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Exponential decay for a strain gradient

porous thermoelasticity with second sound
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Abstract. In this paper, we consider a strain gradient porous
elastic bar subjected to a thermal disturbance modelled by Cat-
taneo’s law for heat conduction. We use the semigroup approach
to prove the existence of a unique weak solution. Although the
thermal dissipation induced by the second sound thermoelastic-
ity is weaker than that caused by the classical heat conduction,
we prove that the solution decays exponentially.
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1 Introduction

In the present paper, we are concerned with the longtime behavior of the
following system of equations

ρutt = auxx + bφx − cuxxxx − dφxxx − δθx in (0, π)× [0,∞[,
Jφtt = duxxx + βφxx − ξφ− bux +mθ − µφt in (0, π)× [0,∞[,
c∗θt = −qx − δuxt −mφt in (0, π)× [0,∞[,
τqt + q + κθx = 0 in (0, π)× [0,∞[,

(1)

where u, φ, θ and q are the transversal displacement, the volume fraction,
the difference of temperature from an equilibrium reference value and the
heat flux of a one dimensional elastic material of length π, respectively. The
coefficients ρ, J , a, c, c∗, β, ξ, τ , µ and κ are positive constitutive constants.
The coefficients b, d,m and δ are the coupling constants that are different
from zero but their signs does not matter in the analysis. In addition, to
ensure that the energy functional associated to the system (1) is a positive
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definite form, we assume that the coefficients a, b, c, d, β and ξ satisfy the
inequalities

aξ > b2 and cβ > d2. (2)

In this paper, a strain gradient theory has been employed for the me-
chanical modelling of the micro-structure of an elastic bar with voids in the
presence of thermal effects. In the literature, the theory of elastic materials
with voids was established by Nunziato and Cowin [6, 7, 30] and has been
applied to elastic materials with small voids or vacuo porous. This theory is
characterized by the fact that the bulk density at any point in the material is
the product of two scalar fields, the matrix material density and the volume
fraction.

It is worth noting that when dealing with classical elasticity, the micro-
scopic structure is ignored, only the macroscopic properties are analyzed,
and the equations field are in the form of strain-stress relations. However,
when non-classical elasticity is considered, as for nonsimple materials, the
microstructure takes part in the constitutive equations, thence higher-order
derivatives of the displacement appear in the basic postulates. This theory
is called the strain-gradient or nonsimple elasticity, and it was introduced
by Mindlin [25] and Toupin [39]. Its linear form was proposed by Green and
Rivlin [17] and Mindlin and Eshel [26].

In the last few years, a huge number of contributions have investigated
the existence and the time behavior of solutions of porous and thermoelastic
systems. Let us introduce some of them.

Early in this century, Quintanilla [32] considered the classical porous
elastic system {

ρ0utt = µuxx + βφx,
ρ0κφtt = αφxx − βux − ξφ− τφt,

(3)

and proved that the porous damping τφt is not strong enough to produce
an exponential stability, only a slow decay result has been obtained. Later,
in 2017, Apalara [2] and, independently, Santos et al. [35] established the
exponential stability of (3) provided that the wave speeds of the equations
in (3) are equal

µ

ρ0
=

α

ρ0κ
. (4)

The same result was obtained by Santos et al. [35] if the damping −τφt is
replaced by the elastic damping γut in the first equation.

To exponentially stabilize the system (3), several dissipation mechanisms
have been examined, and different stability results have been obtained.
Magaña and Quintanilla [22] obtained a slow decay if only the dissipation
γutxx is present in the first equation of (3), or it combined with a ther-
mal dissipation by coupling the system (3) with the heat equation (τ = 0).
They also obtained the same result when coupling the system (3) with micro
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temperature. Apalara [3] and Feng [11] considered the cases of a memory
term and past history, respectively. They obtained a general rate of decay
depending on the relaxation function.

Messaoudi and Fareh [23, 24], Soufyane and co-authors [36, 37, 38] and
Feng and Yin [9] examined the combination of a thermal dissipation with a
memory term. Feng [10] and Khochemane [18] considered the coupling of
thermal and history dissipations. General, exponential and polynomial rates
of decay were obtained.

An inhomogeneous system in the presence of temperature and micro
temperature was considered by Feng et al. [8]. Under an appropriate as-
sumptions on the system coefficients, they proved the exponential stability
of the solution.

Regarding the nonsimple elasticity theory, Fernández Sare et al. [13]
considered the system{

ρutt − µuxx + αuxxxx − βθx = 0,
cθt − κθxx − βutx = 0,

(5)

where the non-simple elasticity is coupled with the classical heat equation.
They obtained an exponential decay for different boundary conditions.

It is well known that the heat part in the second equation of (5) is
obtained via Fourier’s law of thermal conduction

q + κθx = 0,

which leads to the paradox of infinite wave speed. Aouadi [1] replaced
Fourier’s law with the Gurtin–Pipkin one

q = −
∫ 0

−∞
g(t− s)θ(x, s)ds,

where g is a relaxation function. He extended the result of [13] to the case
of a hereditary heat conduction.

