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Abstract. We show that every countable SD-group G can be

subnormally embedded into a two-generator SD-group H. This

embedding can have additional properties: if the group G is fully

ordered then the group H can be chosen to also be fully ordered.

For any non-trivial word set V this embedding can be constructed

so that the image of G under the embedding lies in the verbal

subgroup V (H) of H.
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1. Results and Background Information

This survey article reflects our recent results on embedding of gen-

eralized soluble groups. See the literature cited in References for details

and proof.
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In [KN65] Kovács and Neumann considered some embedding prop-

erties of SN∗- and SI∗-groups (see definitions and references below).

They in particular showed that every countable SN∗- or SI∗-group

is embeddable into a two-generator SN∗- or SI∗-group respectively.

The consideration of such embeddings of generalized soluble and gen-

eralized nilpotent groups was very natural after a series of results on

embeddings into two-generator groups for soluble and nilpotent groups

(see [NN59, N68, N60, O89, D68] and literature cited therein). And, in

general, interest in embeddings of countable groups into two-generator

groups (with some additional properties or conditions) is explained by

the famous theorem of Higman and Neumanns about embeddability of

an arbitrary countable group into a two-generator group [HNN49].

In [M02a, M03b] we considered embedding properties of a few other

classes of generalized soluble and generalized nilpotent groups. In par-

ticular we saw that: (a) every countable SN -, SI-, SN -̀ or SI -̀group

is embeddable into a two-generator SN -, SI-, SN -̀, SI -̀group respec-

tively; but (b) not every countable ZA- or N -group is embeddable into

a two-generator ZA- or N -group respectively.

The first aim of the current paper is to consider similar problems

for another popular class of generalized soluble groups: for SD-groups.

That is, for groups in which the series of commutator subgroups:

(1) G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(σ) ≥ · · ·

reaches unity: G(ρ) = {1} for some finite or infinite ordinal ρ. As

we will see, for any countable SD-group such an embedding into a

two-generator SD-group is possible.

Moreover – and this is the second aim of this paper – the mentioned

embedding can satisfy a few additional properties: the embedding can

be subnormal, verbal and fully ordered. To have our statements in a
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precise form, let us first state our main theorem, and then turn to the

background information about each of these three properties:

Theorem 1. (A) Every countable SD-group G is subnormally em-

beddable into a two-generator SD-group H:

there exists γ : G → H such that G ∼= γ(G) and γ(G)// H.

(B) For every non-trivial word set V ⊆ F∞ the two-generator SD-group

H and the embedding γ can be chosen so that γ(G) lies in the verbal

subgroup V (H) of the group H.

(C) Moreover, if the group G is fully ordered, then the group H can be

chosen to also be fully ordered such that G is order isomorphic to its

image γ(G). Also, if the group G is torsion free, the group H can be

chosen to be torsion free.

1.1. The additional properties for embeddings. That the

embedding of a general countable group into a two-generator group

can be subnormal is proved by Dark in [D68] (see also the paper of

Hall [H74]). In [M00, M02a, M03a] we combined the subnormality of the

embeddings of countable groups with other properties (see below).

The consideration of verbality of embeddings [of countable groups

into two-generator groups] was initiated by the Neumanns in [NN59],

where they prove that every countable group G can be embedded not

only into a two-generator group H but also into the second commu-

tator subgroup H(2) = H ′′ of the latter (the commutator subgroups

simply are the special cases for verbal subgroups). In fact, here the

second commutator subgroup could be replaced by any verbal sub-

group V (H) [M00]. If the group G is a SN -, SI-, SN -̀ or SI -̀group

then the group H can be constructed to belong to the same class as
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G [M02a]. And as now Theorem 1 shows, the analog of this fact also

is true for the class of SD-groups. Moreover, all these embeddings can

be subnormal.

The problem whether a fully ordered countable group can be em-

bedded into a fully ordered two-generator group was posed by Neu-

mann, and solved by himself in [N60]. In [M03a] this property, too, was

combined with subnormality and verbality for embeddings. Moreover,

if the fully ordered countable group G is a SN -, SI-, SN -̀ or SI -̀group

then the fully ordered group H can be chosen in the same class [M02a].

