On a family of weighted $\bar{\partial}$-integral representations in the unit disc

F. V. Hayrapetyan

Abstract

For weighted L^{p}-classess of C^{1}-functions in the unit disc with weight function of the type $|w|^{2 \gamma} \cdot\left(1-|w|^{2 \rho}\right)^{\alpha}$, we obtain a family of weighted $\bar{\partial}$-integral representations of the type $f=P(f)-T(\bar{\partial} f)$.

Key Words: Smooth Functions in the Unit Disc, Weighted Function Spaces, Weighted $\bar{\partial}$-Integral Representations
Mathematics Subject Classification 2010: 30C40, 30H10, 30H20, 30E20, 32W05

Introduction

Let f be a holomorphic function in the unit disc \mathbb{D} and has (in a certain sense) boundary values on the unit circle $\partial \mathbb{D}=\{w \in C:|w|=1\}$. Also, denote by σ the Lebesgue measure on $\partial \mathbb{D}$. According to the famous Cauchy integral formula written for \mathbb{D},

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \int_{\partial \mathbb{D}} \frac{f(w)}{1-z \bar{w}} d \sigma(w), \quad z \in \mathbb{D} \tag{1}
\end{equation*}
$$

A generalization of the Cauchy's formula for smooth functions (so-called Cauchy-Green formula) was established in [1] and for the unit disc can be formulated as follows:

Theorem 1 If $f \in C^{1}(\overline{\mathbb{D}})$, then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \iint_{\partial \mathbb{D}} \frac{f(w)}{1-z \bar{w}} d \sigma(w)-\frac{1}{\pi} \iint_{\mathbb{D}} \frac{\partial f(w) / \partial \bar{w}}{w-z} d m(w), \quad z \in \mathbb{D}, \tag{2}
\end{equation*}
$$

where m is two-dimensional Lebesgue measure in the complex plane.

Recall that

$$
\begin{equation*}
\frac{\partial f(w)}{\partial \bar{w}}=\frac{1}{2}\left(\frac{\partial f(w)}{\partial x}+i \frac{\partial f(w)}{\partial y}\right) \quad(w=x+i y) \tag{3}
\end{equation*}
$$

is the Cauchy-Riemann operator. Apparently, [2] (see also [3]) was the first work, where the values of holomorphic functions inside of a domain were reproduced by integration of functions over the whole domain.

Denote by $H(\mathbb{D})$ the set of all holomorphic functions in the unit disc \mathbb{D}.
Theorem 2 Each function $f \in H(\mathbb{D})$ and satisfying the condition

$$
\begin{equation*}
\iint_{\mathbb{D}}|f(w)|^{2} d m(w)<+\infty \tag{4}
\end{equation*}
$$

has the following integral representation:

$$
\begin{equation*}
f(z)=\frac{1}{\pi} \iint_{\mathbb{D}} \frac{f(w)}{(1-z \cdot \bar{w})^{2}} d m(w), \quad z \in \mathbb{D} \tag{5}
\end{equation*}
$$

This result was essentially generalized in [4], [5]: For the spaces $H^{p}(\alpha) \equiv$ $H(\mathbb{D}) \cap L_{\alpha}^{p}(\mathbb{D}), 1 \leq p<\infty, \alpha>-1$, of functions f holomorphic in the unit disc \mathbb{D} and satisfying the condition

$$
\begin{equation*}
\iint_{\mathbb{D}}|f(w)|^{p}\left(1-|w|^{2}\right)^{\alpha} d m(w)<+\infty \tag{6}
\end{equation*}
$$

the following assertion is true.
Theorem 3 Each function $f \in H^{p}(\alpha)$ has the integral representation

$$
\begin{equation*}
f(z)=\frac{\alpha+1}{\pi} \iint_{\mathbb{D}} \frac{f(w)\left(1-|w|^{2}\right)^{\alpha}}{(1-z \cdot \bar{w})^{2+\alpha}} d m(w), \quad z \in \mathbb{D} . \tag{7}
\end{equation*}
$$

This result has numerous applications (see, for example, 4], [5) in the theory of factorization of meromorphic functions in the unit disc as well as to other problems of complex analysis.

A generalization of the formula (7) for smooth functions f (or, equivalently, a weighted version of the formula (2)) has the following form (Re $\beta>-1$):

$$
\begin{align*}
& f(z)=\frac{\beta+1}{\pi} \iint_{\mathbb{D}} \frac{f(w)\left(1-|w|^{2}\right)^{\beta}}{(1-z \bar{w})^{2+\beta}} d m(w) \\
&-\frac{1}{\pi} \iint_{\mathbb{D}} \frac{\partial f(w) / \partial \bar{w}}{w-z} \cdot\left(\frac{1-|w|^{2}}{1-z \bar{w}}\right)^{\beta+1} d m(w), \quad z \in \mathbb{D} . \tag{8}
\end{align*}
$$

This result follows

- from [6] if $f \in C^{1}(\overline{\mathbb{D}})$;
- from [7] if $f \in C^{1}(\mathbb{D}), \operatorname{grad}(f) \in L^{1}(\mathbb{D})$, and β is real;
\bullet from [8] if $1 \leq p<\infty, \alpha>-1, f \in C^{1}(\mathbb{D}) \cap L_{\alpha}^{p}(\mathbb{D}), \partial f(w) / \partial \bar{w} \in L_{\alpha}^{p}(\mathbb{D})$, and $\beta=\alpha$;
- from [9] and [10] if $1 \leq p<\infty, \alpha>-1, f \in C^{1}(\mathbb{D}) \cap L_{\alpha}^{p}(\mathbb{D})$, $\partial f(w) / \partial \bar{w} \in L_{\alpha+1}^{p}(\mathbb{D})$, and $\operatorname{Re} \beta \geq \alpha$.