Liu et al. [19] combined the nonsimple elasticity with porosity. They
considered the system{

ρutt = auxx + bϕx − cuxxxx − dϕxxx,
Jϕtt = duxxx + βϕxx − ξϕ− bux,

with different dissipation mechanisms and obtained an exponential stability
for the dissipations δutxx, −αutxxxx in the first equation or mϕtxx in the
second equation. However, the dissipation −τϕt in the second equation
leads to a slow decay.

Recently, Fernández et al. [12] studied the system (1) in the case of
Fourier’s law of heat conduction (τ = 0). They used a semigroup approach
and proved the existence of a unique mild solution that decays exponentially.
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In the system (1), the heat conduction is given through Cattaneo’s law

τqt + q + κθx = 0,

which renders the system fully hyperbolic. Consequently, the heat propa-
gation is to be viewed as a wave-like propagation rather than a diffusion
phenomenon. A wave-like thermal disturbance is referred to as the second
sound (where the first sound being the usual sound). A non-classical theory
predicting the occurrence of such disturbances are known as a thermoelastic-
ity with finite wave speeds or a second sound thermoelasticity. The theory
of second sound thermoelasticity was developed by Lord and Shulman [21]
to settle the paradox of infinite speed caused by Fourier’s law of heat con-
duction.

The non-simple thermoelasticity with a second sound was considered by
Muñoz Rivera and Vega [29]. They studied the system

ρutt − γuttxx − µuxx + αuxxxx − βθx = 0, in ]0, `[× R+,
cθt + qx − βutx = 0, in ]0, `[× R+,
τqt + q + κθx = 0, in ]0, `[× R+,

(6)

with boundary conditions of the form

u(0, t) = uxx(0, t) = u(`, t) = uxx(`, t) = 0, θx(0, t) = θx(`, t) = 0,

and proved that the semigroup associated with the solution of (6) is not
exponentially stable for γ ≥ 0.

Close to the system considered in this paper, Fernàndez Sare and Muñoz
Rivera [14] studied the time behavior of the plate system in R2,

ρutt − µ∆utt + γ∆2u+ α∆θ = 0, in Ω,
cθt + κdivq − α∆ut = 0, in Ω,
τqt + κ0q + κ∇θ = 0, in Ω.

(7)

They proved that the semigroup associated to the solutions of (7) is expo-
nentially stable if and only if µ 6= 0. Moreover, for µ = 0, they obtained the
optimal rate of decay t−2.

We should notice here, that replacing Fourier’s law by Cattaneo’s one is
not obviously profitable, because the dissipativeness due to the heat conduc-
tion induced by Cattaneo’s law are generally weaker than those induced by
Fourier’s law. For example, Fernández Sare and Racke [34] have shown that
the Timoshenko system coupled with the heat conduction of a second sound
loses the exponential stability property. Also, Quintanilla and Racke [33]
proved that the thermoelastic plate changed the behavior from exponential
to non-exponential stability when changing from Fourier’s law to Cattaneo’s
law in the modelling of heat conduction (see also [15] and [28]).



EXPONENTIAL DECAY OF A STRAIN GRADIENT POROUS SYSTEM 5

Finally, we note that the system studied in this paper on the one hand is
analogous to the system (6) with γ = 0, which is not exponentially stable,
and on the other hand, its isothermal part coincides with the system studied
by Fernández et al. in [12]. Here we prove that the porous dissipation µφt
together with the weak dissipation caused by the heat conduction of a second
sound, leads to an exponential stability regardless any assumption on the
wave speeds. Our result improves the result of [29] and extends the result
of [12].

To make the problem given by the system (1) well determined, we impose
the following boundary and initial conditions:

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0, t ≥ 0,
φx(0, t) = φx(π, t) = q(0, t) = q(π, t) = 0, t ≥ 0,

(8)

and{
u(x, 0) = u0(x), ut(x, 0) = v0(x), φ(x, 0) = φ0(x), in x ∈ [0, π],
φt(x, 0) = ϕ0(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x) in x ∈ [0, π].

(9)

From the boundary conditions on q and equation (1)4, we have

θx (t, 0) = θx (t, π) = 0.

Note that since the Neumann boundary conditions are assumed for φ and
θ, we are not able to apply Poincaré’s inequality for them. To allow the
application of the aforementioned inequality, we proceed as follows.

Integrating (1)2 and (1)3 with respect to x and taking into account the
boundary conditions, we obtain

d2

dt2

∫ π

0

φ (x, t) dx = − ξ
J

∫ π

0

φ (x, t) dx+
m

J

∫ π

0

θ (x, t) dx−µ
J

d

dt

∫ π

0

φ (x, t) dx

(10)
and

c∗
d

dt

∫ π

0

θdx = −m d

dt

∫ π

0

φdx. (11)

Solving (11), we get∫ π

0

θ (t, x) dx = −m
c∗

∫ π

0

φ (t, x) dx+ C.

From the initial conditions, we compute

C =

∫ π

0

θ0 (x) dx+
m

c∗

∫ π

0

φ0 (x) dx.

Plugging
∫ π
0
θ (t, x) dx into (10), we infer

d2

dt2

∫ π

0

φ (x, t) dx+
µ

J

d

dt

∫ π

0

φ (x, t) dx+

(
ξ

J
+
m2

Jc∗

)∫ π

0

φ (x, t) dx = −C.

