} \leq \frac{\text{const}(a_1, a_2, A, b_1, b_2, B, \rho)}{(1 - \lambda)^{2+a_2}}. \quad (5)$$

Proof. According to Stirling formula (see, for example, [8], pp. 158-159) there exist numbers $a, b, 0 < a < b < +\infty$, such that

$$a \leq |\Gamma(\mu + R)| \leq b \quad (6)$$

uniformly in $\mu \in K \subset \{\mu \in \mathbb{C} : \text{Re}\mu > 0\}$ and $0 < \delta \leq R < +\infty$. Hence, in view of (6),

$$|S_{\beta, \rho, \varphi}(z, \zeta)| \leq \frac{\rho |\Gamma(\mu + \beta + 1)|}{\pi |\Gamma(\nu + 1)||\Gamma(\mu)|} \sum_{k=1}^{\infty} \frac{|\Gamma(\mu + \beta + 1 + \frac{k}{\rho})|}{|\Gamma(\mu + \frac{k}{\rho})|} |z|^k |\zeta|^k \leq \text{const}(a_1, a_2, A, b_1, b_2, B, \rho)$$

$$+ \text{const}(a_1, a_2, A, b_1, b_2, B, \rho) \sum_{k=1}^{\infty} \left(\frac{k}{\rho} \right)^{\text{Re}\mu + \text{Re}\beta + 1 + \frac{k}{\rho} - 1} \cdot e^{-\frac{k}{\rho}} |z|^k |\zeta|^k$$

$$= \text{const}(a_1, a_2, A, b_1, b_2, B, \rho) + \text{const}(a_1, a_2, A, b_1, b_2, B, \rho) \sum_{k=1}^{\infty} k^{\text{Re}\beta + 1} |z|^k |\zeta|^k \leq \text{const}(a_1, a_2, A, b_1, b_2, B, \rho) + \text{const}(a_1, a_2, A, b_1, b_2, B, \rho) \sum_{k=1}^{\infty} k^{a_2 + 1} |z|^k |\zeta|^k.$$

From here (4) follows. As to (5), it directly follows from the estimation

$$k^{\text{Re}\beta + 1} \sim \frac{\Gamma(k + \text{Re}\beta + 2)}{\Gamma(\text{Re}\beta + 2)\Gamma(k + 1)}.$$
and binomial expansion

\[
\frac{1}{(1-x)^s} = \sum_{k=0}^{\infty} \frac{\Gamma(k+s)}{\Gamma(s)\Gamma(k+1)} x^k.
\]

Corollary. For a fixed \(z \in \mathbb{D} \) and \(\zeta \in \mathbb{D} \), the kernel \(S_{\beta,\rho,\varphi}(z, \zeta) \) is holomorphic in \(\beta \) and \(\varphi \) with \(\Re\beta > -1 \) and \(\Re\varphi > -1 \).

Theorem 5. Assume that \(1 \leq p < \infty \), \(\rho > 0 \), \(\alpha > -1 \), \(\gamma > -1 \) and \(f \in L_{\alpha,\rho,\gamma}^p(\mathbb{D}) \). Then there exists a positive function \(\Phi(\zeta) \in L^1(\mathbb{D}) \) such that

\[
|f(\zeta)(1-|\zeta|^{2\rho})^\beta \cdot |\zeta|^{2\varphi} \cdot S_{\beta,\rho,\varphi}(z, \zeta)| \leq \Phi(\zeta), \quad \zeta \in \mathbb{D},
\]

uniformly in \(z \in K \subset \mathbb{D} \) and in \(\beta \) and \(\varphi \) satisfying the conditions

\[
\alpha = a_1 \leq \Re\beta \leq a_2, \quad |\Im\beta| \leq A,
\]

\[
\gamma = b_1 \leq \Re\varphi \leq b_2, \quad |\Im\varphi| \leq B,
\]

when \(p = 1 \) and the conditions

\[
\frac{\alpha+1}{p} - 1 < a_1 \leq \Re\beta \leq a_2, \quad |\Im\beta| \leq A,
\]

\[
\frac{\gamma+1}{p} - 1 < b_1 \leq \Re\varphi \leq b_2, \quad |\Im\varphi| \leq B,
\]

when \(p > 1 \).

