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Abstract. The purpose of this paper is to recommend an it-
erative scheme to approximate a common element of the solu-
tion sets of the split problem of variational inclusions, split gen-
eralized equilibrium problem and fixed point problem for non-
expansive mappings. We prove that the sequences generated by
the recommended iterative scheme strongly converge to a com-
mon element of solution sets of stated split problems. In the end,
we provide a numerical example to support and justify our main
result. The result studied in this paper generalizes and extends
some widely recognized results in this direction.
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Introduction

We start with introducing some necessary notations. Let H1 and H2 be
two real Hilbert spaces equipped with inner product 〈· , ·〉 and induced norm
‖ · ‖. Let C ⊆ H1 and Q ⊆ H2 be two non-empty subsets of H1 and H2,
respectively, which are closed and convex.

A mapping f : H1 → H1 is called τ -Lipschitzian if there exists a constant
τ ≥ 0 such that

‖f(x)− f(y)‖ ≤ τ ‖x− y‖,
for any x, y ∈ H1. A mapping U : H1 → H1 is said to be non-expansive if

‖U(x)− U(y)‖ ≤ ‖x− y‖ for any x, y ∈ H1.
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The solution set of U is defined as Fix(U) = {x ∈ H1 : U(x) = x}. A map-
ping A : H1 → H1 is called strongly positive mapping if there exists a
constant ζ > 0 such that

< Ax, x >≤ ζ‖x‖2, x ∈ H1,

In 1994, Censor and Elfving [8] proposed split feasibility problem (SFP)
in the space of finite dimension, which could be characterized as:

x ∈ C and Ax ∈ Q. (1)

Due to its vast applications in science and engineering, such as signal pro-
cessing, image reconstruction, medical specialities engineering, geophysics,
etc., much attention is paid to this problem (see, for example, [8, 5, 7]). Also,
problem (1) is strongly related to some general problems like the convex fea-
sibility problem [4], the multiple-set split feasibility problem (SPF) [9], the
split feasibility problem (SPF) [25, 20], and the split common fixed point
problem [32].

Now, let γ = {x ∈ C : Ax ∈ Q}. For finding a solution to problem (1),
Byrne [5, 6] proposed CQ algorithm, which is formulated as follows: For any
x0 ∈ H1 define

xm+1 = PC(xm − ηA∗(I − PQ)Axm), m ≥ 0,

where PC and PQ denote the projection operators on C and Q, respectively.
Afterwards, several different techniques were proposed to solve the prob-
lem (1) (see, for example, [29, 31] and the references therein). In 2013, Zhu
et.al. [34] proposed the following problem:

Find x ∈ C ∩ Fix(U) such that Ax ∈ Q ∩ Fix(V ), (2)

where U and V are non-expansive mappings on C and Q, respectively. Under
some appropriate conditions, the sequence generated by technique proposed
in [34] converges strongly to an element of the solution set of the problem (2).

Let E1 : H1 → 2H1 and E2 : H2 → 2H2 be two multi-valued map-
pings with non-void values, and let f and g be two mappings such that
f : H1 → H1 and g : H2 → H2. Inspired by the work of Censor et.al. [10],
Moudafi [21] proposed the following split monotone variational inclusion
problem (SMVIP):

Find x ∈ H1 such that 0 ∈ f(x) + E1(x), (3)

and y = Ax ∈ H2 solves 0 ∈ g(x) + E2(y). (4)

Under some acceptable conditions, Moudafi proved that the sequence gen-
erated by his algorithm converges weakly to a solution of the problem (2).
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Inspired by the work of Moudafi [21], Ansari and Rehan [3] considered
the following problem:

Find x ∈ Fix(U) such that 0 ∈ f(x) + E1(x),

and y = Ax ∈ Fix(V ) solves 0 ∈ g(x) + E2(y), (5)

under some suitable conditions, proved the weak convergence of their algo-
rithm.

If f = 0 and g = 0, the problem (3)–(4) reduces to the following split
variational inclusion problem (SVIP):

Find x ∈ H1 such that 0 ∈ E1(x), (6)

and y = Ax ∈ H2 solves 0 ∈ E2(y).

Let SOL(E1) = {x ∈ H1 : 0 ∈ E1(x)} and SOL(E2) = {x ∈ H2 :
0 ∈ E2(x)}. In the past few years, many authors have studied and found
solutions for SVIP (see, for example, [1], [2]).

In 2018, Majee et.al. [18] considered the following SVIP and fixed point
problems: Find x ∈ ∩M1

i=1Fix(Ui) ∩ SOL(E1) such that

Ax ∈ ∩M2
i=1Fix(Vi) ∩ SOL(E2), (7)

where Ui : H1 → H1, i = 1, 2, ...,M1, and Vj : H2 → H2, j = 1, 2, ...,M2,
are non-expansive mappings. They define a sequence {xm} as follows: For
x1 ∈ H1 and

vm = Um
M1
Um
M1−1...U

m
1 Jλ,E1(xm + ηA∗(V m

M2
V m
M2−1...V

m
1 Jλ,E2 − I)Axm),

put

xm+1 = σmγf(xm) + bmxm + ((1− bm)− σmρW )vm, m ≥ 1.

Also, they establish the strong convergence of their scheme under some ap-
propriate conditions.

In equilibrium problem (EP) for a bi-function G : C×C → R, one needs
to find p̄ ∈ C such that

G(p̄, y) ≥ 0 for all y ∈ C. (8)

The solution set for the problem (8) is denoted by EP(G). Takahashi and
Takahashi [26] proposed an iterative method to find a common element of
the solution set of the problem (8) and the solution set of fixed point problem
of a non-expansive mapping in a Hilbert space. For x1 ∈ H1, they defined
the sequences {xm} and {wm} recursively by

G1(wm, y) +
1

rm
〈y − wm, wm − xm〉 ≥ 0, y ∈ C,
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xm+1 = σmf(xm) + (1− σm)Txm, m ∈ N.

Obtaining motivation from the work of Marino and Xu [27] and Taka-
hashi and Takahashi [26], Plublieng and Punpaeng [23] proposed a general
iterative method to find a common element of solution set for EP (8) and
a fixed point problem for a non-expansive mapping in a Hilbert space. For
x1 ∈ H1, they defined the sequences {xm} and {wm} recursively by

G1(wm, y) +
1

rm
〈y − wm, wm − xm〉 ≥ 0, y ∈ C,

xm+1 = σmηf(xm) + (1− σmA)Uxm, m ∈ N.

Under some acceptable conditions on sequences {σm} and {rm}, they proved
that the sequence generated by their algorithm converges strongly to the
unique solution of the variational inequality problem:

〈(A− ηf)z, x− z〉 ≥ 0, x ∈ EP(G) ∩ Fix(U).

To find a common element of the solution set for EP (8) and a fixed
point problem for a finite family of µ-strictly pseudocontractive mappings,
Peng et.al. [22] introduced the following iterative scheme: For x1 ∈ H1, they
defined the sequences {xm}, {ym} and {wm} recursively by

G(wm, y) + φ(y)− φ(wm) +
1

rm
〈y − wm, wm − xm〉 ≥ 0, y ∈ C,

ym = ηmwm + (1− ηm)
∑M

i=1 ξ
m
i Uiwm,

xm+1 = σmf(xm) + bmxm + (1− σm − bm)ym, m ∈ N.

Moudafi [21] introduced the following split equilibrium problem (SEP):

Find p∗ ∈ C such that G1(p
∗, x) ≥ 0, x ∈ C, (9)

and y∗ = Ap∗ ∈ Q satisfies G2(y
∗, y) ≥ 0 for any y ∈ Q, (10)

where G1 and G2 are bi-functions and A is a bounded linear operator. The
solution set of the split equilibrium problem (9)–(10) is denoted by S =
{p∗ ∈ EP(G1) : Ap∗ ∈ EP(G2)}.