(12)
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The solution of (12) is then∫ π

0

φ (x, t) dx = yH (t) + yP (t)

where yP and yH are, respectively, a particular solution of (12) and the
general solution of the homogeneous equation associated to (12). Therefore,∫ π

0

θ (t, x) dx = −m
c∗

(yH (t) + yP (t)) + C.

Thus, if we set

φ̃ (x, t) = φ (x, t)− yH (t)− yP (t) ,

θ̃ (x, t) = θ (x, t) +
m

c∗
(yH (t) + yP (t))− C,

we reach ∫ π

0

φ̃ (x, t) dx = 0 and

∫ π

0

θ̃ (x, t) dx = 0,

which allows the application of Poincaré’s inequality. Moreover, (u, φ̃, θ̃, q)
satisfies the system (1) with the boundary conditions (9). In the sequel, we

work with (u, φ̃, θ̃, q), but for the convenience, we write (u, φ, θ, q).

The energy functional associated with the solution to the problem (1),
(8), (9) is given by

E(t) :=
1

2

∫ L

0

[
ρ|ut|2 + a|ux|2 + c|uxx|2 + J |φt|2 + ξ |φ|2 + β |φx|2

+c∗|θ|2 +
τ

κ
|q|2 + 2bRe(uxφ) + 2dRe(uxxφx)

]
dx.

Note that from (2), the energy E (t) is a positive definite form. Moreover,

taking the L2-product of (1)1 by ut, (1)2 by φt, (1)3 by θ, and (1)4 by
1

κ
q,

adding the obtained equations and using integration by parts, we get

dE

dt
(t) = −1

κ

∫ L

0

|q|2dx− µ
∫
|φt|2 dx,

which shows the dissiptiveness of the energy E (t).

The rest of the paper is organized as follows. In Section 2, we prove
the well-posedness of the problem. Section 3 is devoted to the prove of the
exponential stability of the solution of (1).
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2 Well-posedness

In this section, we will prove that the problem determined by the system
(1), the boundary conditions (8) and the initial conditions (9) has a unique
solution. Our main tools are the following two theorems from the theory of
semigroup of contractions operators in a Hilbert space H.

Theorem 1 [41] Let A : D(A) ⊂ H −→ H be the infinitesimal generator
of a C0–semigroup {S(t); t ≥ 0} on H. Then, for each ξ ∈ D(A) and each
t ≥ 0, we have S(t)ξ ∈ D(A), and the mapping

t −→ S(t)ξ

is C1 on [0,+∞) and satisfies

d

dt
(S(t)ξ) = AS(t)ξ = S(t)Aξ. (13)

Theorem 1 means that u (t) = S (t) ξ is the strong solution to the abstract
Cauchy problem {

ut (t) = Au (t) , t > 0,
u (0) = ξ.

Theorem 2 (Lumer–Phillips) [31, 41] Let A : D(A) ⊂ H −→ H be a
densely defined operator. Then A generates a C0–semigroup of contractions
on H if and only if

(i) A is dissipative;

(ii) there exists λ > 0 such that λI −A is surjective.

To rewrite the problem (1), (8)–(9) in the settings of Theorem 2, we first
define the space

H :=
{

(u, v, φ, ψ, θ, q) ∈
(
H2 (0, π) ∩H1

0 (0, π)
)
× L2(0, π)×H1

∗ (0, π)

×L2
∗(0, π)× L2

∗(0, π)× L2
0(0, π)

}
,

where

L2
∗ (0, π) :=

{
ϕ ∈ L2 (0, π) ;

∫ π

0

ϕ(x)dx = 0

}
,

Hm
∗ (0, π) = Hm (0, π) ∩ L2

∗ (0, π)

and
L2
0 (0, π) :=

{
ϕ ∈ L2 (0, π) ;ϕ(0) = ϕ(π) = 0

}
.

It is clear that L2
∗ (0, π), L2

0 (0, π) and H1
∗ (0, π) are Hilbert spaces, and hence,

H is a Hilbert space too.
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The Hilbert space H is equipped with the inner product

〈U,U∗〉H =

∫ L

0

[
ρvv∗ + auxu

∗
x + cuxxu

∗
xx + Jψψ

∗
+ βφxφ

∗
x + ξφφ

∗
+ c∗θθ

∗
]
dx

+

∫ L

0

[τ
κ
qq∗ + b

(
uxφ

∗
+ φu∗x

)
+ d

(
uxxφ

∗
x + φxu

∗
xx

)]
dx,

where U = (u, v, φ, ψ, θ, q)T and U∗ = (u∗, v∗, φ∗, ψ∗, θ∗, q∗)T . The corre-
sponding norm in H is

‖U‖2H =

∫ L

0

[
ρ|v|2 + a|ux|2 + c|uxx|2 + J |ψ|2 + ξ |φ|2 + β |φx|2 + c∗|θ|2

+
τ

κ
|q|2 + 2bRe 〈ux, φ〉+ 2dRe 〈uxx, φx〉

]
dx.