Proof. Note that under the assumptions of the theorem, \(|S_{\beta,\rho,\varphi}(z, \zeta)| \leq \text{const} \cdot |S_{\beta,\rho,\varphi}(z, \zeta)| < +\infty, \zeta \in \overline{\mathbb{D}} \) (see [5]). If \(p = 1 \), then

\[
|f(\zeta) \cdot (1-|\zeta|^{2\rho})^\beta \cdot |\zeta|^{2\varphi} \cdot S_{\beta,\rho,\varphi}(z, \zeta)| \leq \text{const} \cdot |f(\zeta)| \cdot (1-|\zeta|^{2\rho})^{\Re\beta} \cdot |\zeta|^{2\Re\varphi}
\]

\[
\leq \text{const} \cdot |f(\zeta)| \cdot (1-|\zeta|^{2\rho})^{\alpha} \cdot |\zeta|^{\gamma} = \Phi(\zeta) \in L^1(\mathbb{D}),
\]

while for \(p > 1 \) we can write

\[
|f(\zeta) \cdot (1-|\zeta|^{2\rho})^\beta \cdot |\zeta|^{2\varphi} \cdot S_{\beta,\rho,\varphi}(z, \zeta)|
\]

\[
\leq \text{const} \cdot |f(\zeta)| \cdot (1-|\zeta|^{2\rho})^{\Re\beta} \cdot |\zeta|^{2\Re\varphi}
\]

\[
\leq \text{const} \cdot |f(\zeta)| \cdot (1-|\zeta|^{2\rho})^{\alpha_1} \cdot |\zeta|^{\beta_1}
\]

\[
= \text{const} \cdot |f(\zeta)| \cdot (1-|\zeta|^{2\rho})^{\frac{\alpha_1}{2}} \cdot |\zeta|^{\frac{\beta_1}{2}} \cdot (1-|\zeta|^{2\rho})^{\alpha_1 - \frac{\alpha_1}{2}} \cdot |\zeta|^{\beta_1 - \frac{\beta_1}{2}} = \Phi(\zeta).
\]

It remains to show that \(\Phi(\zeta) \in L^1(\mathbb{D}) \). We have
\[\int \int_{D} \Phi(\zeta) \, dm(\zeta) \leq \text{const} \cdot \left(\int \int_{D} |f(\zeta)|^p (1 - |\zeta|^{2\rho})^\alpha |\zeta|^{2\gamma} \, dm(\zeta) \right)^{1/p} \times \left(\int \int_{D} (1 - |\zeta|^{2\rho})^{q(a_1 - \frac{2}{p})} |\zeta|^{2q(b_1 - \frac{2}{p})} \, dm(\zeta) \right)^{1/q}, \]

and the convergence of the second integral follows from the conditions of the theorem. \[\square \]

3 Weighted integral representations for the main classes of holomorphic and harmonic functions

Theorem 6. Assume \(1 \leq p < \infty, \rho > 0, \alpha > -1, \gamma > -1, \) complex numbers \(\beta \) and \(\varphi \) are satisfying the conditions
\[\Re \beta \geq \alpha, \quad \Re \varphi \geq \gamma, \quad (7) \]
when \(p = 1 \) and the conditions
\[\Re \beta > \frac{\alpha + 1}{p} - 1, \quad \Re \varphi > \frac{\gamma + 1}{p} - 1, \quad (8) \]
when \(p > 1 \), and put \(\mu = \frac{\varphi + 1}{\rho} \). Let \(f = u + iv \in H^p_{\alpha, \rho, \gamma} \). Then the following integral representations hold: for all \(z \in D \)
\[f(z) = iv(0) + \int \int_{D} u(\zeta) \left(2S_{\beta, \rho, \varphi}(z, \zeta) - \rho \frac{\Gamma(\mu + \beta + 1)}{\pi \Gamma(\beta + 1) \Gamma(\mu)} \right) (1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} \, dm(\zeta) \quad (9) \]
and
\[u(z) = \int \int_{D} u(\zeta) \left(S_{\beta, \rho, \varphi}(z, \zeta) + S_{\beta, \rho, \varphi}(\zeta, z) - \rho \frac{\Gamma(\mu + \beta + 1)}{\pi \Gamma(\beta + 1) \Gamma(\mu)} \right) (1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} \, dm(\zeta) \]
\[(10) \]
Proof. First of all, note that

\[S_{\beta,\rho,\varphi}(0,\zeta) = S_{\beta,\rho,\varphi}(z,0) = \frac{\rho \Gamma(\mu + \beta + 1)}{\pi \Gamma(\beta + 1) \Gamma(\mu)} \]
\[z \in \mathbb{D}, \quad \zeta \in \overline{\mathbb{D}}. \]
(11)