In [11] a further generalization of formula (8) was given by taking a weight function of the type $|w|^{2 \gamma} \cdot\left(1-|w|^{2 \rho}\right)$ instead of $\left(1-|w|^{2}\right)^{\alpha}(\rho>0$, $\alpha>-1$ and $\gamma>-1$). The result was a formula of the type

$$
\begin{align*}
& f(z)=\iint_{\mathbb{D}} f(w) S_{\alpha, \rho, \gamma}(z ; w) \cdot\left(1-|w|^{2 \rho}\right)^{\alpha} \cdot|w|^{2 \gamma} d m(w) \\
&-\frac{1}{\pi} \iint_{\mathbb{D}} \frac{\partial f(w) / \partial \bar{w}}{w-z} \cdot Q_{\alpha, \rho, \gamma}(z ; w) d m(w), \quad z \in \mathbb{D}, \tag{9}
\end{align*}
$$

where $f \in C^{1}(\overline{\mathbb{D}})$ and $S_{\alpha, \rho, \gamma}(z ; w)$ and $Q_{\alpha, \rho, \gamma}(z ; w)$ admit integral representations with Mittag-Leffler type kernels.

As it follows from [8], where multidimensional analogue of this result was obtained, the restrictive condition $f \in C^{1}(\overline{\mathbb{D}})$ in formula (9) can be replaced by

$$
\begin{equation*}
f \in C^{1}(\mathbb{D}) \cap L_{\alpha, \rho, \gamma}^{p}(\mathbb{D}), \quad \frac{\partial f(w)}{\partial \bar{w}} \in L_{\alpha, \rho, \gamma}^{p}(\mathbb{D}) \tag{10}
\end{equation*}
$$

where $\rho>0, \alpha>-1, \gamma>-1$, and the spaces $L_{\alpha, \rho, \gamma}^{p}(\mathbb{D})$ are naturally generated by the "norm"

$$
\begin{equation*}
M_{\alpha, \rho, \gamma}^{p}(f)=\iint_{\mathbb{D}}|f(w)|^{p} \cdot\left(1-|w|^{2 \rho}\right)^{\alpha} \cdot|w|^{2 \gamma} d m(w) \tag{11}
\end{equation*}
$$

Our goal is to obtain (for fixed $\alpha>-1, \gamma>-1$) a family of integral representations of type (9) with kernels $S_{\beta, \rho, \varphi}(z ; w)$ and $Q_{\beta, \rho, \varphi}(z ; w)$ depending on complex parameters β and φ with $\operatorname{Re} \beta \geq \alpha, \operatorname{Re} \varphi \geq \gamma$ (for holomorphic f that was done in [12]). In comparison with [11] and [8], we write out the kernels $Q_{\beta, \rho, \varphi}(z ; w)$ in a series form which admits to specify their certain properties. Moreover, we weaken the second growth condition in (10) by assuming that

$$
\begin{equation*}
\frac{\partial f(w)}{\partial \bar{w}} \in L_{\alpha+1, \rho, \gamma}^{p}(\mathbb{D}) . \tag{12}
\end{equation*}
$$

1 The kernel $Q_{\beta, \rho, \varphi}(z ; w)$ and its properties

In what follows we assume that $\operatorname{Re} \beta>-1, \operatorname{Re} \varphi>-1, \rho>0$, and $\mu=(\varphi+1) / \rho$. For arbitrary $z \in \mathbb{D}, w \in \overline{\mathbb{D}}$, put

$$
\begin{equation*}
S_{\beta, \rho, \varphi}(z ; w)=\frac{\rho}{\pi \cdot \Gamma(\beta+1)} \cdot \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot z^{k} \cdot \bar{w}^{k} . \tag{13}
\end{equation*}
$$

This kernel was written out in [12] to generalize (9) for holomorphic functions. To obtain the corresponding kernel $Q_{\beta, \rho, \varphi}$ (i.e., to generalize (9) for C^{1}-functions) we use the relation between Q and S obtained in [11] (formula (2.11)):

$$
\begin{equation*}
Q_{\beta, \rho, \varphi}(z ; w)=\iint_{\mathbb{D}} S_{\beta, \rho, \varphi}(z ; \zeta) \cdot \frac{\zeta-z}{\zeta-w} \cdot\left(1-|\zeta|^{2 \rho}\right)^{\beta} \cdot|\zeta|^{2 \varphi} d m(\zeta) . \tag{14}
\end{equation*}
$$

Using the expansion (13), as well as the residue theorem, we have arrived at the following formula for arbitrary $z \in D$ (we omit some technical details):

$$
\begin{align*}
& Q_{\beta, \rho, \varphi}(z ; w)=1+\frac{(z-w) \rho}{w \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \frac{z^{k}}{w^{k}} \int_{0}^{|w|^{2}}\left(1-t^{\rho}\right)^{\beta} t^{\varphi+k} d t \\
& \equiv 1+\frac{z-w}{w \cdot \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k}} \cdot \int_{0}^{|w|^{2 \rho}}(1-x)^{\beta} x^{\mu+\frac{k}{\rho}-1} d x, \tag{15}
\end{align*}
$$

where $w \in \overline{\mathbb{D}} \backslash\{0\}$, and

$$
\begin{equation*}
Q_{\beta, \rho, \varphi}(z ; 0) \equiv 1 . \tag{16}
\end{equation*}
$$

To simplify notation, in what follows, we will use the notations Q and S instead of $Q_{\beta, \rho, \varphi}$ and $S_{\beta, \rho, \varphi}$, respectively.