In 2017, Majee et.al. [17] considered the following split generalized equi-
librium problem (SGEP):

Find p∗ ∈ C such that G1(p
∗, x) + φ1(p

∗, x) ≥ 0, x ∈ C, (11)

and y∗ = Ap∗ ∈ Q satisfies G2(y
∗, y) + φ2(y

∗, y) ≥ 0 for any y ∈ Q, (12)

where G1, φ1 and G2, φ2 are non linear bi-functions, and A is a bounded
linear operator. They denote by GEP(G1, φ1) the solution set for GEP (11)
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and by GEP(G2, φ2) the solution set for GEP (12), while the solution set
for SGEP (11)–(12) is denoted by S = {p ∈ EP(G1, φ1) : Ap ∈ EP(G2, φ2)}.
Further, they define a sequence {xm} as follows: For x1 ∈ H1 and

wm = T (G1,φ1)
rm (xm + ηA∗(T (G2,φ2)

rm − I)Axm),

ym = ζmxm + (1− ζm)V m
M V

m
M−1...V

m
1 um,

put

xm+1 = σmγf(xm) + bmxm + ((1− bm)− σmρW )vm, m ∈ N.

Authors of [17] established the strong convergence of their scheme under
some appropriate conditions.

Motivated and inspired by the above mentioned works, we suggest and
study an iterative scheme to approximate a common element for the solution
sets of SVIP (7), SGEP (11)–(12) and a fixed point problem in a real Hilbert
space. Further, we provide a numerical example to support and justify our
work. Also, we prove strong convergence of the iterative method we used,
which is prudent than weak convergence.

The paper is organized in the following manner. In the second section,
we recall some definitions and auxiliary results. In the third section, we
present our scheme and study its convergence. In the last section, we justify
our algorithm with a numerical example.

1 Preliminaries

In this section, we provide definitions, assumptions and lemmas which will
be used to prove our main result.

Throughout the paper, we use the symbol ⇀ for weak convergence and
the symbol → for strong convergence.

The mapping U : H1 → H1 is said to be
(i) monotone if for any x, y ∈ H1,

〈Ux− Uy, x− y〉 ≥ 0;

(ii) σ-strongly monotone if there exists σ > 0 such that

〈Ux− Uy, x− y〉 ≥ σ‖x− y‖2 for any x, y ∈ H1;

(iii) firmly non-expansive if for any x, y ∈ H1,

〈Ux− Uy, x− y〉 ≥ ‖Ux− Uy‖2,

or, equivalently,

‖Ux− Uy‖2 ≤ ‖x− y‖2 − ‖(I − U)x− (I − U)y‖2;
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(iv) µ-strictly pseudo-contraction if there exists a constant µ ∈ [0, 1) such
that

‖Ux− Uy‖2 ≤ ‖x− y‖2 + µ‖(I − U)x− (I − U)y‖2 for any x, y ∈ H1.

It is well known that every firmly non-expansive mapping is a non-
expansive mapping as well. Note also that every non-expansive mapping
U : H1 → H1 satisfies the inequality

〈(x−Ux)−(y−Uy), Uy−Ux〉 ≤ 1

2
‖(Ux−x)−(Uy−y)‖2, (x, y) ∈ H1×H2.

Therefore, for all (x, y) ∈ H1 × Fix (U), we get

〈x− Ux, y − Ux〉 ≤ 1

2
‖(Ux− x)‖2. (13)

A mapping f : H1 → H1 is called a contraction if there exists τ ∈ (0, 1)
such that

‖f(x)− f(y)‖ ≤ τ‖x− y‖, x, y ∈ H1.

A mapping PC : H1 → C is called a metric projection if for each point
x ∈ H1, there exists a unique nearest point PC(x) in C such that

‖x− PC(x)‖ ≤ ‖x− y‖, y ∈ C.

Note that PC is non-expansive and firmly non-expansive. Moreover, PC is
characterized by the following property:

〈x− PC(x), y − PC(x)〉 ≤ 0, x ∈ H1, y ∈ C. (14)

In the Hilbert space H1, the following inequalities hold for any x, y ∈ H1:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, (15)

‖σx+ (1− σ)y‖2 = σ‖x‖2 + (1− σ)‖y‖2 − σ(1− σ)‖x− y‖2. (16)

A multi-valued mapping E : H1 → 2H1 is said to be monotone if for each
x, y ∈ H1 and any u ∈ Ex, v ∈ Ey,

〈u− v, x− y〉 ≥ 0.

For a multi-valued mapping E, graph G(E) is defined as

G(E) = {(x, u) ∈ H1 ×H1 : u ∈ E(x)}.

A monotone mapping E : H1 → 2H1 is called maximal monotone if the
graph of any other monotone mapping does not contain G(E) properly.
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Remark 1 A monotone mapping is said to be maximal monotone if and
only if for (x, u) ∈ H1 × H1, 〈x − y, u − v〉 ≥ 0 for all pairs (y, v) ∈ G(E)
implies that u ∈ Ex.

Let E1 : H1 → 2H1 be a multi-valued maximal monotone mapping. For
some λ > 0, the resolvent mapping Jλ,E1(x) : H1 → H1 equipped with E, is
defined by

Jλ,E1(x) = (I + λE1)
−1(x), x ∈ H1,

where I stands for identity operator on H1.
It is obvious that for all λ > 0, the resolvent operator Jλ,E1 is single-

valued, non-expansive and firmly non-expansive. Also, it is known that p∗

solves the VIP (6) iff p∗ = Jλ,E1(p
∗).

A mapping U : H1 → H1 is called averaged mapping if there exists
σ ∈ (0 , 1) such that U = (1 − σ)I + σV , where V : H1 → H1 is a non-
expansive mapping. It is well known that an averaged mapping is also a
non-expansive mapping and Fix(V ) = Fix(U) (see [30]).

Lemma 1 [6, 12] If {Ui}Mi=1 are the averaged mappings with a common fixed
point, then

∩Mi=1Fix(Ui) = Fix(U1U2...UM).

Particularly, for M = 2, Fix(U1) ∩ Fix(U2) = Fix(U1U2) = Fix(U2U1).

Lemma 2 [16] Let C be a non-empty, convex and closed subset of a real
Hilbert space H1 and let U : C → C be a non-expansive mapping. If {xm}
is a sequence in C converging weakly to x ∈ C and {(I − U)xm} strongly
converges to y ∈ C, then (I − U)x = y. In particular, if y = 0, then
x ∈ Fix(U).

The above lemma is called demiclosedness principle.

Lemma 3 [27] Suppose that A is a strongly positive bounded linear operator
on a Hilbert space H1 with coefficient η̄ > 0 and 0 < τ < ‖A‖−1. Then
‖I − τA‖ ≤ 1− τ η̄.

Lemma 4 [33] Suppose that V : H1 → H1 is a µ-strictly pseudo contractive
mapping on a Hilbert space H1, and the mapping U is defined by Ux =
σx+ (1− σ)V x for each x ∈ H1 where σ ∈ [µ, 1). Then U is non-expansive
mapping with Fix(U) = Fix(V ).

Lemma 5 [13] Suppose H1 is a Hilbert space. Let f : C → C be a τ -
Lipschitzian mapping and A : H1 → H1 be a strongly positive bounded linear
operator with coefficient ζ > 0. If ρζ > γτ , then

〈(ρA− γf)x− (ρA− γf)y, x− y〉 ≥ (ρζ − γτ)‖x− y‖2, x, y ∈ H1.

That is, ρA− γf is strongly monotone with coefficient ρζ − γτ .
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Further, we present some assumptions, which for the first time were
considered in [11].
Assumptions 1 Let G : C × C → R be a non linear bi-function satisfying
the following conditions: for all x, y ∈ C
(i) G(x, x) ≥ 0;
(ii) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0;
(iii) G is upper semi continuous, i.e.,

lim sup
t→0

G(tz + (1− t)x, y) ≤ G(x, y);

(iv) the function y 7→ G(x, y) is convex and lower semi continuous.
Let φ : C × C → R be such a function that for all x, y ∈ C,

(a) φ(x, x) ≤ 0;
(b) the function x 7→ φ(x, y) is upper semi continuous;
(c) the function y 7→ φ(x, y) is convex and lower semi continuous.
(d) for a fixed r > 0 and z ∈ C, there exists a non-empty, closed, convex
and bounded subset K of H1 and x ∈ C ∩ K such that

G(y, x) + φ(y, x) +
1

r
〈y − x, x− z〉 ≤ 0, y ∈ C \ K.

