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Abstract. For any countable set D ⊂ [0, 1], we construct a
bounded measurable function f such that the Fourier series of f
with respect to the regular general Haar system is divergent on
D and convergent on [0, 1]\D.
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1 Introduction

Let {fn(x)}∞n=1 be a sequence of functions, fn : [0, 1]→ R for all n.

For a functional series
∞∑
n=1

fn(x), the set D ⊂ [0, 1] is called a divergence

set if the series is divergent for any x ∈ D and is convergent when x /∈ D.
There are many results concerning divergence sets for the Fourier series

with respect to classical systems. A. Haar [9] proved that the Fourier-Haar
series of any function continuous on [0, 1] is uniformly convergent, and for any
measurable function, its Fourier-Haar series is convergent almost everywhere
on [0, 1]. V. Prokhorenko [18] proved that for any countable set F ⊂ [0, 1],
there exists a bounded function such that the Fourier-Haar series of that
function is divergent on F and convergent on [0, 1]\F . V. Bugadze [2] proved
that for any set with 0 measure, there exists a bounded function such that
its Fourier-Haar series is divergent on that set.

Other interesting results on divergence sets of the Fourier-Haar series can
be found, for example, in [12] and [17]. For similar results for the Fourier-
Walsh series see [7], [14], [15], and for the trigonometric Fourier series see
[5], [6], [10], [19], [20], [21].

In this paper, we consider the Fourier series with respect to the classical
Haar system. Particularly, we prove the following theorem.
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Theorem 1 For any countable set D ⊂ [0, 1], there exists a bounded mea-
surable function f : [0, 1]→ R such that D is a divergence set for the Fourier
series of f with respect to the regular general Haar system.

Note that Theorem 1 is a generalization of Prokhorenko’s theorem men-
tioned above. The methods used in the proof of the Theorem 1 are general-
izations of the methods used in [18].

The following question remains open: Is Theorem 1 true for every general
Haar system (not regular)?

2 Notations

Let us recall the definition of the general Haar system {hn}∞n=1 normalized
in L2[0, 1] (see [11], [16]).

For t0 = 0, t1 = 1, let A
(1)
1 = [0, 1] and define h1(x) by

h1(x) := χ[0,1](x),

where by χE we denote the characteristic function of the set E.

For t2 ∈ (0, 1), let A
(2)
1 = [0, t2), A

(2)
2 = [t2, 1], ∆2 = A

(1)
1 = [0, 1],

∆+
2 = [0, t2), ∆−2 = [t2, 1], and put

h2(x) :=



√
µ
(
∆−2
)

µ
(
∆+

2

)
µ (∆2)

, if x ∈ ∆+
2 ,

−

√
µ
(
∆+

2

)
µ
(
∆−2
)
µ (∆2)

, if x ∈ ∆−2 ,

where µ(A) stands for the Lebesgue measure of the measurable set A.

Suppose now that t0, t1, . . . , tn (n ≥ 2) are already chosen. Let A
(n)
1 ,

A
(n)
2 , . . . , A

(n)
n be intervals, enumerated from the left to the right, obtained af-

ter splitting [0, 1] by {tk}nk=2 points. Note that each interval A
(n)
k , 1 ≤ k < n,

is right-open, while A
(n)
n is closed. Thus, every point from [0, 1] is exactly in

one interval A
(n)
k , 1 ≤ k ≤ n.

Let tn+1 ∈ (0, 1)\{t2, . . . , tn} be the next point, and suppose tn+1 ∈ A(n)
k0

for some k0 ∈ [1, n]. If k0 = n, put ∆n+1 = A
(n)
n = [a, 1] and let ∆+

n+1 =

[a, tn+1), ∆−n+1 = [tn+1, 1]. If 1 ≤ k0 < n, put ∆n+1 = A
(n)
k0

= [b, c), ∆+
n+1 =

[b, tn+1), ∆−n+1 = [tn+1, c), and define hn+1(x) by

hn+1(x) :=



√
µ
(
∆−n+1

)
µ
(
∆+
n+1

)
µ (∆n+1)