To check whether the kernel Q is well-defined, we estimate the corresponding series in (15) by absolutely convergent numerical series (the socalled majorated convergence). We have

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left|\frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k}} \cdot \int_{0}^{|w|^{2}}\left(1-t^{\rho}\right)^{\beta} t^{\varphi+k} d t\right| \\
& \leq \sum_{k=0}^{\infty} \frac{\Gamma\left(\operatorname{Re} \mu+\operatorname{Re} \beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\operatorname{Re} \mu+\frac{k}{\rho}\right)} \cdot \frac{|z|^{k}}{|w|^{k}} \cdot\left|\int_{0}^{|w|^{2}}\left(1-t^{\rho}\right)^{\beta} t^{\varphi+k} d t\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k}} \cdot|w|^{2 k} \cdot \int_{0}^{|w|^{2}}\left(1-t^{\rho}\right)^{R e \beta} t^{R e \varphi} d t \\
& \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k}} \cdot|w|^{2 k} \cdot \int_{0}^{1}\left(1-t^{\rho}\right)^{R e \beta} t^{R e \varphi} d t \\
& \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k} \cdot|w|^{k} \\
& \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k}=\operatorname{const}(\beta, \rho, \varphi) \frac{1}{(1-|z|)^{R e \beta+2}}
\end{aligned}
$$

Hence, the following assertion is true.
Proposition 1 The kernel $Q(z ; w)$ is well-defined for $z \in \mathbb{D}$ and $w \in \overline{\mathbb{D}}$. Moreover, $Q(z ; w)$ is continuous in $\overline{\mathbb{D}} \backslash\{0\}$ for fixed z and holomorphic in \mathbb{D} for fixed w.

Remark 1 In the estimation above we used the following consequence of the Stirling's formula:

$$
\begin{equation*}
\frac{|\Gamma(\mu+R)|}{|\Gamma(\nu+R)|} \asymp R^{R e \mu-R e \nu}, \quad R \rightarrow+\infty . \tag{17}
\end{equation*}
$$

Proposition 2 Suppose $0<|w| \leq \frac{1}{2}$. Then

$$
|Q(z ; w)-Q(z ; 0)| \equiv|Q(z ; w)-1|=\operatorname{const}(\beta, \rho, \varphi, z) \cdot \begin{cases}|w|^{2 R e \varphi+1}, & z \neq 0 \\ |w|^{2 R e \varphi+2}, & z=0\end{cases}
$$

Proof. Case 1: Let $z \neq 0$. Then

$$
\begin{aligned}
& |Q(z ; w)-1| \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k+1}} \cdot \int_{0}^{|w|^{2}}\left(1-t^{\rho}\right)^{R e \beta} t^{R e \varphi+k} d t .
\end{aligned}
$$

Since $0 \leq t \leq \frac{1}{4}$, we have

$$
0 \leq t^{\rho} \leq \frac{1}{4^{\rho}} \quad \text { and } \quad 1-\frac{1}{4^{\rho}} \leq 1-t^{\rho} \leq 1
$$

Hence,

$$
\left(1-t^{\rho}\right)^{R e \beta} \leq \begin{cases}1, & \text { if } \operatorname{Re} \beta>0 \\ \left(1-\frac{1}{4^{\rho}}\right)^{R e \beta}, & \text { if }-1<\operatorname{Re} \beta \leq 0\end{cases}
$$

Therefore,

$$
\begin{aligned}
& |Q(z ; w)-1| \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k+1}} \cdot \int_{0}^{|w|^{2}} t^{R e \varphi+k} d t \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k+1}} \cdot \frac{|w|^{2(R e \varphi+k+1)}}{\operatorname{Re} \varphi+k+1} \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)(k+1)} \cdot|z|^{k} \cdot|w|^{k} \cdot|w|^{2 \operatorname{Re} \varphi+1} \\
& \quad=\operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+2)} \cdot|z|^{k} \cdot|w|^{k} \cdot|w|^{2 \operatorname{Re\varphi } \varphi+1} \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} k^{\operatorname{Re} \beta} \cdot|z|^{k} \cdot|w|^{k} \cdot|w|^{2 R e \varphi+1} \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+1)}{\Gamma(k+1)} \cdot|z|^{k} \cdot|w|^{k} \cdot|w|^{2 \operatorname{Re} \varphi+1} \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi)|w|^{2 \operatorname{Re\varphi } \varphi+1} \cdot \frac{1}{(1-|z|)^{\operatorname{Re} \beta+1}} .
\end{aligned}
$$

Case 2: Let $z=0$. It is easy to see that in this case $(z-w) / w=-1$, that is why the power of $|w|$ in our estimate increases by 1 .

Corollary 1 If $z=0$, then $Q(z ; w)$ is continuous at the point $w=0$ (therefore, in $\overline{\mathbb{D}})$; and if $z \neq 0$, then $Q(z ; w)$ is continuous at $w=0$ if and only if $\operatorname{Re} \varphi>-1 / 2$.