Secondly, we introduce the new variables v = ut and ψ = φt. Then the
system (1) becomes

ut = v,

vt =
1

ρ
(auxx + bφx − cuxxxx − dφxxx − δθx) ,

φt = ψ,

ψt =
1

J
(duxxx + βφxx − ξφ− bux +mθ − µψ) ,

θt = − 1

c∗
(qx + δvx +mψ)

qt = −1

τ
(q + κθx) ,

which, with the initial conditions (9), can be written in the form of an
abstract Cauchy problem as follows{

Ut = AU,
U (0) = U0,

(14)

where A : D (A) ⊂ H −→ H, is the operator given by

A =



0 I 0 0 0 0
a

ρ
D2 − c

ρ
D4 0

b

ρ
D − d

ρ
D3 0 −δ

ρ
D 0

0 0 0 I 0 0
d

J
D3 − b

J
D 0

β

J
D2 − ξ

J
I −µ

J
I

m

J
I 0

0 − δ

c∗
D 0 −m

c∗
I 0 − 1

c∗
D

0 0 0 0 − κ
c∗
D −1

τ
I


(15)



EXPONENTIAL DECAY OF A STRAIN GRADIENT POROUS SYSTEM 9

where Dj =
∂j

∂xj
and I is the identity operator. The domain of A is

D (A) =
{
U ∈ H : v ∈ H2 ∩H1

0 , φ ∈ H2
∗ , ψ, θ ∈ H1

∗ , q ∈ H1
0 ,

(cux + dφ) ∈ H3
∗ , (dux + βφ)x ∈ H1

∗ ∩ L2
0

}
.

The well-posedness of the problem (1), (8), (9) is given by the following
theorem.

Theorem 3 For any U0 = (u0, u1, φ0, φ1, θ0, q0) ∈ H, the problem (1), (8), (9)
has a unique mild solution (u, φ, θ, q) such that

u ∈ C
(
[0,+∞[ ;H2(0, L) ∩H1

0 (0, L)
)
, φ ∈ C

(
[0,+∞[ ;H1

∗ (0, L)
)
,

θ ∈ C
(
[0,+∞[ ;L2(0, L)

)
, q ∈ C

(
[0,+∞[ ;L2(0, L)

)
.

According to Theorem 1 and the Lumer–Phillips theorem, the proof of
Theorem 3 is a consequence of the following lemma.

Lemma 1 The operator A defined by (15) is the infinitesimal generator of
a C0–semigroup of contractions on H.

Proof. It suffices to prove that the operator A is dissipative and maximal.
A straightforward calculation shows that

Re 〈AU,U〉H = −1

κ

∫ π

0

|q|2dx− µ
∫ π

0

|ψ|2 dx ≤ 0,

which proves the dissipativeness of A.
Further, we show that 0 ∈ ρ (A). Let F = (f 1, f 2, f 3, f 4, f 5, f 6)

T ∈ H
be given, and find U = (u, v, φ, ψ, θ, q)T ∈ D(A) such that AU = F , that is,

v = f 1,
auxx + bφx − cuxxxx − dφxxx − δθx = ρf 2,
ψ = f 3,
duxxx + βφxx − ξφ− bux +mθ − µψ = Jf 4,
qx + δvx +mψ = −c∗f 5,
q + κθx = −τf 6.

(16)

From (16)1, (16)3 and (16)5, we have

v = f 1 ∈ H2(0, π) ∩H1
0 (0, π), (17)

ψ = f 3 ∈ H1
∗ (0, π) (18)

and
qx = −c∗f 5 − δf 1

x −mf 3 ∈ L2(0, π). (19)
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The theory of ordinary differential equations implies that

q(x) = −c?
∫ x

0

f 5(s)ds− δf 1(x)−m
∫ x

0

f 3(s)ds ∈ H1(0, π).

Clearly, q(0) = q(π) = 0. Then

q ∈ H1
0 (0, π). (20)

On the other hand, plugging q just obtained in (16)6, we get

θx = −1

κ
(τf 6 + q) ∈ L2(0, π).

Using the usual theory of ordinary differential equations again, we conclude
that

θ ∈ H1(0, π).

By substituting the values of ψ and θ in (16)2 and (16))4, we get{
auxx + bφx − cuxxxx − dφxxx = ρf 2 + δθx,
duxxx + βφxx − ξφ− bux = Jf 4 −mθ + µf 3.

(21)

Note that

g1 = ρf 2 + δθx ∈ L2 (0, π) and g2 = Jf 4 −mθ + µf 3 ∈ L2
∗ (0, π) .

To prove the solvability of (21), we take the L2–inner product of the equa-
tions of (21) by u∗ and φ∗, respectively; then, using the integration by parts
and adding the two equations, we get

B
(

(u, φ)T , (u∗, φ∗)T
)

= L
(

(u∗, φ∗)T
)
, (22)

where

B
(

(u, φ)T , (u∗, φ∗)T
)

= c

∫ π

0

uxxu∗xxdx+ a

∫ π

0

uxu∗xdx+ β

∫ π

0

φxφ∗xdx

+b

∫ π

0

(
φu∗x + uxφ∗

)
dx+ d

∫ π

0

(
φxu∗xx + uxxφ∗x

)
dx

+ξ

∫ π

0

φφ∗dx

and

L
(

(u∗, φ∗)T
)

=

∫ π

0

(
ρf 2 + δθx

)
u∗dx+

∫ π

0

(
Jf 4 −mθ + µf 3

)
φ∗dx.