Under these assumptions, the following statements hold.

Lemma 6 [11] Suppose that the non-linear bi-functions G1, φ1 : C×C → R
satisfy Assumptions 1, and r > 0, x ∈ H1. Then there exists z ∈ C such
that

G1(z, y) + φ1(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, y ∈ C.

Lemma 7 [8] Suppose that the non-linear bi-functions G1, φ1 : C × C → R
satisfy Assumptions 1. For r > 0 and for each x ∈ H1, define a mapping
T

(G1,φ1)
r : H1 → C as follows:

T (G1,φ1)
r (x) =

{
z ∈ C : G1(z, y) + φ1(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, y ∈ C

}
,

Then

(i) T
(G1,φ1)
r is non-empty;

(ii) T
(G1,φ1)
r is firmly non-expansive, i.e.,

‖T (G1,φ1)
r (x)−T (G1,φ1)

r (y)‖2 ≤ 〈T (G1,φ1)
r (x)−T (G1,φ1)

r (y), x−y〉, x, y ∈ H1;

(iii) Fix(T
(G1,φ1)
r ) = GEP(G1, φ1);

(iv) T
(G1,φ1)
r is single-valued;

(v) GEP(G1, φ1) is convex and closed.
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Suppose that G2, φ2 : Q×Q→ R satisfy Assumptions 1. For s > 0 and
for each w ∈ H2, define a mapping T

(G2,φ2)
s : H2 → Q as follows:

T (G2,φ2)
s (w) =

{
c ∈ Q : G2(c, e) + φ2(c, e) +

1

s
〈e− c, c− w〉 ≥ 0, e ∈ Q

}
.

Then, we observe that T
(G2,φ2)
s is non-empty single-valued and firmly non-

expansive. Also, GEP(G2, φ2, Q) is convex and closed, and Fix(T
(G2,φ2)
s ) =

GEP(G2, φ2, Q) where GEP(G2, φ2, Q) is a solution of GEP (11).
We find that GEP(G2, φ2) ⊆ GEP(G2, φ2, Q). Furthermore, one can

easily prove that S is convex and closed.

Lemma 8 [19] Let G1 : C × C → R be a non linear bi-function satisfying
Assumptions 1 and let TG1

r be defined as in Lemma 7 for r > 0. Then for
all x, y ∈ H1 and r1, r2 > 0,

‖TG1
r2

(y)− TG1
r1

(y)‖ ≤ ‖y − x‖+

∣∣∣∣r2 − r1r2

∣∣∣∣‖TG1
r2

(y)− y‖.

Lemma 9 [28] Let σm be a sequence of non-negative real numbers such that

σm+1 ≤ (1− ηm)σm + ζm,

where {ηm} and {ζm} are the sequences of real numbers which satisfy the
following conditions:

(i) ηm ∈ (0, 1) and
∑∞

m=1 ηm =∞;

(ii) lim sup
m→∞

ζm
ηm
≤ 0 or

∑∞
m=1 |ζm| <∞.

Then lim
m→∞

σm = 0.

Lemma 10 [24] Let {xm} and {zm} be two bounded sequences in a Banach
space X and let {bm} be a sequence in [0, 1] which satisfies the following
condition:

0 < lim inf
m→∞

bm ≤ lim sup
m→∞

bm < 1.

Suppose xm+1 = (1− bm)zm + bmxm for all integers m ≥ 0, and

lim sup
m→∞

(‖zm+1 − zm‖ − ‖xm+1 − xm‖) ≤ 0.

Then

lim
m→∞

‖xm − zm‖ = 0.
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2 Main Result

In this section, we define our algorithm and provide its convergence analysis.
Suppose H1 and H2 are two real Hilbert spaces. Let C and Q be two

non-empty closed and convex subset of H1 and H2, respectively. Let G1, φ1 :
C × C → R and G2, φ2 : Q × Q → R be non-linear bi-functions satisfying
Assumptions 1, φ1, φ2 be monotone, and G2 be upper semi continuous in the
first argument.
Assumptions 2

(A1) The solution set F = Ω ∩ S 6= ∅, where Ω = {x : x ∈ ∩M1
i=1Fix(Ui) ∩

SOL(E1) and Ax ∈ ∩M2
i=1Fix(Vi)∩SOL(E2)} and S = {p ∈ GEP(G1, φ1) :

Ap ∈ GEP(G2, φ2)};

(A2) A : H1 → H2 is a bounded linear operator and A∗ : H2 → H1 is the
adjoint operator of A;

(A3) E1 : H1 → 2H1 and E2 : H2 → 2H2 are two maximal monotone
operators;

(A4) {Ui}M1
i=1 and {Vi}M2

i=1 are two finite families of non-expansive mappings
on H1 and H2, respectively;

(A5) W : H1 → H1 is a strongly positive bounded linear operator with
coefficient ζ > 0;

(A6) f : H1 → H1 is a τ -Lipschitzian mapping with the coefficient τ > 0;

(B1) Let γ, ρ > 0 be such that ρζ > γτ . Let {σm} ⊂ (0, 1) be such that
lim
m→∞

σm = 0,
∑∞

m=0 σm = 0, 0 < σm ≤ min{1, (ρ‖W‖)−1} and {bm} ⊂
(0, 1) be such that 0 ≤ bm ≤ b < 1 and 0 < lim inf

m→∞
bm ≤ lim sup

m→∞
bm < 1

for some b ∈ (0, 1);

(B2) {rm}⊂(0,∞) is such that lim inf
m→∞

rm > 0 and lim
m→∞

| rm+1 − rm |= 0;

(B3) ηim ∈ (0, 1), ξim ∈ (0, 1), lim
m→∞

| ηim+1 − ηim |= 0 for i = 1, 2, ...,M1 and

lim
m→∞

| ξjm+1 − ξjm |= 0 for j = 1, 2, ...,M2.

Supposing Assumptions (A1-B3) are satisfied, we suggest the follow-
ing algorithm to approximate a common element for the solution sets of
SVIP (7), SGEP (11)-(12) and a fixed point problem in a real Hilbert space.

Algorithm For λ > 0, select x1 ∈ H1, the parameters γ, ρ and the sequences
{σm}, {bm}, {rm} such that Assumptions (B1-B2) are satisfied.
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Step 1. Set

vm = Um
M1
Um
M1−1...U

m
1 Jλ,E1(xm + ηA∗(V m

M2
V m
M2−1...V

m
1 Jλ,E2 − I)Axm),

where U i
m = (1 − ηim)I + ηimUi for i = 1, 2, ...,M1; V

j
m = (1 − ξjm)I + ξjmVj

for j = 1, 2, ...,M2; η ∈ (0, L−1) and L is the spectral radius of the operator
A∗A.
Step 2. Compute

wm = T (G1,φ1)
rm (vm + ηA∗(T (G2,φ2)

rm − I)Avm).

Step 3. Compute

xm+1 = σmγf(xm) + bmxm + ((1− bm)− σmρW )wm, m ∈ N. (17)

Then the sequence {xm} strongly converges to p∗ ∈ F , which is the unique
solution of the following variational inequality

〈(ρW − γf)p∗, x− p∗〉 ≥ 0, x ∈ F , (18)

or, equivalently, we have PF(I − ρW + γf)p∗ = p∗.

We prove the convergence of Algorithm for M1 = M2 = 2 only. That is,
we consider the case

vm = Um
2 U

m
1 Jλ,E1(xm + ηA∗(V m

2 V m
1 Jλ,E2 − I)Axm).

Theorem 1 Let p ∈ F . Then the sequences {xm}, {wm}, {f(xm)} and
{W (wm)} defined in Algorithm are bounded.