Lemma 1 If $|z|<|w| \leq 1$, then

$$
\frac{z-w}{w \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k}} \cdot \int_{0}^{1}(1-x)^{\beta} x^{\mu+\frac{k}{\rho}-1} d x=-1 .
$$

Proof. Note that

$$
\int_{0}^{1}(1-x)^{\beta} x^{\mu+\frac{k}{\rho}-1} d x=B\left(\beta+1, \mu+\frac{k}{\rho}\right)=\frac{\Gamma(\beta+1) \Gamma\left(\mu+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)} .
$$

Hence

$$
\begin{aligned}
& \frac{z-w}{w \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k}} \cdot \int_{0}^{1}(1-x)^{\beta} x^{\mu+\frac{k}{\rho}-1} d x \\
& \quad=\frac{z-w}{w \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k}} \cdot \frac{\Gamma(\beta+1) \Gamma\left(\mu+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)} \\
& \quad=\frac{z-w}{w} \sum_{k=0}^{\infty} \frac{z^{k}}{w^{k}}=\frac{z-w}{w} \cdot \frac{1}{1-\frac{z}{w}}=-1 .
\end{aligned}
$$

Corollary 2 If $z \in \mathbb{D}$ and $w \in \partial \mathbb{D}$, then $Q(z ; w)=0$.
The following assertion is evident.
Proposition 3 If $w=z \in \mathbb{D}$, then $Q(z ; w) \equiv Q(z ; z) \equiv 1$.
Proposition 4 Let $(1+|z|) / 2 \leq|w| \leq 1, K \subset \mathbb{D}$ be a compact and let $z \in K$. Then

$$
\begin{align*}
&|Q(z ; w)| \leq \operatorname{const}(\beta, \rho, \varphi) \frac{\left(1-|w|^{2 \rho}\right)^{R e \beta+1}}{(1-|z|)^{R e \beta+2}} \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi, K) \cdot\left(1-|w|^{2 \rho}\right)^{R e \beta+1} \tag{18}
\end{align*}
$$

Proof. From $(1+|z|) / 2 \leq|w| \leq 1$ it follows that

$$
|z|<|w|, \quad|w| \geq \frac{1}{2}, \quad \text { and } \quad|w|-|z| \geq \frac{1-|z|}{2} .
$$

According to Lemma 1 we have:

$$
\begin{aligned}
& Q(z ; w)=1+\frac{z-w}{w \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k}} \\
& \quad \cdot\left(\int_{0}^{1}(1-x)^{\beta} x^{\mu+\frac{k}{\rho}-1} d x-\int_{|w|^{2 \rho}}^{1}(1-x)^{\beta} x^{\mu+\frac{k}{\rho}-1} d x\right) \\
& \quad=\frac{w-z}{w \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k}} \cdot \int_{|w|^{2 \rho}}^{1}(1-x)^{\beta} x^{\mu+\frac{k}{\rho}-1} d x .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& |Q(z ; w)| \leq \frac{\operatorname{const}(\beta, \rho, \varphi)}{|w|} \\
& \quad \cdot \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k}} \cdot \int_{|w|^{2 \rho}}^{1}(1-x)^{R e \beta} x^{R e \mu+\frac{k}{\rho}-1} d x .
\end{aligned}
$$

If $R e \mu+\frac{k}{\rho}-1 \geq 0$, then $x^{R e \mu+\frac{k}{\rho}-1} \leq 1$, otherwise,

$$
x^{R e \mu+\frac{k}{\rho}-1} \leq|w|^{2 \rho\left(\operatorname{Re} \mu+\frac{k}{\rho}-1\right)} \leq|w|^{2 \rho(\operatorname{Re} \mu-1)} \leq\left(\frac{1}{2}\right)^{2 \rho(\operatorname{Re} \mu-1)}=\operatorname{const}(\rho, \varphi)
$$

Thus, we can write

$$
\begin{aligned}
& |Q(z ; w)| \leq \frac{\operatorname{const}(\beta, \rho, \varphi)}{|w|} \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k}} \cdot \int_{|w|^{2 \rho}}^{1}(1-x)^{R e \beta} d x \\
& \quad=\operatorname{const}(\beta, \rho, \varphi) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot \frac{|z|^{k}}{|w|^{k}} \cdot\left(1-|w|^{2 \rho}\right)^{R e \beta+1} \\
& \quad=\operatorname{const}(\beta, \rho, \varphi) \frac{\left(1-|w|^{2 \rho}\right)^{R e \beta+1}}{\left(1-\frac{|z|}{|w|}\right)^{R e \beta+2}} \leq \operatorname{const}(\beta, \rho, \varphi) \frac{\left(1-|w|^{2 \rho}\right)^{R e \beta+1}}{(|w|-|z|)^{R e \beta+2}} \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi) \frac{\left(1-|w|^{2 \rho}\right)^{R e \beta+1}}{(1-|z|)^{R e \beta+2}} \leq \operatorname{const}(\beta, \rho, \varphi, K)\left(1-|w|^{2 \rho}\right)^{R e \beta+1} .
\end{aligned}
$$

Remark 2 For real β and φ, Propositions 2 and 4 were formulated in [11], where schemes of proofs were also given.