Clearly, B (·, ·) is a bilinear and continuous form, and L (·) is a linear and
continuous form over

W =
(
H2 (0, π) ∩H1

0 (0, π)
)
×H1

∗ (0, π).
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Moreover,

B
(

(u, φ)T , (u, φ)T
)

=c

∫ π

0

|uxx|2 dx+ a

∫ π

0

|ux|2 dx+ β

∫ π

0

|φx|2 dx

+ ξ

∫ π

0

|φ|2 dx+ 2bRe

∫ π

0

(φux) dx

+ 2dRe

∫ π

0

(φxuxx) dx.

It is easy to show that

a

∫ π

0

|ux|2 dx+ ξ

∫ π

0

|φ|2 dx+ 2bRe

∫ π

0

(φux) dx

≥ 1

2

(
a− b2

ξ

)∫ π

0

|ux|2 dx+
1

2

(
ξ − b2

a

)∫ π

0

|φ|2 dx.

Thus, using (2), we arrive at

B
(

(u, φ)T , (u, φ)T
)
≥ 1

2

(
a− b2

ξ

)∫ π

0

|ux|2 dx+
1

2

(
ξ − b2

a

)∫ π

0

|φ|2 dx

+
1

2

(
c− d2

β

)∫ π

0

|uxx|2 dx+
1

2

(
β − d2

c

)∫ π

0

|φx|2 dx,

which shows that B (·, ·) is coercive. Then, using the Lax–Milgram theorem,
we infer that the problem (21) has a unique solution

(u, φ) ∈
(
H2 (0, π) ∩H1

0 (0, π)
)
×H1

∗ (0, π). (23)

Moreover, by taking (u∗, φ∗) = (u∗, 0) in (22), we arrive at∫ π

0

(cux + dφ)x u
∗
xxdx =

∫ π

0

(
auxx + bφx + ρf 2 + δθx

)
u∗dx, ∀u∗ ∈ H1

0 (0, π) ,

which means that
cux + dφ ∈ H3 (0, π)

with
(cux + dφ)xxx =

(
auxx + bφx + ρf 2 + δθx

)
.

Clearly, cux + dφ ∈ L2
∗ (0, π). Therefore,

cux + dφ ∈ H3
∗ (0, π) . (24)

Similarly, if we take (u∗, φ∗) = (0, φ∗), φ∗ ∈ H1
∗ , we get∫ π

0

(dux + βφ)x φ
∗
xdx = −

∫ π

0

(
bux + ξφ− Jf 4 +mθ − µf 3

)
φ∗dx. (25)



12 A. AHMIMA AND A. FAREH

Here, we are not able to apply the elliptic regularity theory.
Let Ψ ∈ H1

0 (0, π) and set φ∗ = Ψ−
∫ π
0

Ψ (x, t) dx. Then, φ∗ ∈ H1
∗ (0, π).

Consequently, for any Ψ ∈ H1
0 ,∫ π

0

(dux + βφ)x Ψxdx = −
∫ π

0

(
bux + ξφ− Jf 4 +mθ − µf 3

)
Ψdx.

Therefore,
dux + βφ ∈ H2 (0, π)

with
(dux + βφ)xx =

(
bux + ξφ− Jf 4 +mθ − µf 3

)
= r (x) .

As above, dux + βφ ∈ L2
∗ (0, π), which gives

dux + βφ ∈ H2
∗ (0, π) . (26)

From (24) and (26), we deduce that

φ ∈ H2
∗ (0, π) . (27)

On other hand, since (dux + βφ)xx = r (x), we have,∫ π

0

(dux + βφ)xx ϕdx =

∫ π

0

r (x)ϕdx, ϕ ∈ H1 (0, π) .

Integration by parts and the fact that H1
∗ (0, π) ⊂ H1 (0, π) yield

(dux + βφ)x (π)ϕ (π)− (dux + βφ)x (0)ϕ (0)−
∫ π

0

(dux + βφ)x ϕxdx

=

∫ π

0

r (x)ϕdx,

for any ϕ ∈ H1
∗ (0, π). Thus, (25) leads to

(dux + βφ)x (π)ϕ (π)− (dux + βφ)x (0)ϕ (0) = 0, ϕ ∈ H1
∗ (0, π) .

Consequently,

(dux + βφ)x (π)ϕ (π) = (dux + βφ)x (0) = 0. (28)

Using (16)4, the boundary conditions and the above results, we infer that∫ π

0

θ (x, t) dx =
1

m

∫ π

0

(
Jf 4 − duxxx − βφxx + ξφ+ bux + µψ

)
dx = 0.

Thus,
θ ∈ H1

∗ (0, π) . (29)

Combining (17), (18), (20) and (23)–(29), we conclude that (u, v, φ, ϕ, q, θ) ∈
D (A), and thus, 0 ∈ ρ (A). Moreover, using a geometric series argument, we
prove that λI −A = A(λA−1 − I) is invertible for |λ| < ‖A−1‖, and hence,
λ ∈ ρ(A). This completes the proof that A is the infinitesimal generator of
a C0–semigroup of contractions. The Lumer–Phillips theorem ensures the
existence of a unique solution to the problem (14) satisfying the statements
of Theorem 3. �
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3 Exponential stability

In this section, we state and prove our main result. To achieve this, we use a
tool based on Prüss’s and Gearhart’s theorems. First, we recall the following
theorem due to Gearhart [16, 20].