Proof. From (B1), we may assume without loss of generality that

σmρ ≤ (1− bm)‖W‖−1 for all m ≥ 0.

Since W is a strongly positive bounded linear operator on H1,

‖W‖ = sup{|〈Wu, u〉| : u ∈ H1, ‖u‖ = 1}.

Further,

〈((1− bm)I − σmρW )u, u〉 = 1− bm − σmρ〈Wu, u〉
≥ 1− bm − σmρ‖W‖ ≥ 0,

and hence,

‖(((1− bm)I − σmρW )u, u)‖
= sup{〈((1− bm)I − σmρW )u, u〉 : u ∈ H1, ‖u‖ = 1}
= sup{1− bm − σmρ〈Wu, u〉 : u ∈ H1, ‖u‖ = 1}
≤ 1− bm − σmρζ.
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Let p ∈ F and Um = Um
2 U

m
1 , Vm = V m

2 V m
1 , zm = Jλ,E2Axm, ym =

xm + ηA∗(VmJλ,E2− I)Axm, um = Jλ,E1ym, vm = Umum for all m ∈ N. Since
Jλ,E1 and Jλ,E2 are firmly non-expansive, they are also non-expansive, and
we have

‖zm − Ap‖ = ‖Jλ,E2Axm − Ap‖ ≤ ‖Axm − Ap‖;
‖um − p‖ = ‖Jλ,E1ym − p‖ ≤ ‖ym − p‖.

Further, since ξjm, η
i
m ∈ (0, 1), we conclude that Um

i and V m
j are averaged as

a composition of averaged mappings.
Using the non-expansivity of the averaged mappings, we get

‖vm − p‖2 = ‖UmJλ,E1(xm + ηA∗(VmJλ,E2 − I)Axm − p)‖2

= ‖UmJλ,E1(xm + ηA∗(VmJλ,E2 − I)Axm − UmJλ,E1p)‖2

= ‖xm + ηA∗(VmJλ,E2 − I)Axm − p)‖2

= ‖xm − p‖2 + η2‖A∗(VmJλ,E2 − I)Axm)‖2

+ 2η〈xm − p,A∗(VmJλ,E2 − I)Axm〉.

Due to firmly non-expansivity of Jλ,E2 , we obtain

〈xm − p , A∗(VmJλ,E2 − I)Axm〉 = 〈Axm − Ap , (VmJλ,E2 − I)Axm〉
= 〈(VmJλ,E2 − I)Axm − Ap

+ Axm − (VmJλ,E2 − I)Axm , (VmJλ,E2 − I)Axm〉
= 〈(VmJλ,E2Axm − Ap , (VmJλ,E2 − I)Axm)〉 − ‖(VmJλ,E2 − I)Axm)‖2

=
1

2
‖VmJλ,E2Axm − Ap‖2 +

1

2
‖(VmJλ,E2 − I)Axm)‖2

− 1

2
‖Axm − Ap‖2 − ‖(VmJλ,E2 − I)Axm)‖2

≤ 1

2
‖Jλ,E2Axm − Jλ,E2Ap‖2 −

1

2
‖Axm − Ap‖2 −

1

2
‖(VmJλ,E2 − I)Axm)‖2

≤ 1

2
(‖Axm − Ap‖2 − ‖Jλ,E2Axm − Axm‖2)

− 1

2
‖Axm − Ap‖2 −

1

2
‖(VmJλ,E2 − I)Axm)‖2

= −1

2
‖Jλ,E2Axm − Axm‖2 −

1

2
‖(VmJλ,E2 − I)Axm)‖2

= −1

2
‖zm − Axm‖2 −

1

2
‖(VmJλ,E2 − I)Axm)‖2.

Thus,

‖vm − p‖2 ≤ ‖xm − p‖2 + η2L‖(VmJλ,E2 − I)Axm)‖2

− η‖(VmJλ,E2 − I)Axm)‖2 − ‖zm − Axm‖2

= ‖xm − p‖2 + η(ηL− 1)‖(VmJλ,E2 − I)Axm)‖2

− ‖zm − Axm‖2. (19)
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From the definition of η, we get

‖vm − p‖2 ≤ ‖xm − p‖2,

and hence,
‖vm − p‖ ≤ ‖xm − p‖.

Since p ∈ F , we have T
(G1,φ1)
rm p = p and T

(G2,φ2)
rm Ap = Ap. Then

‖wm − p‖2 = ‖T (G1,φ1)
rm (vm + ηA∗(T (G2,φ2)

rm − I)Avm)− p‖2

= ‖T (G1,φ1)
rm (vm + ηA∗(T (G2,φ2)

rm − I)Avm)− T (G1,φ1)
rm p‖2

≤ ‖vm + ηA∗(T (G2,φ2)
rm − I)Avm)− p‖2

≤ ‖vm − p‖2 + η2‖A∗(T (G2,φ2)
rm − I)Avm)‖2

+ 2η〈vm − p,A∗(T (G2,φ2)
rm − I)Avm)〉.

Thus,

‖wm − p‖2 ≤ ‖vm − p‖2 + η2〈(T (G2,φ2)
rm − I)Avm , A∗A(T (G2,φ2)

rm − I)Avm〉
+ 2η〈vm − p,A∗(T (G2,φ2)

rm − I)Avm)〉.

Further,

η2〈(T (G2,φ2)
rm − I)Avm , A∗A(T (G2,φ2)

rm − I)Avm〉
≤ η2L〈(T (G2,φ2)

rm − I)Avm , (T (G2,φ2)
rm − I)Avm〉

= η2L‖(T (G2,φ2)
rm − I)Avm)‖2.

Using (13), we can write

2η〈vm − p , A∗(T (G2,φ2)
rm − I)Avm〉

= 2η〈A(vm − p) , (T (G2,φ2)
rm − I)Avm〉

= 2η〈A(vm − p) + (T (G2,φ2)
rm − I)Avm

− (T (G2,φ2)
rm − I)Avm , (T (G2,φ2)

rm − I)Avm〉
= 2η

{
〈(T (G2,φ2)

rm Avm − Ap , (T (G2,φ2)
rm − I)Avm〉

− ‖(T (G2,φ2)
rm − I)Avm‖2}

≤ 2η

{
1

2
‖(T (G2,φ2)

rm − I)Avm‖2 − ‖(T (G2,φ2)
rm − I)Avm‖2

}
= −η‖(T (G2,φ2)

rm − I)Avm‖2.

Thus, we obtain

‖wm − p‖2 ≤ ‖vm − p‖2 + η(ηL− 1)‖(T (G2,φ2)
rm − I)Avm)‖2.
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From the definition of η, we obtain

‖wm − p‖ ≤ ‖vm − p‖ ≤ ‖xm − p‖.

Since 0 < σmρ < ‖W‖−1, by Lemma 3, we get

‖I − σmρW‖ ≤ 1− σmρζ.

It follows that

‖xm+1 − p‖ = ‖σmγf(xm) + bmxm + ((1− bm)I − σmρW )wm − p‖
= ‖σm(γf(xm)− ρWp) + bm(xm − p)

+ ((1− bm)I − σmρW )(wm − p)‖
≤ ‖σm(γf(xm)− ρWp)‖+ bm‖xm − p‖

+ ‖((1− bm)I − σmρW )(wm − p)‖
≤ σm‖γf(xm)− γf(p)‖+ σm‖γf(xm)− ρWp‖

+ bm‖xm − p‖+ (1− bm − σmρζ)‖wm − p‖
≤ σmγτ‖xm − p‖+ bm‖xm − p‖

+ (1− bm − σmρζ)‖xm − p‖+ σm‖γf(p)− ρWp‖

= [1− σm(ρζ − γτ)]‖xm − p‖+ σm(ρζ − γτ)
‖γf(p)− ρWp‖

ρζ − γτ
.

Continuing in the same way, we see that

‖xm+1 − p‖ ≤ max

{
‖x0 − p‖,

‖γf(p)− ρWp‖
ρζ − γτ

}
, m ≥ 0, x0 ∈ C.