Proposition 5 For a fixed $z \in \mathbb{D}, Q(z ; w) \in C^{1}(\mathbb{D} \backslash\{0\})$.
Proof. For $w \in \mathbb{D} \backslash\{0\}$, we formally have:

$$
\begin{aligned}
& \frac{\partial Q(z ; w)}{\partial \bar{w}}=\frac{(z-w) \rho}{\Gamma(\beta+1)} \\
& \quad \cdot \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k+1}} \cdot\left(1-|w|^{2 \rho}\right)^{\beta} \cdot|w|^{2(\varphi+k)} \cdot w \\
& \quad=\frac{(z-w) \rho}{\Gamma(\beta+1)} \cdot\left(1-|w|^{2 \rho}\right)^{\beta} \cdot|w|^{2 \varphi} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot z^{k} \cdot \bar{w}^{k} .
\end{aligned}
$$

Making a majorating estimation for the expression above when $0<\varepsilon \leq$ $|w| \leq 1-\varepsilon<1$ we obtain

$$
\begin{aligned}
& \left|\frac{\partial Q(z ; w)}{\partial \bar{w}}\right| \leq \operatorname{const}(\beta, \rho, \varphi, \varepsilon) \cdot \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k} \cdot|\bar{w}|^{k} \\
& \quad \leq \operatorname{const}(\beta, \rho, \varphi, \varepsilon) \cdot \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k} \\
& \quad=\operatorname{const}(\beta, \rho, \varphi, \varepsilon) \cdot \frac{1}{(1-|z|)^{R e \beta+2}} .
\end{aligned}
$$

Now consider the formal expression

$$
\frac{\partial Q(z ; w)}{\partial w}=A_{1}+A_{2}+A_{3}
$$

where

$$
\begin{aligned}
& A_{1}=-\frac{\rho}{\Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k+1}} \cdot \int_{0}^{|w|^{2}}\left(1-t^{\rho}\right)^{\beta} t^{\varphi+k} d t \\
& A_{2}=\frac{(z-w) \rho}{\Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k+2}}(-k-1) \int_{0}^{|w|^{2}}\left(1-t^{\rho}\right)^{\beta} t^{\varphi+k} d t \\
& A_{3}=\frac{(z-w) \rho}{\Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \cdot \frac{z^{k}}{w^{k+1}} \cdot\left(1-|w|^{2 \rho}\right)^{\beta} \cdot|w|^{2(\varphi+k)} \cdot \bar{w}
\end{aligned}
$$

Let us majorate the series above under the same condition $0<\varepsilon \leq|w| \leq$ $1-\varepsilon<1$. We can write

$$
\begin{aligned}
& \left|A_{1}\right| \leq \frac{\operatorname{const}(\beta, \rho, \varphi)}{|w|} \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k} \cdot|\bar{w}|^{k} \\
& \leq \operatorname{const}(\beta, \rho, \varphi, \varepsilon) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k}<+\infty \\
& \left|A_{2}\right| \leq \frac{\operatorname{const}(\beta, \rho, \varphi)}{|w|^{2}} \sum_{k=0}^{\infty}(k+1)^{R e \beta+2} \cdot|z|^{k} \cdot|w|^{k} \\
& \leq \operatorname{const}(\beta, \rho, \varphi, \varepsilon) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+3)}{\Gamma(k+1)} \cdot|z|^{k}<+\infty
\end{aligned}
$$

$$
\begin{aligned}
\left|A_{3}\right| \leq \operatorname{const}(\beta, \rho, \varphi) \cdot\left(1-|w|^{2 \rho}\right)^{\beta} \cdot|w|^{2 \operatorname{Re\varphi }} \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k} \cdot|\bar{w}|^{k} \\
\leq \operatorname{const}(\beta, \rho, \varphi, \varepsilon) \sum_{k=0}^{\infty} \frac{\Gamma(k+\operatorname{Re} \beta+2)}{\Gamma(k+1)} \cdot|z|^{k}<+\infty .
\end{aligned}
$$

Thus, we have shown that for a fixed $z \in \mathbb{D}$ the derivatives $\partial Q(z ; w) / \partial \bar{w}$ and $\partial Q(z ; w) / \partial w$ exist and are continuous in $\mathbb{D} \backslash\{0\}$. Hence, the proposition is proved.

Proposition 6 For $z \in \mathbb{D}$ and $w \in \mathbb{D} \backslash\{0\}$, the following relation holds:

$$
\begin{equation*}
\frac{\partial Q(z ; w)}{\partial \bar{w}}=S(z ; w) \cdot \pi \cdot(z-w) \cdot|w|^{2 \varphi} \cdot\left(1-|w|^{2 \varphi}\right)^{\beta} \tag{19}
\end{equation*}
$$

Proof. Indeed,

$$
\begin{aligned}
& \frac{\partial Q(z ; w)}{\partial \bar{w}}=\frac{(z-w) \rho}{w \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} \frac{z^{k}}{w^{k}}\left(1-(w \bar{w})^{\rho}\right)^{\beta}(w \bar{w})^{\varphi+k} w \\
& \quad=\pi(z-w)|w|^{2 \varphi}\left(1-(w \cdot \bar{w})^{\rho}\right)^{\beta} \frac{\rho}{\pi \Gamma(\beta+1)} \sum_{k=0}^{\infty} \frac{\Gamma\left(\mu+\beta+1+\frac{k}{\rho}\right)}{\Gamma\left(\mu+\frac{k}{\rho}\right)} z^{k} \bar{w}^{k} \\
& \quad=S(z ; w) \cdot \pi \cdot(z-w) \cdot|w|^{2 \varphi} \cdot\left(1-|w|^{2 \rho}\right)^{\beta} .
\end{aligned}
$$

2 The main integral representation

In what follows, we assume that $\alpha>-1, \gamma>-1, \rho>0, \operatorname{Re} \beta \geq \alpha, \operatorname{Re} \varphi \geq \gamma$, and $\mu=(\varphi+1) / \rho$.