, if x ∈ ∆+
n+1,

−

√
µ
(
∆+
n+1

)
µ
(
∆−n+1

)
µ (∆n+1)

, if x ∈ ∆−n+1,

0, if x ∈ [0, 1]\∆n+1.
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The only requirement for the points tn is that the set τ = {tk}∞k=0 be
dense in [0, 1], i.e.,

lim
n→∞

max
1≤k≤n

µ
(
A

(n)
k

)
= 0. (1)

Note that if τ =

{
0, 1,

1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
, . . .

}
, we get the classical Haar

system (see [1, chapter 1, §6], [13, chapter 3, §1]).
For each dense in [0, 1] set τ , the corresponding Haar system is a com-

plete orthonormal system in L2[0, 1], and it forms a basis in each Lp[0, 1],
1 ≤ p < ∞. Since the Haar system forms a martingale differences, from
Burkholders results on unconditionality of martingale differences ([3], [4]),
it follows that every general Haar system is an unconditional basis in Lp[0, 1],
1 < p <∞.

The general Haar system is called regular (see [8]) if there exists a real
number λ ≥ 1 such that for any natural number n > 1

1

λ
≤ µ (∆+

n )

µ (∆−n )
≤ λ. (2)

The classical Haar system is regular with λ = 1.
Note that for any x ∈ [0, 1] and n in N, there exists k0 ∈ [1, n] such that

x ∈ A(n)
k0

. We set

A(x, n) := A
(n)
k0
,

For a function f , denote by cn(f) its Fourier coefficients with respect to
the general Haar system:

cn(f) :=

1∫
0

f(t)hn(t)dt, n ≥ 1,

and put

Sn(f ;x) :=
n∑
k=1

ck(f)hk(x), x ∈ [0, 1], n ≥ 1.

An important property of the classical Haar system is that the partial sums
of the Fourier-Haar series can be expressed by means of integrals on dyadic
intervals (see [1, chapter 1, §6], [13, chapter 3, §1]).

It is not difficult to see that the general Haar system has the same prop-
erty, that is, for each function f ∈ L1[0, 1] and n ≥ 1,

Sn(f ;x) =
1

µ (A(x, n))

∫
A(x,n)

f(t)dt for any x ∈ [0, 1] (3)

From (3) it follows that for each continuous function f its Fourier series
with respect to the general Haar system converges uniformly, and for each
function f ∈ L1[0, 1], the series converges almost everywhere on [0, 1].
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3 Auxiliary Lemma

To prove our main result, we need the following auxiliary lemma.

Lemma 1 Let {hn}∞n=1 be a regular general Haar system. Then for any
point x0 ∈ [0, 1], there exists a function f : [0, 1]→ R satisfying the following
conditions:

I. 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1];

II. For each point x ∈ [0, 1]\{x0}, there exists n0 = n0(x0, x) such that
Sn(f ;x) = Sn0(f ;x) for all n > n0, n ∈ N;

III. There exist sequences of natural numbers ps = ps(x0) and qs = qs(x0),
s ∈ N, such that ps ↗ ∞ and qs ↗ ∞ as s → ∞, ps > qs, and

|Sps(f ;x0)− Sqs(f ;x0)| ≥ 1

(λ+ 1)2
for all s ∈ N.

Proof. Let us define inductively an increasing sequence {ki}∞i=1 of natural
numbers such that x0 ∈ ∆ki for every i (such sequence exists due to (1)).
For i = 1, we get k1 = 2 since ∆2 = [0, 1] is the first interval including x0.
We set

∆ki [x0] :=

{
∆+
ki
, if x0 ∈ ∆+

ki
,

∆−ki , if x0 ∈ ∆−ki ,
∆̃ki [x0] := ∆ki\∆ki [x0].