Theorem 4 A C0–semigroup of contractions S (t) = e−At, generated by an
operator A in a Hilbert space H, is exponentially stable if and only if

(i) iR = {iλ, λ ∈ R} ⊂ ρ(A);

(ii) lim
|λ|→∞

‖(iλI −A)−1‖ <∞.

Now, we state our main result.

Theorem 5 Let (u, φ, θ, q) be the solution of (1), (8), (9). Then there exist
two positive constants η and ω, independent of t and the initial data, such
that

E (t) ≤ ηe−ωt, t > 0.

The proof of Theorem 5 will be established through the following two
lemmas.

Lemma 2 The set iR = {iλ;λ ∈ R} is contained in ρ(A).

Proof. The operator A−1 is compact. Indeed, let (Fn) be a bounded se-
quence in H and let (Un) be the sequence in D(A) such that Fn = AUn.
Since A−1 ∈ L(H), the sequence (Un) = (A−1Fn) is bounded in H. There-
fore, there exists a constant C > 0 such that

‖Un‖D(A) = ‖Un‖H + ‖AUn‖H ≤ C.

Thus, (Un) is bounded in D(A). Using the fact that the injection of Hm(0;π)
into Hj(0; π) is compact for m > j, we infer that we can extract a convergent
subsequence Ur = (ur, vr, φr, ψr, θr, qr) with a limit U = (u, v, φ, ψ, θ, q) ∈ H.

Suppose that there exists λ ∈ R (λ 6= 0) such that iλ ∈ σ (A). As A−1
is compact, iλ must be an eigenvalue of A. Then, there exists a vector
U = (u, v, φ, ψ, θ, q) 6= 0 such that iλU −AU = 0, that is,

iλu− v = 0,
iλρv − auxx − bφx + cuxxxx + dφxxx + δθx = 0,

iλφ− ψ = 0,
iλJψ − duxxx − βφxx + ξφ+ bux −mθ + µψ = 0,

iλc∗θ + qx + δvx +mψ = 0,
iλτq + q + κθx = 0.

(30)
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Further, we have

〈iλU −AU,U〉 =
1

κ

∫ π

0

|q|2dx+ µ

∫ π

0

|ψ|2 dx = 0.

Then q = ψ = 0. Moreover, (30)3, (30)6 and (30)5 give φ = 0, θ = 0 and
vx = 0. Then (30)1 yields ux = 0, and, finally, u = v = 0. Thus, we come to
a contradiction, and the proof of Lemma 2 is complete. �

Lemma 3 The operator A defined by (15) satisfies

lim
|λ|→∞

∥∥(iλI −A)−1
∥∥ <∞.

Proof. It suffices to prove that there exists a positive constant C such that

‖ (iλI −A)−1 F‖ ≤ C‖F‖ for all λ ∈ R.

Let λ ∈ R be given and let F = (f 1, f 2, f 3, f 4, f 5, f 6) ∈ H. Then there
exists a unique U = (u, v, φ, ψ, θ, q)T ∈ D (A) such that (iλI − A)U = F ,
that is, 

iλu− v = f 1,
iλρv − auxx − bφx + cuxxxx + dφxxx + δθx = ρf 2,
iλφ− ψ = f 3,
iλJψ − duxxx − βφxx + ξφ+ bux −mθ + µψ = Jf 4,
iλc∗θ + qx + δvx +mψ = c∗f 5,
iλτq + q + κθx = τf 6,

(31)

First, recall that

Re〈(iλI −A)U,U〉H =
1

κ

∫ L

0

|q|2dx+ µ

∫
|ψ|2 = Re〈F,U〉H.

Therefore,
1

κ

∫ L

0

|q|2dx+ µ

∫
|ψ|2 ≤ ‖F‖ ‖U‖ . (32)

Taking the L2–product of (31)2 by u, (31)4 by φ, and then using (31)1 and
(31)3, we obtain

a ‖ux‖2 + c ‖uxx‖2 + β ‖φx‖2 + ξ ‖φ‖2 + 2bRe〈ux, φ〉+ 2dRe〈uxx, φx〉

= ρ
〈
f 2, u

〉
+ ρ

〈
v, f 1

〉
+ J

〈
f 4, φ

〉
+ J

〈
ψ, f 3

〉
+ ρ ‖v‖2 + J ‖ψ‖2

+δ 〈θ, ux〉+m 〈θ, φ〉 − µ 〈ψ, φ〉 .
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The Cauchy–Schwarz and Young’s inequalities lead to

a

2
‖ux‖2 + c‖uxx‖2 + β‖φx‖2 +

ξ

2
‖φ‖2 + 2bRe〈ux, φ〉+ 2dRe〈uxx, φx〉

≤ C‖F‖‖U‖+ ρ ‖v‖2 + (
δ2

2a
+
m2

ξ
)‖θ‖2.