Recall that the "norms" (11) generate the corresponding spaces $L_{\alpha, \rho, \gamma}^{p}(\mathbb{D})$, where $1 \leq p<+\infty$. It is easy to check that $L_{\alpha, \rho, \gamma}^{p}(\mathbb{D}) \subset L_{\alpha, \rho, \gamma}^{1}(\mathbb{D})$.

Assume that $f \in L_{\alpha, \rho, \gamma}^{1}(\mathbb{D}) \cap C(\mathbb{D})$ and put

$$
\begin{equation*}
M(t) \equiv \int_{0}^{2 \pi}\left|f\left(t e^{i \theta}\right)\right| d \theta, \quad t \in[0,1) \tag{20}
\end{equation*}
$$

Evidently, $M(t)$ is continuous with respect to t.
In view of 20 , the condition $f \in L_{\alpha, \rho, \gamma}^{1}(\mathbb{D})$ can be written as

$$
\begin{equation*}
\int_{0}^{1} M(t)\left(1-t^{2 \rho}\right)^{\alpha} t^{2 \gamma+1} d t<+\infty \tag{21}
\end{equation*}
$$

and since $f \in C(\mathbb{D}),(21)$ is equivalent to the following condition

$$
\begin{equation*}
\int_{0}^{1} M(t)\left(1-t^{2 \rho}\right)^{\alpha} d t<+\infty \tag{22}
\end{equation*}
$$

Lemma 2 If $f \in L_{\alpha, \rho, \gamma}^{1}(\mathbb{D}) \cap C(\mathbb{D})$, then there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty} \subset$ $(0 ; 1)$ such that $t_{k} \rightarrow 1$ as $k \rightarrow \infty$ and

$$
\lim _{k \rightarrow \infty} M\left(t_{k}\right)\left(1-t_{k}^{2 \rho}\right)^{\alpha+1}=0
$$

Proof. Assume the opposite. Suppose there exists $\varepsilon>0$ such that $M(t)\left(1-t^{2 \rho}\right)^{\alpha+1} \geq \varepsilon$ for every $t \in(1-\delta, 1)$. From here it follows that

$$
M(t)\left(1-t^{2 \rho}\right)^{\alpha} \geq \frac{\varepsilon}{1-t^{2 \rho}}, \quad t \in(1-\delta, 1)
$$

But the inequality above contradicts to (22).
Theorem 4 Let $1 \leq p<+\infty, \alpha>-1, \gamma>-1, \rho>0, \operatorname{Re} \beta \geq \alpha$, and Re $\varphi \geq \gamma$. Also, let

$$
\begin{equation*}
f \in L_{\alpha, \rho, \gamma}^{p}(\mathbb{D}) \cap C^{1}(\mathbb{D}) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f(w)}{\partial \bar{w}} \in L_{\alpha+1, \rho, \gamma}^{p}(\mathbb{D}) \tag{24}
\end{equation*}
$$

Then for every $z \in \mathbb{D}$

$$
\begin{align*}
& f(z)=\iint_{\mathbb{D}} f(w) S(z ; w)\left(1-|w|^{2 \rho}\right)^{\beta}|w|^{2 \varphi} d m(w) \\
&-\frac{1}{\pi} \iint_{\mathbb{D}} \frac{\partial f(w) / \partial \bar{w}}{w-z} Q(z ; w) d m(w) . \tag{25}
\end{align*}
$$

Proof. It is enough to prove the assertion only in the case $p=1$. Let us consider the differential form

$$
\begin{equation*}
\tau_{z}(w)=\frac{1}{2 \pi i} \cdot \frac{f(w) Q(z ; w)}{w-z} d w, \quad w \in \mathbb{D} \backslash\{0\} . \tag{26}
\end{equation*}
$$

Case 1: $z \neq 0$. Denote (see Figure 1)

$$
D_{1}=\left\{|w| \leq t_{k}\right\}, \quad k=1,2,3, \ldots,
$$

where the sequence $\left\{t_{k}\right\}_{1}^{\infty}$ is chosen as in Lemma 2,

$$
D_{2}=\left\{|w| \leq \varepsilon_{1}\right\}, \quad D_{3}=\left\{|w-z| \leq \varepsilon_{2}\right\}, \quad G=D_{1} \backslash\left\{D_{2} \cup D_{3}\right\} .
$$

Figure 1: $z \neq 0$ case
Using Stokes formula we get

$$
\begin{aligned}
& \frac{1}{2 \pi i} \cdot \int_{|w|=t_{k}} \frac{f(w) Q(z ; w)}{w-z} d w \\
& -\frac{1}{2 \pi i} \cdot \int_{|w-z|=\varepsilon_{2}} \frac{f(w) Q(z ; w)}{w-z} d w-\frac{1}{2 \pi i} \cdot \int_{|w|=\varepsilon_{1}} \frac{f(w) Q(z ; w)}{w-z} d w \\
& =\frac{1}{2 \pi i} \iint_{G} \frac{\partial f(w) / \partial \bar{w}}{w-z} Q(z ; w) d \bar{w} \wedge d w+\frac{1}{2 \pi i} \iint_{G} \frac{f(w)}{w-z} \frac{\partial Q(z ; w)}{\partial \bar{w}} d \bar{w} \wedge d w,
\end{aligned}
$$

which can be symbolically written as follows

$$
I_{1}-I_{2}-I_{3}=I_{4}+I_{5}
$$

Now let us estimate $I_{i}, i=1, \ldots, 5$, as $t_{k} \rightarrow 1, \varepsilon_{1} \rightarrow 0, \varepsilon_{2} \rightarrow 0$.
We can suppose that $(1+|z|) / 2<t_{k}<1$. Then