Since x0 ∈ ∆ki [x0], we have

∆ki [x0] = A(x0, ki). (4)

Choose ki+1 such that ∆ki+1
coincides with ∆ki [x0]. Then

∆ki+1
= ∆ki [x0] = ∆ki+1

[x0] ∪ ∆̃ki+1
[x0],

µ
(
∆ki+1

)
= µ (∆ki [x0]) = µ

(
∆ki+1

[x0]
)

+ µ
(

∆̃ki+1
[x0]
)
. (5)

Since {hn}∞n=1 is a regular general Haar system (2), we have

1

λ
≤ µ (∆ki [x0])

µ
(

∆̃ki [x0]
) ≤ λ, λ ≥ 1. (6)

Define a function f by

f(x) = χ ∞⋃
s=1

Es

(x), x ∈ [0, 1], (7)

where Es = ∆̃k2s+1 [x0]. It is clear that f satisfies (I.) (see (7)).
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Let x ∈ [0, 1]\{x0} and let n0 be the smallest natural number for which f
is constant on A(x, n0) (see (7)). It is not difficult to see that f is constant
on A(x, n) for all n > n0. Taking (3) into account, we immediately get
Sn(f ;x) = Sn0(f ;x) for all n > n0, n ∈ N.

To verify the statement (III.), define ps and qs as follows:

ps := k2s, qs := k2s−1, s ∈ N. (8)

From (3)–(8) we get

|Sps(f, x0)− Sqs(f, x0)| =

=

∣∣∣∣∣∣∣
1

µ (A(x0, k2s))

∫
A(x0,k2s)

f(t)dt− 1

µ (A(x0, k2s−1))

∫
A(x0,k2s−1)

f(t)dt

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
1

µ (∆k2s [x0])

∫
∆k2s

[x0]

f(t)dt− 1

µ
(
∆k2s−1 [x0]

) ∫
∆k2s−1

[x0]

f(t)dt

∣∣∣∣∣∣∣ =

=
µ
(

∆̃k2s [x0]
)

µ (∆k2s [x0])µ
(
∆k2s−1 [x0]

) ∫
∆k2s

[x0]

f(t)dt ≥

≥
µ
(

∆̃k2s [x0]
)

µ (∆k2s [x0])µ
(
∆k2s−1 [x0]

) ∫
∆̃k2s+1

[x0]

f(t)dt =

=
µ
(

∆̃k2s+1 [x0]
)
µ
(

∆̃k2s [x0]
)

(
µ
(
∆k2s+1 [x0]

)
+ µ

(
∆̃k2s+1 [x0]

))(
µ (∆k2s [x0]) + µ

(
∆̃k2s [x0]

)) =

=
1(

µ(∆k2s+1
[x0])

µ(∆̃k2s+1
[x0])

+ 1

)(
µ(∆k2s

[x0])
µ(∆̃k2s

[x0])
+ 1

) ≥ 1

(λ+ 1)2
.

�

4 Proof of the Theorem

Proof. Let E = {x1, x2, . . . , xk, . . . }. Successively applying Lemma 1 for
each point xk ∈ E, we obtain a sequence of functions {fk(x)}∞k=1 such that
the following conditions are satisfied:
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1. For all k ∈ N
0 ≤ fk(x) ≤ 1 for all x ∈ [0, 1]; (9)

2. For all k ∈ N and x ∈ [0, 1]\{xk}, there exists a natural number
nk = nk(xk, x) such that

Sn(fk;x) = Snk
(fk;x) for all n > nk, n ∈ N; (10)

3. For all k ∈ N, there exist sequences N
(k)
s = N

(k)
s (xk), M

(k)
s = M

(k)
s (xk),

s ≥ 1, of natural numbers such that N
(k)
s ↗ ∞ and M

(k)
s ↗∞ as

s→∞, and for all s ≥ 1, N
(k)
s > M

(k)
s and∣∣∣S

N
(k)
s

(fk;xk)− SM(k)
s

(fk;xk)
∣∣∣ ≥ 1

(λ+ 1)2
. (11)