Further, due to Corollary 1, the expressions under the signs of the integrals are holomorphic in β and φ, $Re\beta > -1, Re\varphi > -1$ for fixed z and ζ. Hence, according to Theorem 5, for a fixed $z \in \mathbb{D}$, the right-hand side of (9) and (10) are also holomorphic in β and φ when (8) (or (7), depending on p) is satisfied. Thus, in view of the uniqueness theorem for holomorphic functions in two complex variables, we can additionally suppose (without loss of generality) that β and φ are real. According to \[7, Theorem 4.2],

\[f(z) = \int\int_{\mathbb{D}} f(\zeta) S_{\beta,\rho,\varphi}(z,\zeta)(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta), \quad z \in \mathbb{D}, \]
(12)

and

\[f(0) = \int\int_{\mathbb{D}} f(\zeta) S_{\beta,\rho,\varphi}(z,\zeta)(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta), \quad z \in \mathbb{D}. \]
(13)

Summation of (12) and (13) yields

\[f(z) + f(0) = \int\int_{\mathbb{D}} 2u(\zeta) S_{\beta,\rho,\varphi}(z,\zeta)(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta). \]
(14)

According to (12) and (11),

\[f(0) = \int\int_{\mathbb{D}} f(\zeta) \frac{\Gamma(\mu + \beta + 1)}{\Gamma(\beta + 1) \Gamma(\mu)} \rho \frac{1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta), \quad z \in \mathbb{D}. \]

Hence,

\[u(0) = \int\int_{\mathbb{D}} u(\zeta) \frac{\Gamma(\mu + \beta + 1)}{\Gamma(\beta + 1) \Gamma(\mu)} \rho \frac{1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta), \quad z \in \mathbb{D}. \]
(15)

Combination of (14) and (15) immediately gives (9).

Further, taking the real parts in (14) we get

\[u(z) = \int\int_{\mathbb{D}} u(\zeta) (S_{\beta,\rho,\varphi}(z,\zeta) + S_{\beta,\rho,\varphi}(\zeta,z))(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta) - u(0). \]
(16)

The formulas (16) and (15) together establish (10). \qed
Theorem 7. Assume $1 \leq p < \infty$, $\rho > 0$, $\alpha > -1$, $\gamma > -1$, complex numbers β and φ are satisfying the conditions

\[\Re \beta \geq \alpha, \quad \Re \varphi \geq \gamma, \]

when $p = 1$ and the conditions

\[\Re \beta > \frac{\alpha + 1}{p} - 1, \quad \Re \varphi > \frac{\gamma + 1}{p} - 1, \]

when $p > 1$, and put $\mu = (\varphi + 1)/\rho$. For each $u \in h^p_{\alpha, \rho, \gamma}(\mathbb{D})$, the representation (10) holds.

Proof. Repeating the argument from the proof of Theorem 6, we can assume additionally, that $\beta \in \mathbb{R}, \varphi \in \mathbb{R}$ and $\beta > 0$.

Since u is a harmonic function, there exists a holomorphic function f in \mathbb{D} such that $u = Rf$ in \mathbb{D}. Fix an arbitrary $z_0 \in \mathbb{D}$ and denote $f_r(\zeta) = f(r \zeta)$. Obviously, $f_r \in H^p_{\alpha, \rho, \gamma}(\mathbb{D})$. As $u(r \zeta) = Rf(r \zeta)$, from (10) we obtain