$$
\begin{aligned}
\left|I_{1}\right| & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|f\left(t_{k} e^{i \theta}\right)\right| \cdot\left|Q\left(z ; t_{k} e^{i \theta}\right)\right|}{\left|t_{k} e^{i \theta}-z\right|} \cdot t_{k} d \theta \\
& \leq \frac{\operatorname{const}(\beta, \rho, \varphi, z)}{\pi} \int_{0}^{2 \pi} \frac{\left|f\left(t_{k} e^{i \theta}\right)\right| \cdot\left(1-t_{k}^{2 \rho}\right)^{\alpha+1}}{1-|z|} d \theta \\
& =\operatorname{const}(\beta, \rho, \varphi, z)\left(1-t_{k}^{2 \rho}\right)^{\alpha+1} \int_{0}^{2 \pi}\left|f\left(t_{k} e^{i \theta}\right)\right| d \theta \\
& \equiv \operatorname{const}(\beta, \rho, \varphi, z)\left(1-t_{k}^{2 \rho}\right)^{\alpha+1} \cdot M\left(t_{k}\right) .
\end{aligned}
$$

But from Lemma 2 it follows that $\left(1-t_{k}^{2 \rho}\right)^{\alpha+1} \cdot M\left(t_{k}\right) \rightarrow 0$ as $t_{k} \rightarrow 1$. Hence, $I_{1} \rightarrow 0$ as $t_{k} \rightarrow 1$.

Since $f(w) \cdot Q(z ; w)$ is continuous in the neighborhood of z,

$$
I_{2} \rightarrow f(z) \cdot Q(z ; z) \equiv f(z) \quad \text { as } \varepsilon_{2} \rightarrow 0
$$

Further,

$$
\left|I_{3}\right| \leq \frac{1}{2 \pi} \cdot \frac{2}{|z|} \cdot \max _{|w| \leq \frac{1}{2}}|f(w)| \cdot\left(1+\operatorname{const}(\beta, \rho, \varphi, z) \cdot \varepsilon_{1}^{2 R e \varphi+1}\right) \cdot 2 \pi \varepsilon_{1} \rightarrow 0
$$

as $\varepsilon_{1} \rightarrow 0$.
Thus, in view of (19),

$$
\begin{aligned}
-f(z) & =\frac{1}{\pi} \cdot \iint_{\mathbb{D}} \frac{\partial f(w) / \partial \bar{w}}{w-z} Q(z ; w) d m(w) \\
+ & \frac{1}{\pi} \cdot \iint_{\mathbb{D}} \frac{f(w)}{w-z} \cdot \pi \cdot(z-w) \cdot\left(1-|w|^{2 \rho}\right)^{\beta} \cdot|w|^{2 \varphi} \cdot S(z ; w) d m(w)
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
f(z)=\iint_{\mathbb{D}} f(w) \cdot\left(1-|w|^{2 \rho}\right)^{\beta} \cdot|w|^{2 \varphi} \cdot & S(z ; w) d m(w) \\
& -\frac{1}{\pi} \cdot \iint_{\mathbb{D}} \frac{\partial f(w) / \partial \bar{w}}{w-z} Q(z ; w) d m(w) .
\end{aligned}
$$

To make the above passage to the limit correct, we need to make sure that both plane integrals converge. For I_{5} the correctness follows from [12]. Let us consider I_{4}. It is easy to see that

$$
\frac{\partial f(w) / \partial \bar{w}}{w-z} \cdot Q(z ; w)
$$

is integrable in the neighborhood of z (since $1 /(w-z)$ has integrable singularity) and in the neighborhood of 0 (in view of Proposition 2). To check the integrability near the boundary of the unit disc, put $D^{\star}=\left\{\frac{1+|z|}{2}<|w|<1\right\}$. Then, due to the estimate (18), we have

$$
\begin{aligned}
& \iint_{D^{\star}} \frac{|\partial f(w) / \partial \bar{w}|}{|w-z|} \cdot|Q(z ; w)| d m(w) \\
& \quad \leq \frac{2 \operatorname{const}(\beta, \rho, \varphi)}{(1-|z|)^{R e \beta+3}} \iint_{D^{\star}}\left|\frac{\partial f(w)}{\partial \bar{w}}\right|\left(1-|w|^{2 \rho}\right)^{R e \beta+1} d m(w) \\
& \quad \leq \frac{2 \operatorname{const}(\beta, \rho, \varphi)}{(1-|z|)^{R e \beta+3}} \iint_{D^{\star}}\left|\frac{\partial f(w)}{\partial \bar{w}}\right|\left(1-|w|^{2 \rho}\right)^{\alpha+1} d m(w)<+\infty .
\end{aligned}
$$