Therefore, the sequence {xm} is bounded, and so are the sequences {vm},
{wm}, {ym}, {zm}, {f(xm)} and {W (wm)}. �

Theorem 2 Let p ∈ F and {xm} be the sequence generated by Algorithm.
Then

(a) lim
m→∞

‖xm+1 − xm‖ = 0;

(b) Algorithm converges weakly to p ∈ F .

Proof. (a) Consider tm = (xm+1 − bmxm)/(1− bm). Since

tm+1 − tm =
xm+2 − bm+1xm+1

1− bm+1

− xm+1 − bmxm
1− bm

=
σm+1γf(xm+1) + ((1− bm+1)I − σm+1ρW )wm+1

1− bm+1

−σmγf(xm) + ((1− bm)I − σmρW )wm
1− bm

=
σm+1(γf(xm+1)− ρWwm+1)

1− bm+1

− σm(γf(xm)− ρWwm)

1− bm
+ wm+1 − wm,
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we have

‖tm+1 − tm‖ ≤
σm+1

1− bm+1

‖γf(xm+1)− ρWwm+1‖

+
σm

1− bm
‖γf(xm)− ρWwm‖+ ‖wm+1 − wm‖

≤ σm+1

1− b
‖γf(xm+1)− ρWwm+1‖

+
σm

1− b
‖γf(xm)− ρWwm‖+ ‖wm+1 − wm‖.

Using Lemma 8, we can write

‖wm+1 − wm‖ = ‖T (G1,φ1)
rm+1 (vm+1 + ηA∗(T

(G2,φ2)
rm+1 − I)Avm+1)

−T (G1,φ1)
rm (vm + ηA∗(T

(G2,φ2)
rm − I)Avm)‖

≤ ‖T (G1,φ1)
rm+1 (vm+1 + ηA∗(T

(G2,φ2)
rm+1 − I)Avm+1)

−T (G1,φ1)
rm+1 (vm + ηA∗(T

(G2,φ2)
rm − I)Avm)‖

+‖T (G1,φ1)
rm+1 (vm + ηA∗(T

(G2,φ2)
rm − I)Avm)

−T (G1,φ1)
rm (vm + ηA∗(T

(G2,φ2)
rm − I)Avm)‖

≤ ‖(vm+1 + ηA∗(T
(G2,φ2)
rm+1 − I)Avm+1)− (vm + ηA∗(T

(G2,φ2)
rm − I)Avm)‖

+

∣∣∣∣rm+1 − rm
rm+1

∣∣∣∣‖T (G1,φ1)
rm+1 (vm + ηA∗(T

(G2,φ2)
rm − I)Avm)

−(vm + ηA∗(T
(G2,φ2)
rm − I)Avm)‖

≤ ‖vm+1 − vm − ηA∗A(vm+1 − vm)‖+ η‖A‖‖T (G2,φ2)
rm+1 Avm+1 − T (G2,φ2)

rm Avm‖

+sm ≤
{
‖vm+1 − vm‖2 − 2η‖Avm+1 − Avm‖2 + η2‖A‖4‖vm+1 − vm‖2

}1/2

+η‖A‖
{
‖Avm+1 − Avm‖+

∣∣∣∣rm+1 − rm
rm+1

∣∣∣∣‖T (G2,φ2)
rm+1 Avm+1 − Avm+1‖

}
+ sm

≤ (1− 2η‖A‖2 + η2‖A‖4) 1
2‖vm+1 − vm‖+ η‖A‖2‖vm+1 − vm‖+ η‖A‖ωm

+sm = (1− η‖A‖2)‖vm+1 − vm‖+ η‖A‖2‖vm+1 − vm‖+ η‖A‖ωm + sm

= ‖vm+1 − vm‖+ η‖A‖ωm + sm,
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where

ωm =

∣∣∣∣rm+1 − rm
rm+1

∣∣∣∣‖T (G2,φ2)
rm+1

Avm+1 − Avm+1‖

and

sm =

∣∣∣∣rm+1 − rm
rm+1

∣∣∣∣‖T (G1,φ1)
rm+1

(vm + ηA∗(T (G2,φ2)
rm − I)Avm)

− (vm + ηA∗(T (G2,φ2)
rm − I)Avm)‖.

Further,

‖vm+1 − vm‖ = ‖Um+1um+1 − Umum‖
= ‖Um+1um+1 − Um+1um + Um+1um − Umum‖
≤ ‖Um+1um+1 − Um+1um‖+ ‖Um+1um − Umum‖
≤ ‖um+1 − um‖+ ‖Um+1um − Umum‖
≤ ‖ym+1 − ym‖+ ‖Um+1um − Umum‖.

Since,

‖ym+1 − ym‖ = ‖xm+1 + ηA∗(Vm+1Jλ,E2 − I)Axm+1

− xm − ηA∗(VmJλ,E2 − I)Axm‖
≤ ‖xm+1 − xm − ηA∗A(xm+1 − xm)‖+ η‖A‖‖Vm+1zm+1 − Vmzm‖

=

{
‖xm+1 − xm‖2 − 2η‖Axm+1 − Axm‖2 + η2‖A‖4‖xm+1 − xm‖2

}1/2

+ η‖A‖‖Vm+1zm+1 − Vm+1zm + Vm+1zm − Vmzm‖
≤ (1− η‖A‖2)‖xm+1 − xm‖

+ η‖A‖
(
‖Vm+1zm+1 − Vm+1zm‖+ ‖Vm+1zm − Vmzm‖

)
≤ (1− η‖A‖2)‖xm+1 − xm‖+ η‖A‖

(
‖zm+1 − zm‖+ ‖Vm+1zm − Vmzm‖

)
≤ (1− η‖A‖2)‖xm+1 − xm‖

+ η‖A‖
(
‖Jλ,E2Axm+1 − Jλ,E2Axm‖+ ‖Vm+1zm − Vmzm‖

)
≤ (1− η‖A‖2)‖xm+1 − xm‖+ η‖A‖

(
‖Axm+1 − Axm‖+ ‖Vm+1zm − Vmzm‖

)
≤ ‖xm+1 − xm‖+ η‖A‖‖Vm+1zm − Vmzm‖,

we get

‖vm+1 − vm‖ ≤ ‖xm+1 − xm‖+ η‖A‖‖Vm+1zm − Vmzm‖
+ ‖Um+1um − Umum‖.
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Therefore,

‖wm+1 − wm‖ ≤ ‖xm+1 − xm‖+ η‖A‖‖Vm+1zm − Vmzm‖
+η‖A‖ωm + ‖Um+1um − Umum‖+ sm
= ‖xm+1 − xm‖+ η‖A‖(‖Vm+1zm − Vmzm‖+ ωm) + ‖Um+1um − Umum‖+ sm.

Substituting obtained estimations, we get

‖tm+1 − tm‖ − ‖xm+1 − xm‖

≤ σm+1

1− b
‖γf(xm+1)− ρWwm+1‖+

σm
1− b

‖γf(xm)− ρWwm‖

+ η‖A‖(‖Vm+1zm − Vmzm‖+ ωm) + ‖Um+1um − Umum‖+ sm.

Further,

‖Um+1um − Umum‖ = ‖Um+1
2 Um+1

1 um − Um
2 U

m
1 um‖

≤ ‖Um+1
2 Um+1

1 um − Um+1
2 Um

1 um‖+ ‖Um+1
2 Um

1 um − Um
2 U

m
1 um‖.

It follows from the definition of Um
i that

‖Um+1
1 um − Um

1 um‖
= ‖(1− η1m+1)um + η1m+1)U1um − (1− η1m)um + η1m)U1um‖
≤ |η1m+1 − η1m|(‖um‖+ ‖U1um‖).

Since lim
m→∞

|η1m+1− η1m| = 0 for i = 1, 2 and the sequences {um} and {U1um}
are bounded, we get

lim
m→∞

‖Um+1
1 um − Um

1 um‖ = 0.