(33)
At this point, we have to estimate ‖v‖L2 . To this end, we define the

functions ϕ, w, z and y as solutions to the following problems:

−ϕxx = v ϕx (0) = ϕx(π) = 0, (34)

−wxx = θ wx (0) = wx (π) = 0, (35)

−zxx = f 5 z (0) = z(π) = 0, (36)

−yxx = f 2 y(0) = y(π) = 0. (37)

Multiplying (36) by z in L2(0, π) and using the Cauchy–Schwarz and Poincaré’s
inequalities, we get

‖zx‖ ≤ Cp
∥∥f 5
∥∥ , (38)

Similarly,
‖yx‖ ≤ Cp

∥∥f 2
∥∥ , (39)

where Cp is Poincaré’s constant.
Next, we multiply (31)5 by ϕx in L2(0, π) to obtain

〈iλc∗θ, ϕx〉+ 〈qx, ϕx〉+ δ 〈vx, ϕx〉+m〈ψ, ϕx〉 = c∗〈f 5, ϕx〉 . (40)

Let us estimate each term in (40).
Integration by parts, (34) and (35) lead to

I1 = 〈iλc∗θ, ϕx〉 = −c∗〈iλwxx, ϕx〉 = c∗〈iλwx, ϕxx〉 = c∗〈wx, iλv〉. (41)

From (31)2, we get

iλv =
1

ρ

(
auxx + bφx − cuxxxx − dφxxx − δθx + ρf 2

)
.

Plugging iλv in (41) and using (37), we obtain

I1 =
ac∗

ρ
〈wx, uxx〉+

bc∗

ρ
〈wx, φx〉 − cc∗

ρ
〈wx, uxxxx〉

−dc
∗

ρ
〈wx, φxxx〉 −

δc∗

ρ
〈wx, θx〉 − c∗ 〈wx, yxx〉 .

Integration by parts and (35) give

I1 =
ac∗

ρ
〈θ, ux〉+

bc∗

ρ
〈θ, φ〉+ cc∗

ρ
〈θx, uxx〉+

dc∗

ρ
〈θx, φx〉−

δc∗

ρ
‖θ‖2−c∗ 〈θ, yx〉 .

(42)



16 A. AHMIMA AND A. FAREH

Similarly, we obtain

I2 = 〈qx, ϕx〉 = −〈q, ϕxx〉 = 〈q, v〉 , (43)

I3 = δ 〈vx, ϕx〉 = −δ 〈v, ϕxx〉 = δ ‖v‖2 (44)

and

I4 = c∗
〈
f 5, ϕx

〉
= −c∗ 〈zxx, ϕx〉 = c∗ 〈zx, ϕxx〉 = −c∗ 〈zx, v〉 . (45)

Substituting (42)–(45) into (40), we get

δ ‖v‖2 = −ac
∗

ρ
〈θ, ux〉 −

bc∗

ρ
〈θ, φ〉 − cc∗

ρ
〈θx, uxx〉 −

dc∗

ρ
〈θx, φx〉

+
δc∗

ρ
‖θ‖2 + c∗ 〈θ, yx〉 − 〈q, v〉 −m〈ψ, ϕx〉 − c∗ 〈zx, v〉 .

(46)

Young’s inequality yields

ac∗

ρ
|〈θ, ux〉| ≤

aδ

24ρ
‖ux‖2 +

6ac∗2

δρ
‖θ‖2

and
bc∗

ρ
|〈θ, φ〉| ≤ ξδ

24ρ
‖φ‖2 +

6b2c∗2

ξδρ
‖θ‖2.

Replacing θx obtained from (31)6, we get

cc∗

ρ
|〈θx, uxx〉| =

cc∗

ρκ
|〈τf 6 − iλτq − q, uxx〉|

≤ cc∗τ

ρκ
|〈f 6, uxx〉|+

(
cc∗λτ

ρκ
+
cc∗

ρκ

)
|〈q, uxx〉|

and

dc∗

ρ
|〈θx, φx〉| =

dc∗

ρκ
|〈τf 6 − iλτq − q, φx〉|

≤ dc∗τ

ρκ
|〈f 6, φx〉|+

(
dc∗λτ

ρκ
+
dc∗

ρκ

)
|〈q, φx〉| .

Thus, the Cauchy–Schwarz and Young’s inequalities lead to

cc∗

ρ
|〈θx, uxx〉| ≤

cc∗τ

ρκ

∥∥f 6
∥∥ ‖uxx‖+

4cc∗2 (1 + λτ)2

δρκ2
‖q‖2 +

cδ

16ρ
‖uxx‖2 ,

and

dc∗

ρ
|〈θx, φx〉| ≤

dc∗τ

ρκ

∥∥f 6
∥∥ ‖φx‖+

4d2c∗2 (1 + λτ)2

βδρκ2
‖q‖2 +

βδ

16ρ
‖φx‖2 .
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Using (32), we infer that

cc∗

ρ
|〈θx, uxx〉| ≤

cδ

16ρ
‖uxx‖2 + C‖F‖‖U‖

and
dc∗

ρ
|〈θx, φx〉| ≤

βδ

16ρ
‖φx‖2 + C‖F‖‖U‖.

Similarly, the Cauchy–Schwarz and Young’s inequalities, (38) and (39) entail

c∗
(
|〈θ, yx〉|+ |〈zx, v〉|

)
≤ c∗Cp

(
‖θ‖‖f 2‖+ ‖f 5‖‖v‖

)
≤ C‖F‖‖U‖,

and (32) gives

|〈q, v〉| ≤ δ

4
‖v‖2 + C ‖F‖ ‖U‖ .