Again, Theorem 1 shows that the analog of this is true for the class of

SD-groups.

1.2. An application of the argument. In [M03b] we used the

embedding construction of [M02a] to build sets consisting of continuum

of not locally soluble SI∗-groups. The reason why we devoted a paper

to that topic was that so far in the literature there was only one example

of the mentioned type. To be exact, there were two examples (inde-

pendently built by Hall [H61], and by Kovács and Neumann [KN65])

presenting the same group. The examples built in [M03b] were not only

pairwise distinct groups, but, moreover, groups generating pairwise

distinct varieties of groups.

Turning back to SD-groups, there is no lack of examples of SD-

groups and, in particular, of not locally soluble SD-groups (consider,

for example, any absolutely free group of rank greater than 1). How-

ever, we include here a scaled-down version of the construction of [M03b]

as an illustration of what can be obtained by means of the verbal em-

beddings of groups:

Theorem 2. There exists a continuum of torsion free, not locally

soluble two-generator SD-groups, which generate pairwise different va-

rieties of groups.
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1.3. References to the basic literature. An SN∗-group or an

SI∗-group is a group possessing a soluble ascending subnormal or nor-

mal series respectively. In analogy with this, an SN -̀ or SI -̀group is

a group possessing a soluble descending subnormal or normal series

respectively [SGA]. More generally, an SN - or SI-group is a group pos-

sessing a soluble subnormal or normal (not necessarily well-ordered)

system respectively. A ZA-group is a group with central ascending

series. Finally, an N -group is a group in which every subgroup can be

included in an ascending subnormal series. For information on the the-

ory of generalized soluble and generalized nilpotent groups we refer to

the original articles of Plotkin [P58] and of Kurosh and Chernikov [KC47]

as well as to the books of Robinson [RFC ] and of Kurosh [KTG]. For

general information on varieties of groups we refer to the basic book

of Hanna Neumann [NV G]. Information on linearly (or fully) ordered

groups can be found in the book of Fuchs [FOS] or in the papers of

Levi [L42, L43] and of Neumann [N49, N60].

I am very much thankful to Prof. Alexander Yu. Ol’shanskii, Moscow

State University and Vanderbilt University, for an advice that allowed

me to shorten the proof in Section 3, as well as to the referee for very

valuable comments to the manuscript.

2. The Main Embedding Constructions

2.1. The subnormal embedding into a two-generator group.

Let us begin with a simple but still very useful construction (see for

example [NN59, H61]). Assume the given group G to be countable and

its elements to be indexed by the set of non-negative integers:

G = {g0, g1, ..., gn, ...}.
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Then consider in the cartesian wreath product GWr 〈f〉 of the group G

and of the infinite cyclic group generated by the element f the following

element ω of the base subgroup G〈f〉:

ω(f i) =

{
gk, if i = 2k, k = 0, 1, 2, ...,

1, if i ∈ Z\{2k | k = 0, 1, 2, ...}.

Clearly, the element f acts on the base subgroup as a “right shift”

operator. In particular: for arbitrary gn we have ωf−2n

(1) = gn. Thus,

for each pair gn, gm ∈ G we have:

(2) [ωf−2n

, ωf−2m

](1) = [gn, gm].

Further for arbitrary j 6= 0:

(3) [ωf−2n

, ωf−2m

](f j) = 1.

Define H = H(G) = 〈ω, f〉. Using this construction we can prove:

Lemma 1. Let H = H(G) be the above constructed two-generator

group. Then there is an isomorphic embedding α : G′ → H of the

commutator subgroup G′ into H, such that α(G′) is subnormal in H.

Moreover, if the group G has any one of the properties:

(1) G is an SD-group,

(2) G is a fully ordered group,

(3) G is a torsion free group,

then the group H also has the same properties (and if the group G is

fully ordered, then G′ is order-isomorphic to α(G′)).