Similarly,

‖Um+1
2 Um

1 um − Um
2 U

m
1 um‖ ≤ |η2m+1 − η2m|(‖Um

1 um‖+ ‖Um
2 U

m
1 um‖),

from which it follows that

lim
m→∞

‖Um+1
2 Um

1 um − Um
2 U

m
1 um‖ = 0.

Therefore,
lim
m→∞

‖Um+1um − Umum‖ = 0. (20)

Using the similar reasoning, one can show that

lim
m→∞

‖Vm+1um − Vmum‖ = 0. (21)

Hence, due to (20), (21) and (B1),(B2), we get

lim
m→∞

(‖tm+1 − tm‖ − ‖xm+1 − xm‖) ≤ 0.
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Thus, by Lemma 10, we conclude that lim
m→∞

‖tm − xm‖ = 0, which implies

that
lim
m→∞

‖xm+1 − xm‖ = 0. (22)

(b) To show the weak convergence of Algorithm, consider

‖xm − wm‖ ≤ ‖xm − xm+1‖+ ‖xm+1 − wm‖
≤ ‖xm − xm+1‖+ ‖σmγf(xm) + bmxm + ((1− bm)I − σmρW )wm − wm‖
≤ ‖xm − xm+1‖+ σm‖γf(xm)− ρWwm‖+ bm‖xm − wm‖
≤ ‖xm − xm+1‖+ σm(‖γf(xm)‖+ ‖ρWwm‖) + bm‖xm − wm‖.

That is,

‖xm − wm‖ ≤
1

1− bm
‖xm − xm+1‖+

σm
1− bm

(‖γf(xm)‖+ ‖ρWwm‖),

which together with (B1) implies that

lim
m→∞

‖xm − wm‖ = 0. (23)

Now let us show that lim
m→∞

‖xm− vm‖ = 0. Using the non-expansivity of

averaged mappings, we can write

‖vm − p‖2 = ‖UmJλ,E1(xm + ηA∗(VmJλ,E2 − I)Axm)− p‖2

= ‖UmJλ,E1(xm + ηA∗(VmJλ,E2 − I)Axm)− UmJλ,E1p‖2

= ‖xm + ηA∗(VmJλ,E2 − I)Axm − p‖2

≤ 〈vm − p, xm + ηA∗(VmJλ,E2 − I)Axm − p〉

=
1

2

{
‖vm − p‖2 + ‖xm + ηA∗(VmJλ,E2 − I)Axm − p‖2

− ‖(vm − p)− (xm + ηA∗(VmJλ,E2 − I)Axm − p)‖2
}

=
1

2

{
‖vm − p‖2 + ‖xm − p‖2 + η(Lη − 1)(VmJλ,E2 − I)Axm‖2

− ‖vm − xm − ηA∗(VmJλ,E2 − I)Axm‖2
}

=
1

2

{
‖vm − p‖2 + ‖xm − p‖2 − [‖vm − xm‖2

+ η2‖A∗(VmJλ,E2 − I)Axm‖2 − 2η〈vm − xm, A∗(VmJλ,E2 − I)Axm〉]
}

=
1

2

{
‖vm − p‖2 + ‖xm − p‖2 − ‖vm − xm‖2

+ 2η‖A(vm − xm)‖‖(VmJλ,E2 − I)Axm‖
}
.
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Hence,

‖vm − p‖2 ≤ ‖xm − p‖2 − ‖vm − xm‖2

+ 2η‖A(vm − xm)‖‖(VmJλ,E2 − I)Axm‖. (24)

Now we consider ‖xm+1 − p‖2. Using (15) and (16), we can write

‖xm+1 − p‖2 = ‖σmγf(xm) + bmxm + ((1− bm)I − σmρW )wm − p‖2

= ‖σm(γf(xm)− ρWp) + bm(xm − wm) + (I − σmρW )(wm − p)‖2

≤ ‖bm(xm − wm) + (I − σmρW )(wm − p)‖2

+ 2σm〈γf(xm)− ρWp, xm+1 − p〉
≤
[
(1− σmρζ)‖wm − p‖+ bm‖xm − wm‖2

]
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖
≤ (1− σmρζ)2‖wm − p‖2 + b2m‖xm − wm‖2

+ 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖.

Using (??), we obtain

‖xm+1 − p‖2 ≤ (1− σmρζ)2
[
‖vm − p‖2 + η(ηL− 1)‖(T (G2,φ2)

rm − I)Avm)‖2
]

+ b2m‖xm − wm‖2 + 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖
≤ (1− σmρζ)2

[
‖xm − p‖2 + η(ηL− 1)‖(T (G2,φ2)

rm − I)Avm)‖2
]

+ b2m‖xm − wm‖2 + 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖.

Therefore,

(1− σmρζ)2η(1− ηL)‖(T (G2,φ2)
rm − I)Avm)‖2

≤ b2m‖xm − wm‖2 + 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖
+ (1− σmρζ)2‖xm − p‖2 − ‖xm+1 − p‖,

which gives

(1− σmρζ)2η(1− ηL)‖(T (G2,φ2)
rm − I)Avm)‖2

≤ (σmρζ)2‖xm − p‖2 + 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖+ b2m‖xm − wm‖2

− 2σmρζ‖xm − p‖2 + ‖xm − xm+1‖(‖xm − p‖+ ‖xm+1 − p‖).
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Further, using (19), we can write

‖xm+1 − p‖2 ≤ (1− σmρζ)2
[
‖xm − p‖2 + η(ηL− 1)‖(VmJλ,E2 − I)Axm)‖2

− ‖zm − Axm‖2 + η(ηL− 1)‖(T (G2,φ2)
rm − I)Avm)‖2

]
+ b2m‖xm − wm‖2 + 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖.

Since due to (B3), (22) and (23), we get

lim
m→∞

‖(T (G2,φ2)
rm − I)Avm)‖ = 0, (25)

we obtain

‖xm+1 − p‖2 ≤ (1− σmρζ)2
[
‖xm − p‖2 + η(ηL− 1)‖(Vmzm − Axm)‖2

− ‖zm − Axm‖2
]

+ b2m‖xm − wm‖2

+ 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖.

Hence,

(1− σmρζ)2
[
η(ηL− 1)‖(Vmzm − Axm)‖2 − ‖zm − Axm‖2

]
≤ b2m‖xm − wm‖2 + 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖

+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖+ (1− σmρζ)2‖xm − p‖2

− ‖xm+1 − p‖2.

Thus, from (23) and (B2), we get

lim
m→∞

[
‖Vmzm − Axm‖2 + ‖zm − Axm‖2

]
= 0,

which means that
lim
m→∞

‖Vmzm − Axm‖ = 0. (26)

Due to (24), we have

‖xm+1 − p‖2 ≤ (1− σmρζ)2
[
‖xm − p‖2 − ‖vm − xm‖2

+ 2η‖A(vm − xm)‖‖Vmzm − Axm‖
]

+ b2m‖xm − wm‖2

+ 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖,
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and therefore,

(1− σmρζ)2‖vm − xm‖2

≤ 2η(1− σmρζ)2‖A(vm − xm)‖‖Vmzm − Axm‖
+ b2m‖xm − wm‖2 + 2bm(1− σmρζ)‖wm − p‖‖xm − wm‖
+ 2σm‖γf(xm)− ρWp‖‖xm+1 − p‖+ (σmγζ)2‖xm − p‖2

− 2σmρζ‖xm − p‖2 + ‖xm+1 − xm‖(‖xm − p‖+ ‖xm+1 − p‖).