Next, Young’s and Poincaré’s inequalities yield

m|〈ψ, ϕx〉| ≤ ε‖ϕx‖2 +
m2

4ε
‖ψ‖2 ≤ εCp‖ϕxx‖2 +

m2

4ε
‖ψ‖2

≤ δ

4
‖v‖2 + C‖F‖‖U‖.

Finally, we substitute these estimates into (46), to get

2ρ ‖v‖2 ≤ a

6
‖ux‖2 +

ξ

6
‖φ‖2 +

c

4
‖uxx‖2 +

β

4
‖φx‖2

+

(
24ac∗2

δ2
+

24b2c∗2

ξδ2
+ 4c∗

)
‖θ‖2 + C ‖F‖ ‖U‖ .

(47)

Adding (33) and (47), we obtain

ρ ‖v‖2 +
a

3
‖ux‖2 +

3c

4
‖uxx‖2 +

3β

4
‖φx‖2 +

ξ

3
‖φ‖2 + c∗ ‖θ‖2

+J‖ψ‖2 +
τ

κ
‖q‖2 + 2bRe 〈ux, φ〉+ 2dRe 〈uxx, φx〉

≤
(24ac∗2

δ2
+

24b2c∗2

ξδ2
+
δ2

2a
+
m2

ξ
+ 5c∗

)
‖θ‖2 + C ‖F‖ ‖U‖ .

(48)

The next step is to estimate ‖θ‖L2 . To this end, we define the functions
w and z as in (35) and (36), and α, η as the solutions to the following
problems:

−αxx = q, α (0) = αx (π) = 0, (49)

−ηxx = f 6, η (0) = η (π) = 0. (50)
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Multiplying the equations (49) by α and (50) by η in L2(0, π), using the
integration by parts, the Cauchy–Schwarz and Poincaré’s inequalities, we
obtain

‖αx‖ ≤ Cp ‖q‖ , (51)

‖ηx‖ ≤ Cp
∥∥f 6
∥∥ . (52)

Taking the L2–inner product of (31)6 by wx, using (49), (50), (35) and the
integration by parts, we get

τ 〈αx, iλθ〉 − 〈αx, θ〉+ κ ‖θ‖2 = −τ 〈ηx, θ〉 .

Replacing iλθ obtained from (31)5, we get

τ 〈αx, iλθ〉 = τ
〈
αx, f

5
〉
− τ

c∗
〈αx, qx〉 −

δτ

c∗
〈αx, vx〉 −

mτ

c∗
〈αx, ψ〉

= −τ 〈q, zx〉 −
τ

c∗
‖q‖2 − δτ

c∗
〈q, v〉 − mτ

c∗
〈αx, ψ〉.

Thus,

κ ‖θ‖2 = −τ 〈ηx, θ〉+ τ 〈q, zx〉+
τ

c∗
‖q‖2 +

δτ

c∗
〈q, v〉+

mτ

c∗
〈αx, ψ〉+ 〈αx, θ〉 .

Let us estimate each term in the obtained relation. First, we have

τ
(
|〈ηx, θ〉|+ |〈q, zx〉|

)
≤ C ‖F‖ ‖U‖ .

Young’s inequality, (51) and (32) give∣∣∣∣τδc∗ 〈q, v〉
∣∣∣∣ ≤ Cε‖F‖‖U‖+ ε‖v‖2,

|〈αx, θ〉| ≤ C ‖F‖ ‖U‖+
κ

2
‖θ‖2 ,

and
mτ

c∗
|〈αx, ψ〉| ≤ C ‖F‖ ‖U‖ .

Therefore,
κ

2
‖θ‖2 ≤ Cε ‖F‖ ‖U‖+ ε‖v‖2. (53)

Multiplying (53) by

(
48ac∗2

κδ2
+

48b2c∗2

κξδ2
+
δ2

aκ
+

2m2

κξ
+

10c∗

κ

)
and choosing

ε such that
(48ac∗2

κδ2
+

48b2c∗2

κξδ2
+

δ

aκ
+

2m2

κξ
+

10c∗

κ

)
ε =

ρ

2
, we obtain

(24ac∗2

δ2
+

24b2c∗2

ξδ2
+

δ

2a
+
m2

ξ
+ 5c∗

)
‖θ‖2 ≤ C ‖F‖ ‖U‖+

ρ

2
‖v‖2 . (54)
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Substituting (54) into (48), we get

ρ

2
‖v‖2 +

a

3
‖ux‖2 +

3c

4
‖uxx‖2 +

3β

4
‖φx‖2 +

ξ

3
‖φ‖2 + c∗ ‖θ‖2 + J‖ψ‖2 +

τ

κ
‖q‖2

+2bRe 〈ux, φ〉+ 2dRe 〈uxx, φx〉 ≤ C ‖F‖ ‖U‖ ,

that is,
1

3
‖U‖2 ≤ C ‖F‖ ‖U‖ ,

which gives

‖U‖ ≤ C ‖F‖ ,

and the proof of Lemma 3 is completed. �

The proof of Theorem 5 is a consequence of the Lemmas 2 and 3.
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[28] J.E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear
Timoshenko systems — global existence and exponential stabil-
ity. J. Math. Anal. Appl., 276 (2002), no. 1, pp. 248–278.
https://doi.org/10.1016/s0022-247x(02)00436-5
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