\[
\begin{align*}
\int \int_{|\zeta| < r} u(\zeta) & \left(S_{\beta, \rho, \varphi}(z_0, \zeta) + S_{\beta, \rho, \varphi}(\zeta, z_0) - \frac{\rho}{\pi} \frac{\Gamma(\mu + \beta + 1)}{\Gamma(\beta + 1)\Gamma(\mu)} \right) \\
& = \int \int_{|\zeta| < r} \left(1 - |\zeta|^2 \right)^{\beta} |\zeta|^2 \frac{dm(\zeta)}{r^{2\varphi}} \\
& = \int \int_{\mathbb{D}} u(\zeta) \chi_r(\zeta) \left(S_{\beta, \rho, \varphi}(z_0, \zeta) + S_{\beta, \rho, \varphi}(\zeta, z_0) - \frac{\rho}{\pi} \frac{\Gamma(\mu + \beta + 1)}{\Gamma(\beta + 1)\Gamma(\mu)} \right) \\
& = \int \int_{\mathbb{D}} u(\zeta) \chi_r(\zeta) \left(1 - \frac{|\zeta|^2}{r^{2\varphi}} \right)^{\beta} |\zeta|^2 \frac{dm(\zeta)}{r^{2\varphi}} = I_r,
\end{align*}
\]

where $\chi_r(\zeta)$ is the characteristic function of the disc $\{ \zeta : |\zeta| < r \}$ and I_r stands for the right-most integral in the expression above. Assume also that $0 < r_0 \leq r < 1$ for some r_0. We intend to let $r \uparrow 1$ in the both sides of

\[u(r \cdot z_0) = I_r. \quad (17) \]

As a result, at the left-hand side of (17) we will obtain $u(z_0)$, while the right hand-side of (17) will coincide with the one in (10) for $z = z_0$.

Hence, it remains to show that such passage of the limit is legitimate. To do so, we will use the Lebesgue dominated convergence theorem. Using
and the assumption $\beta > 0$, for the expression under the sign of integral I_r, we obtain

$$
\left| u(\zeta) \chi_r(\zeta) \left(S_{\beta,\rho,\varphi} \left(z_0, \frac{\zeta}{r} \right) + S_{\beta,\rho,\varphi} \left(\frac{\zeta}{r}, z_0 \right) - \frac{\rho \Gamma(\mu + \beta + 1)}{\pi \Gamma(\beta + 1) \Gamma(\mu)} \right) \right|
\leq \frac{|u(\zeta)|}{r^{2\rho + 2\varphi + 2}} |\chi_r(\zeta)|(r^{2\rho} - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} \left(\frac{\text{const}}{(1 - |z_0|)^{\beta + 2}} + \frac{\rho \Gamma(\mu + \beta + 1)}{\pi \Gamma(\beta + 1) \Gamma(\mu)} \right)
\leq \text{const} |u(\zeta)|(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} = \text{const} |u(\zeta)|(1 - |\zeta|^{2\rho})^\alpha |\zeta|^{2\gamma} \equiv \psi(\zeta).
$$

We want to show that $\psi(\zeta) \in L^1(\mathbb{D})$, which is equivalent to show that $|u(\zeta)|(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} \in L^1(\mathbb{D})$. For $p = 1$, we have

$$
|u(\zeta)|(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} \leq |u(\zeta)|(1 - |\zeta|^{2\rho})^\alpha |\zeta|^{2\gamma} \in L^1(\mathbb{D}).
$$

If $p > 1$, using Holder inequality, we get

$$
\int_\mathbb{D} |u(\zeta)|(1 - |\zeta|^{2\rho})^\beta |\zeta|^{2\varphi} dm(\zeta)
\leq \left(\int_\mathbb{D} |u(\zeta)|^p (1 - |\zeta|^{2\rho})^\alpha |\zeta|^{2\gamma} dm(\zeta) \right)^{1/p}
\leq \left(\int_\mathbb{D} |u(\zeta)|^p (1 - |\zeta|^{2\rho})^\alpha |\zeta|^{2\gamma} dm(\zeta) \right)^{1/p}
\leq \left(\int_\mathbb{D} (1 - |\zeta|^{2\rho})^\alpha |\zeta|^{2\gamma} dm(\zeta) \right)^{1/q}.
$$

The convergence of the last integral follows from the conditions of the theorem. \qed

Remark. In [9]-[13], one can find various interesting results relating to the weighted integral representations of harmonic functions.

References

Feliks Hayrapetyan
Yerevan State University
1 Alex Manoogian St, 0025 Yerevan, Armenia.
feliks.hayrapetyan1995@gmail.com

Please, cite to this paper as published in
https://doi.org/10.52737/18291163-2021.13.5-1-11