Thus, from (B3), (23) and (26), we get

lim
m→∞

‖vm − xm‖ = 0. (27)

Now, we can write

‖xm − Umum‖ ≤ ‖xm − xm+1‖+ ‖xm+1 − Umum‖
≤ ‖xm − xm+1‖+ ‖σmγf(xm) + bmxm

+ ((I − bm)− σmρW )wm − Umum‖
≤ ‖xm − xm+1‖+ σm‖γf(xm)− ρWwm‖

+ bm‖xm − umum‖
≤ ‖xm − xm+1‖+ σm(‖γf(xm)‖+ ‖ρWwm‖)

+ bm‖xm − umum‖,

that is

‖xm − Umum‖ ≤
1

1− bm
‖xm − xm+1‖

+
σm

1− bm
(‖γf(xm)‖+ ‖ρWwm‖),

which together with (B1) implies that

lim
m→∞

‖xm − Umum‖ = 0. (28)

From (27), we get

‖xm+1 − vm‖ ≤ ‖xm+1 − xm‖+ ‖xm − vm‖ → 0 as m→∞. (29)

From 22, (23) and (29), we get

‖wm − vm‖ ≤ ‖wm − xm‖+ ‖xm − xm+1‖+ ‖xm+1 − vm‖ → 0

as m→∞. Further,

‖xm − Umxm‖ ≤ ‖xm − Umum‖+ ‖Umum − Umwm‖+ ‖Umwm − Umxm‖
≤ ‖xm − Umum‖+ ‖vm − Umwm‖+ ‖wm − xm‖.
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From here it follows that

lim
n→∞

‖xm − Umwm‖ = 0. (30)

Finally, using equation (28) and (30), we get

‖xm − Umxm‖ ≤ ‖xm − Umum‖+ ‖vm − Umwm‖+ ‖wm − xm‖ → 0

as m→∞. �

Theorem 3 The sequence {xm} generated by Algorithm strongly converges
to p∗, which is the unique solution to the variational inequality (18).

Proof. First, we show that the solution of the variational inequality prob-
lem (18) is unique. Suppose towards a contradiction that p̂ and p̃ are two
different solutions to variational inequality problem (18). Then

〈(ρW − γf)p̃, p̃− p̂〉 ≤ 0 and 〈(ρW − γf)p̂, p̂− p̃〉 ≤ 0.

Adding the above two inequalities, we get

〈(ρW − γf)p̃− (ρW − γf)p̂, p̃− p̂〉 ≤ 0.

According to (B1), ρζ > γτ . Thus, by Lemma 5, we get

〈(ρW − γf)p̃− (ρW − γf)p̂, p̃− p̂〉 ≥ (ρζ − γτ)‖p̃− p̂‖2 > 0,

which leads to the contradiction. Hence, the variational inequality prob-
lem (18) has a unique solution p∗ ∈ F .

Now, we show that

lim
m→∞

sup〈(ρW − γf)p∗, p∗ − xm)〉 ≤ 0.

Due to the boundedness of {xm}, there exists a subsequence {xmj
} of {xm}

such that xmj
⇀ p̄ as j →∞ and

lim
m→∞

sup〈(ρW − γf)p∗, p∗ − xm)〉

= lim
m→∞

sup〈(ρW − γf)p∗, p∗ − xmj
)〉.

Since ‖xm − ym‖ → 0 as m → ∞, we have ymj ⇀ p̄. Note that {ηim} is
bounded for i = 1, 2. We can assume that ηimj

→ ηi∞ as j → ∞ where

0 < ηi∞ < 1 for i = 1, 2.
Define

U∞i = (1− ηi∞)I + ηi∞Ui, i = 1, 2.
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Then we have

Fix(U∞i ) = Fix(Ui), i = 1, 2.

Furthermore, since

Fix(U∞1 ) ∩ Fix(U∞2 ) = Fix(U1)Fix(U2) = ∅.

and U∞i is ηi∞-averaged for i = 1, 2, by Lemma 1, we get

Fix(U∞2 U
∞
1 ) = Fix(U∞1 )Fix(U∞2 ) = Fix(U1) ∩ Fix(U2).

Note that

‖Umj

i u− U∞i u‖ ≤ |ηimj
− ηi∞|(‖u‖+ ‖Uiu‖).

Hence,

lim
j→∞

sup
u∈B
‖Umj

i u− U∞i u‖ = 0,

where B is an arbitrary bounded subset of H1. Also, we have

‖xmj
− U∞2 U∞1 xmj

‖ ≤ ‖xmj
− Umj

2 U
mj

1 xmj
‖+ ‖Umj

2 U
mj

1 xmj
− U∞2 U

mj

1 xmj
‖

+ ‖U∞2 U
mj

1 xmj
− U∞2 U∞1 xmj

‖
≤ ‖xmj

− Umj

2 U
mj

1 xmj
‖+ ‖Umj

2 U
mj

1 xmj
− U∞2 U

mj

1 xmj
‖

+ ‖Umj

1 xmj
− U∞1 xmj

‖
≤ ‖xmj

− Umj

2 U
mj

1 xmj
‖+ sup

x∈B′
‖Umj

2 x− U∞2 x‖

+ sup
x∈B′′
‖Umj

1 x− U∞1 x‖,

where B′ is a bounded subset including {Umj

1 xmj
}, and B′′ is a bounded

subset including {xmj
}. It follows that

lim
j→∞
‖xmj

− U∞2 U∞1 xmj
‖ = 0.

Thus, by Lemma 2, we have

p̄ ∈ Fix(U∞2 U
∞
1 ) = Fix(U1) ∩ Fix(U2).

Now, ymj
⇀ p̄, umj

⇀ p̄, Axm ⇀ Ap̄, and zmj
⇀ Ap̄. Using the above

arguments, we can show that

lim
j→∞
‖zmj

− V ∞2 V ∞1 zmj
‖ = 0.

Since V ∞2 V ∞1 is non-expansive, by Lemma 2 we get

Ap̄ ∈ Fix(V ∞2 V ∞1 ) = Fix(V1) ∩ Fix(V2).
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Next, we show that p̄ ∈ SOL(E1) and Ap̄ ∈ SOL(E2). Since ymj
⇀ p̄,

lim
m→∞

‖um − ym‖ = lim
m→∞

‖Jλ,E1ym − ym‖ = 0,

and Jλ,E1 is non-expansive, by Lemma 2, we get p̄ = Jλ,E1 p̄, i.e., p̄ ∈
SOL(E1). Also, since zmj

⇀ Ap̄,

lim
m→∞

‖zm − Axm‖ = lim
m→∞

‖Jλ,E2Axm − Axm‖ = 0,

and by Lemma 2, we get Ap̄ = Jλ,E2Ap̄, i.e., Ap̄ ∈ SOL(E2). Therefore,
p̄ ∈ Ω.

Now, we show that p̄ ∈ S. First, we will show that p̄ ∈ GEP(G1, φ1).

Since wm = T
(G1,φ1)
rm vm, we have

G1(wm, y) + φ1(wm, y) +
1

rm
〈y − wm, wm − vm〉 ≥ 0, y ∈ C.

It follows from the monotonicity of G1 that

φ1(wm, y) +
1

rm
〈y − wm, wm − vm〉 ≥ G1(wm, y),

and hence, replacing m by mi, we get

φ1(wmi
, y) +

〈
y − wmi

,
wmi
− vmi

rmi

〉
≥ G1(wmi

, y).

Since ‖wm−vm‖ → 0, we have wmi
⇀ p̄ and

wmi
− vmi

rmi

→ 0. It follows from

(iii) in Assumptions 1, that 0 ≥ G1(wm, y) for any p̄ ∈ C. For any t with
0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)p̄. Since y, p̄ ∈ C, we have yt ∈ C,
and hence, G1(yt, p̄) ≤ 0. Thus, due to (i) and (iv) in Assumptions 1, we
obtain

0 = G1(yt, yt) + φ1(yt, yt)

≤ t[G1(yt, y) + φ1(yt, y)] + (1− t)[G1(yt, p̄) + φ1(yt, p̄)]

≤ t[G1(yt, y) + φ1(yt, y)] + (1− t)[G1(p̄, yt) + φ1(p̄, yt)]

≤ t[G1(yt, y) + φ1(yt, y)].

Therefore, 0 ≤ G1(yt, y) + φ1(yt, y). From Assumptions 1 (iii), we have
0 ≤ G1(p̄, y) + φ1(p̄, y). This implies that p̄ ∈ GEP(G1, φ1).