Proof. For understandable reasons we can omit the case when G

is a trivial group. For any pair gn, gm ∈ G the embedding α can be

defined as

α([gn, gm]) = [ωf−2n

, ωf−2m

] ∈ H.

Equalities (2) and (3) show that this can be continued to an injection.
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1. Assume G is an SD-group: G(δ) = {1}. Evidently H ′ lies in

the normal closure T = 〈ω〉H of 〈ω〉 in H. As it is known (and can be

calculated based on equalities (2) and (3)) the commutator T ′ is equal

to the direct power G′〈f〉 of the commutator G′. The direct power T ′

is an SD-group of length δ − 1. Thus (taking into account the fact

that the subgroups of SD-groups are SD-groups) we get that H is an

SD-group of length 2 + δ − 1 = δ + 1.

2. Assume the full order relation ‘≺’ is defined on G, and ‘lift’ it

to the group H. It is easy to see that for any element f iτ ∈ H, where

f i ∈ 〈f〉 and τ ∈ H ∩ G〈f〉, there necessarily exists a corresponding

maximal index z0(τ ) ∈ Z such that τ (f i) = 1 for any i ≤ z0(τ ). Thus

we can compare any two distinct elements of H:

f i1τ1 ≺ f i2τ2

if and only if i1 < i2, or if i1 = i2 and τ1(f
z0+1) ≺ τ2(f

z0+1), where z0

is the minimum of z0(τ1) and z0(τ2).

3. If the group G is torsion free, then the group H also is torsion

free. �

2.2. The verbal subnormal embedding. Let A be the variety

of all abelian groups and V be any variety different from the variety

of all groups O (for now the properties of this variety are immaterial,

but later it will be replaced by special varieties).

Lemma 2. For any variety V 6= O there exists a group N with the

following properties:

(1) N is a torsion free SD-group;

(2) N generates a product variety V1A, where V1 6= O and V1 is

not properly contained in V (in particular N /∈ VA);

(3) N can be fully ordered.
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Proof. There are many methods to construct such a group. Let

us outline one of them. Consider the relatively free nilpotent group

S = Fk(Nc) of some rank k and class c ≤ k, such that S /∈ V (we always

are able to find such a group because the set of all nilpotent groups, and

even the set of all finite p-groups generates O). The group N we need

can be constructed for S in a way rather similar to the construction of

the group H(G) for the group G in the previous subsection. Consider

in the infinite cartesian power S〈z〉, that is, in the base subgroup of the

cartesian wreath product S Wr 〈z〉 (of the group S and of the infinite

cyclic group 〈z〉) an element λs for each s ∈ S:

λs(z
i) =





s if i ≥ 0

1 if i < 0

and define N = 〈λs, z|s ∈ S〉. The group N contains the first copy S0

of S in S〈z〉. In the sequel let us identify S with S0 and use the same

notations for their elements if no misunderstanding arises.

1. The group N clearly is a torsion free soluble group.

2. N belongs to V1A = NcA, and N contains a subgroup isomor-

phic to the direct wreath product S wr 〈z〉. Thus, var (N) = V1A =

NcA.

3. Since the verbal subgroup V (S) is not trivial (V is the word set

corresponding to the variety V), we can choose an element a ∈ V (S)

of infinite order. On the free nilpotent group S a full order relation ‘≺’

can be defined as in [L42, L43, N49]. Moreover, since in any group the

full order can be replaced by its converse full order ‘≺−1’ (x ≺−1 y if

and only if y ≺ x), we can without loss of generality assume that the

element a is positive: 1 ≺ a. Then according to the definition of full

order, all the powers a2, a3, . . . , an, . . . will also be positive elements.