From (9) we get that the series

∞∑
k=1

(λ+ 1)−4kfk(x)

is uniformly convergent on [0, 1]. Setting

f(x) =
∞∑
k=1

(λ+ 1)−4kfk(x),

we obtain

Sn(f ;x) =
∞∑
k=1

(λ+ 1)−4kSn(fk;x). (12)

First, let us prove that Sn(f ;x) is convergent on [0, 1]\E. Let x ∈
[0, 1]\E. For any δ > 0, take ν = ν(δ) such that

∞∑
k=ν+1

(λ+ 1)−4k < δ. (13)

LetN0 := max{n1(x1, x), n2(x2, x), . . . , nν(xν , x)}. Taking into account (10),
for all n > N0, we get Sn(fk, x) = SN0(fk, x), k = 1, 2, . . . , ν. Therefore, for
all N,M > N0, we have

SN(fk;x)− SM(fk;x) = 0 for any k ∈ [1, ν]. (14)

Since, according to (3) and (9),

0 ≤ Sn(fk;x) ≤ 1 for all n, k ∈ N, (15)
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from (12)–(15) for all N,M > N0, we obtain

|SN(f ;x)− SM(f ;x)| =
∣∣∣∣ ∞∑
k=1

(λ+ 1)−4k (SN(fk;x)− SM(fk;x))

∣∣∣∣ ≤
≤
∣∣∣∣ ν∑
k=1

(λ+ 1)−4k (SN(fk;x)− SM(fk;x))

∣∣∣∣+
+

∞∑
k=ν+1

(λ+ 1)−4k |SN(fk;x)− SM(fk;x)| ≤

≤
∞∑

k=ν+1

(λ+ 1)−4k < δ.

Now let us prove that Sn(f ;x) is divergent on E = {x1, x2, . . . , xk, . . . }.
For any x = xk0 ∈ E and take a natural number j0 such that (see (10), (11))

N
(k0)
j0

, M
(k0)
j0

> max{n1(x1, xk0), n2(x2, xk0), . . . , nk0−1(xk0−1, xk0)},

and let N0 = min{N (k0)
j0

, M
(k0)
j0
}. From (10) it follows that Sn(fk, xk0) =

SN0(fk, xk0) for any k = 1, 2, . . . , k0−1 and n > N0. Therefore, for all j > j0,
we have

S
N

(k0)
j

(fk;xk0)− SM(k0)
j

(fk;xk0) = 0, k ∈ [1, k0).

From here and (11), (12), (15) it follows that for all j > j0, we can write∣∣∣S
N

(k0)
j

(f ;xk0)− SM(k0)
j

(f ;xk0)
∣∣∣ =

=

∣∣∣∣∣
∞∑
k=1

(λ+ 1)−4k
(
S
N

(k0)
j

(fk;xk0)− SM(k0)
j

(fk;xk0)
)∣∣∣∣∣ ≥

≥ (λ+ 1)−4k0

∣∣∣S
N

(k0)
j

(fk0 ;xk0)− SM(k0)
j

(fk0 ;xk0)
∣∣∣−

−
∞∑

k=k0+1

(λ+ 1)−4k
∣∣∣S

N
(k0)
j

(fk;xk0)− SM(k0)
j

(fk;xk0)
∣∣∣−

−
k0−1∑
k=1

(λ+ 1)−4k
∣∣∣S

N
(k0)
j

(fk;xk0)− SM(k0)
j

(fk;xk0)
∣∣∣ ≥

≥ (λ+ 1)−4k0
1

(λ+ 1)2
−

∞∑
k=k0+1

(λ+ 1)−4k =
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=
1

(λ+ 1)4k0+2
− (λ+ 1)−4(k0+1)

1− (λ+ 1)−4
=

=
1

(λ+ 1)4k0+2
− 1

(λ+ 1)4k0((λ+ 1)4 − 1)
>

>
1

(λ+ 1)4k0+2
− 1

(λ+ 1)4k0+3
=

λ

(λ+ 1)4k0+3
.

This completes the proof. �
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