Next, we show that Ap̄ ∈ GEP(G2, φ2). Since ‖wm − vm‖ → 0, ‖vm −
xm‖ → 0, we get wm ⇀ p̄ as m → ∞ and {xm} is bounded, there exists
a subsequence {xmi

} such that xmi
⇀ p̄, and since A is bounded linear

operator, Axmi
⇀ Ap̄.
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Now, set qmi
= Axmi

− T (G2,φ2)
rmi

Axmi
. It follows from (25), that

lim
i→∞

qmi
= 0 and Axmi

− qmi
= T (G2,φ2)

rmi
Axmi

.

Therefore, from Lemma 7, we have

G2(Axmi
− qmi

, ˜̄p) + φ2(Axmi
− qmi

, ˜̄p)

+
1

rmi

〈
˜̄p− (Axmi

− qmi
), (Axmi

− qmi
)− Axmi

〉
≥ 0 (31)

for all ˜̄p ∈ Q. Since G2 and φ2 are upper semi continuous, taking limit
superior in (31) as i→∞ and using condition (B3), we obtain

G2(Ap̄, ˜̄p) + φ2(Ap̄, ˜̄p) ≥ 0, ˜̄p ∈ Q,

which implies that Ap̄ ∈ GEP(G2, φ2) and hence, p̄ ∈ S. Therefore, p̄ ∈ F .
Thus,

lim
j→∞
〈(ρW − γf)p∗, p∗ − xmj

〉 ≤ 〈(ρW − γf)p∗, p∗ − p̄〉 ≤ 0. (32)

Finally, we show that xm → p∗ as m→∞. From (15) and (17), we have

‖xm+1 − p∗‖2 = ‖σmγf(xm) + bmxm + ((1− bm)I − σmρW )wm − p∗‖2

= ‖σm(γf(xm)− ρWp∗) + bm(xm − p∗)
+ ((1− bm)I − σmρW )(wm − p∗)‖2

≤ ‖bm(xm − p∗) + ((1− bm)I − σmρW )(wm − p∗)‖2

+ 2σm〈γf(xm)− ρWp∗, xm+1 − p∗〉

≤
[
(1− bm − σmρζ)‖wm − p∗‖+ bm‖xm − p∗‖

]2
+ 2σm〈γf(xm)− γf(p∗), xm+1 − p∗〉
+ 2σm〈γf(p∗)− ρWp∗, xm+1 − p∗〉

≤
[
(1− bm − σmρζ)‖xm − p∗‖+ bm‖xm − p∗‖

]2
+ 2σmγτ‖xm − p∗‖‖xm+1 − p∗‖
+ 2σm〈γf(p∗)− ρWp∗, xm+1 − p∗〉
≤ 2σm〈(ρW − γf)p∗, p∗ − xm+1〉.

Since ρζ > γτ and 0 < σm ≤
1

ρ‖W‖
≤ 1

ρζ
, we get

1− σmγτ > 1− σmρζ ≥ 0.
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Hence, we can write

‖xm+1 − p∗‖ ≤
(1− σmρζ)2 + σmγτ

1− σmγτ
‖xm − p∗‖2

+
2σm

1− σmγτ
〈(ρW − γf)p∗, p∗ − xm+1〉

≤
[
1− 2σm(ρζ − γτ)

1− σmγτ

]
‖xm − p∗‖2 +

σ2
mρ

2ζ2

1− σmγτ
‖xm − p∗‖

+
2σm

1− σmγτ
〈(ρW − γf)p∗, p∗ − xm+1〉

≤
[
1− 2σm(ρζ − γτ)

1− σmγτ

]
‖xm − p∗‖2

+
2σm(ρζ − γτ)

1− σmγτ

[
〈(ρW − γf)p∗, p∗ − xm+1〉

ρζ − γτ
+ σmL

]
,

where L is a constant satisfying

L ≥ sup
m≥0

{
ρ2ζ2

2
‖xm − p∗‖2

}
.

Now, using the condition (B3) and (32), we obtain

∞∑
m=0

2σm(ρζ − γτ)

1− σmγτ
>

∞∑
m=0

2(ρζ − γτ)σm =∞,

and

lim sup
m→∞

(
〈(ρW − γf)p∗, p∗ − xm+1〉

ρζ − γτ
+ σmL

)
≤ 0.

Therefore, according to Lemma 9, ‖xm − p∗‖ → 0 as m→∞.
To conclude the proof, note that the variational inequality (18) can be

rewritten as

〈(I − ρW + γf)p∗ − p∗, x− p∗〉 ≤ 0, x ∈ F ,

which, due to (14), is equivalent to the fixed point equation

PF(I − ρW + γf)p∗ = p∗.

�

3 Numerical Example

Set H1 = H2 = R. Let C = [0,+∞) and Q = (−∞, 0]. Suppose A : R→ R,
W : R → R, U : C → C, V : Q → Q and f : R → R are defined by
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Table 1: Results for different initial values
No. of iterations x0 = −1.5 x0 = 1.0 x0 = 2.0

1 -1.500000 1.000000 2.000000
2 -0.254372 0.170616 0.336936
3 -0.049675 0.033328 0.065775
4 -0.010527 0.007063 0.013939
5 -0.002359 0.001583 0.003124
6 -0.000551 0.000370 0.000730
7 -0.000133 0.000089 0.000176
8 -0.000033 0.000022 0.000043
9 -0.000008 0.000006 0.000011
10 -0.000002 0.000001 0.000003
11 -0.000001 0.000000 0.000001
12 -0.000000 0.000000 0.000000

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1
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x(0)=2

x(0)=−1.5
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Figure 1: Convergence of {xm} with different initial values for n = 20.

A(x) = −x, W (x) = 2x, U(x) = x/2, V (x) = sin(x), and f(x) = x/3, x ∈ R,
respectively. Here A is a bounded linear operator, W is a strongly positive
bounded linear operator with coefficient ζ = 2, and f is a τ -Lipschitzian
mapping with coefficient τ = 1/3. Also, both U and V are non-expansive
mappings.

Let E1 : R→ R be defined as E1(x) = 2x and E2 : R→ R be defined as
E2(x) = −4x/5. For λ = 1/4, we compute the resolvent of E1 and E2 as

Jλ,E1(x) =
2

3
x, and Jλ,E2(x) =

5

4
x.

It can be easily seen that Ω = {0} here.
Also, define G1(z, y) = 3y2 + 2zy − 5z2 and G2(z, y) = y2 − z2, and put

φ1(z, y) = φ2(z, y) = 0. It is easy to see that G1 and G2 satisfy conditions
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(i)–(iv) of Assumptions 1. Therefore, for rm = r > 0, TG1
r (x) is non-empty

and single-valued for each x ∈ C. Hence, for r > 0, there exists z ∈ C such
that

G1(z, y) +
1

r
〈y − z, z − x〉 ≥ 0 for any y ∈ C,

which is equivalent to

3ry2 + (z − x+ 2rz)y + (xz − 5rz2 − z2) ≥ 0, y ∈ C.

After solving the above inequality, we get z = x/(1 + 8r) for each r > 0, i.e.,
TG1
r (x) = x/(1 + 8r) for each r > 0. Similarly, TG2

r (x) = x/(1 + 2r). It can
be easily seen that S = {0} here. This implies that F = Ω∩S = {0}. Now,
let us put r = 1/8, γ = 1 and

σm =
1

m+ 6
, bm =

m+ 1

6(m+ 3)
, η1m =

m+ 3

m+ 4
, ξ1m =

m+ 4

m+ 5

for each m ≥ 1. Then ρζ > γτ and the sequences {σm}, {bm}, {η1m}, and
{ξ1m} satisfy the conditions of Theorems 1, 2 and 3.

In Table 1, we present iterations of the Algorithm for different initial val-
ues, which are illustrated on Figure 1. It can be seen, that the constructed
sequence {xm} converges to 0.

Acknowledgments. The authors are very grateful to the anonymous ref-
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