Case 2: $z=0$. Denote (see Figure 2)

$$
D_{1}=\left\{|w| \leq t_{k}\right\}, \quad k=1,2,3, \ldots,
$$

where the sequence $\left\{t_{k}\right\}_{1}^{\infty}$ is chosen as in Lemma 2,

$$
D_{2}=\{|w| \leq \varepsilon\}, \quad G=D_{1} \backslash D_{2} .
$$

Figure 2: $z=0$ case
Again, using Stokes formula we get

$$
\begin{aligned}
& \frac{1}{2 \pi i} \cdot \int_{|w|=t_{k}} \frac{f(w) Q(0 ; w)}{w} d w-\frac{1}{2 \pi i} \cdot \int_{|w|=\varepsilon} \frac{f(w) Q(0 ; w)}{w} d w \\
& =\frac{1}{\pi} \cdot \iint_{G} \frac{\partial f(w) / \partial \bar{w}}{w} \cdot Q(0 ; w) d m(w)+\frac{1}{\pi} \cdot \iint_{G} \frac{f(w)}{w} \cdot \frac{\partial Q(0 ; w)}{\partial \bar{w}} d m(w),
\end{aligned}
$$

or, symbolically

$$
J_{1}-J_{2}=J_{3}+J_{4} .
$$

In the same way as in Case $1, J_{1} \rightarrow 0$ as $t_{k} \rightarrow 1$. Further,

$$
J_{2}=\frac{1}{2 \pi i} \cdot \int_{|w|=\varepsilon} \frac{f(w)}{w}(Q(0 ; w)-1) d w+\frac{1}{2 \pi i} \cdot \int_{|w|=\varepsilon} \frac{f(w)}{w} d w \equiv B_{1}+B_{2}
$$

Here

$$
\left|B_{1}\right| \leq \frac{1}{2 \pi} \cdot \frac{\max _{|w| \leq \frac{1}{2}}|f(w)| \cdot \varepsilon^{2 R e \varphi+2}}{\varepsilon} \cdot 2 \pi \varepsilon \rightarrow 0
$$

and

$$
B_{2} \rightarrow f(0)
$$

as $\varepsilon \rightarrow 0$.
Finally, we need to make sure that integrals J_{3} and J_{4} are convergent. For the convergence of J_{4} see [12]. The estimation of integral J_{3} near the boundary of \mathbb{D} can be done in the same way we did it in Case 1 . In the neighborhood of 0 , in view of Proposition 2, we have

$$
\begin{aligned}
& \left|J_{3}\right| \leq \iint_{|w| \leq \frac{1}{2}} \max _{|w| \leq \frac{1}{2}}\left|\frac{\partial f(w)}{\partial \bar{w}}\right| \cdot \frac{1+\operatorname{const}(\beta, \rho, \varphi) \cdot|w|^{2 \operatorname{Re} \varphi+2}}{|w|} d m(w) \\
& \quad \leq \max _{|w| \leq \frac{1}{2}}\left|\frac{\partial f(w)}{\partial \bar{w}}\right| \cdot 2 \pi \cdot \int_{0}^{\frac{1}{2}} \frac{1+\operatorname{const}(\beta, \rho, \varphi) \cdot r^{2 \operatorname{Re} \varphi+2}}{r} \cdot r d r<+\infty
\end{aligned}
$$

This concludes the proof of the theorem.

References

[1] D. Pompeiju, Sur les singularities des fonctions analytiques uniformes, C.R. Acad. Sci. Paris, 139(1904), pp. 914-915.
[2] W. Wirtinger, Uber eine Minimumaufgabe im Gebiet der analytischen Functionen, Monatshefte fur Math. und Phys., 39(1932), pp. 377-384.
[3] S. Bergman, Uber unendliche Hermitische Formen, die zu einem Bereiche geh oren, nebst Anwendungenauf Fragen der Abbildung durch Funktionen von zwei komplexen Ver anderlichen, Math. Zeit., 29(1929), pp. 641-677.
[4] M. M. Djrbashian, On the representability of certain classes of functions meromorphic in the unit disc, Dokl. Akad. Nauk ArmSSR, 3(1945), no. 1, pp. 3-9 (in Russian).
[5] M. M. Djrbashian, On the problem of representability of analytic functions, Soobshch. Inst. Matem. Mekh. Akad. Nauk ArmSSR, 2(1948), pp. 3-40 (in Russian).
[6] Ph. Charpentier, Formules explicites pur les solutions minimales de l^{\prime} equation $\bar{\partial} u=f$ dans la boule et dans le polydisque de C^{n}, Ann. Inst. Fourier, 30(1980), no. 4, pp. 121-154.
[7] F. A. Shamoyan, Applications of Djrbashian integral representations to some problems of analysis, Dokl. Akad. Nauk SSSR, 261(1981), no. 3, pp. 557-561 (in Russian).
[8] A. I. Petrosyan, The weighted integral representations of functions in the polydisc and in the space C^{n}, J. Contemp. Math. Analysis, 31(1996), no. 1, pp. 38-50.
[9] A. H. Karapetyan, Weighted $\bar{\partial}$-integral representations in matrix domains, Complex Variables and Elliptic Equations, 53(2008), no. 12, pp. 1131-1168.
[10] A. H. Karapetyan, Weighted $\bar{\partial}$-integral representations for weighted L^{p} classes of C^{1}-functions in the matrix disc, Abstracts of the International conference dedicated to the 100th anniversary of academician Mkhitar Djrbashian, Yerevan, Armenia, 2018, pp. 39-40.
[11] M. M. Djrbashian, Weighted integral representations of smooth or holomorphic functions in the unit disc and in the complex plane, J. Contemp. Math. Analysis, 28(1993), pp. 1-27.
[12] F. V. Hayrapetyan, Weighted integral representations of holomorphic functions in the unit disc by means of Mittag-Leffler type kernels, Proc. NAS RA Math., 55(2020), no. 4, pp. 15-30.

Feliks Hayrapetyan
Institute of mathematics,
National Academy of Sciences of Armenia
Bagramian ave. 24B, 0019 Yerevan, Armenia.
feliks.hayrapetyan1995@gmail.com
Please, cite to this paper as published in
Armen. J. Math., V. 12, N. 11(2020), pp. 116