(This element a will be used later.) We ‘lift’ the full order relation ‘≺’
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of S to the group N . As in the proof of Lemma 1, for any element

ziτ ∈ N , where zi ∈ 〈z〉 and τ ∈ N ∩ S〈z〉, there necessarily exists a

maximal index z0(τ ) ∈ Z such that τ (zi) = 1 for any i ≤ z0(τ ). Thus

we can put for any two distinct elements of N :

zi1τ1 ≺ zi2τ2

if and only if i1 < i2, or if i1 = i2 and τ1(z
z0+1) ≺ τ2(z

z0+1), where z0

is the minimum of z0(τ1) and z0(τ2). �

Now take a group G, a non-trivial word set V , and the group N

constructed as above for the given V . Consider the cartesian wreath

product GWr N and select the following elements χg in the base group

GN of this wreath product:

χg(n) =

{
g, if n = ai, for some positive integer i ∈ N,

1, if n /∈ {ai | i ∈ N},

where a is the element chosen above. Denote by K = K(G,V ) the

following subgroup of GWr N :

(4) K = 〈χg, N | g ∈ G〉.

Denote by U the word set corresponding to the variety VA. In this

notations the following holds:

Lemma 3. Let K = K(G,V ) be the above constructed group for the

group G and for the non-trivial word set V . Then there is an isomor-

phic embedding β : G → K of the group G into K, such that β(G) is

subnormal in K and lies in the verbal subgroup U(K). Moreover, if the

group G has any one of the properties:

(1) G is an SD-group,

(2) G is a fully ordered group,

(3) G is a torsion free group,
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then the group K also has the same properties (and if the group G is

fully ordered, then it is order-isomorphic to β(G)).

Proof. Let πg be the element of the first copy of G in GN corre-

sponding to g ∈ G:

πg(n) =





g, if n = 1

1, if n ∈ N\{1}.

The embedding β can be defined as

β(g) = πg for all g ∈ G.

Then (χ−1
g )a χg = πg, because it is easy to calculate that:

[(
χ−1

g

)a
χg

]
(n) =





1, if n ∈ N \{ai | i = 0, 1, 2, ...},

g, if n = 1 = a0,

1, if n = a, a2, a3, ....

Since

a ∈ V (S) ⊆ U(N) ⊆ U(K),

we have πg = a−1aχg ∈ U(K). Thus the mapping g → πg defines an

isomorphic embedding of G onto the first copy β(G) of G in GN , and in

U(K). Clearly, β(G) is subnormal in K (and, in fact, even in GWr N).

1. If G is an SD-group: G(ν) = {1}, then K(ν+c+1) = {1}, where c

is the nilpotency class of S (in fact, c could be replaced by a smaller

integer, but it is immaterial for our purposes). For, clearly, K ′ ⊆
〈GN , S〈z〉〉, K(c+1) ⊆ GN , and (GN )(ν) ≤ (G(ν))N = {1}. Notice that

we could use this argument in the point 1 of the proof of Lemma 1.

However, there we used a somewhat different argument to stress that

in that case we deal with a direct (not cartesian) product.
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2. Assume a full order relation ‘≺’ is defined on G. From the

definition of the elements χg (and of the operation of elements of N on

χg), it is clear that for any nontrivial element nθ ∈ K, where n ∈ N

and θ ∈ K ∩ GN , there necessarily exists an element n0(θ) ∈ N with

the following property:

(5) θ(n) = 1 for all n ≺ n0(θ), and θ(n0(θ)) 6= 1.

Now the full orders available on the groups G and N can be ‘continued’

to the group K. Let n1θ1 and n2θ2 be any two distinct elements of K.

Then

n1θ1 ≺ n2θ2

if and only if n1 ≺ n2, or if n1 = n2 and θ1(n0) ≺ θ2(n0), where n0 is

the minimum of n0(θ1) and n0(θ2).

3. It is easy to see that if the group G is torsion free, then the group

GWr N and its subgroup K also are torsion free. �

2.3. The proof of Theorem 1. Lemmas 1 and 3 already allow

us to prove the statements of Theorem 1.

The proof of statement (A). Assume G = G0 is a countable

SD-group and V = E is the trivial variety consisting of the group {1}
only. By Lemma 3 the group G can be subnormally embedded into an

SD-group G1 such that β(G) ⊆ U(G1) = G′
1, where this time the word

set U corresponds to the variety of abelian groups U = VA = A. It

is easy to see that the group G1 also is countable. Thus, by Lemma 1

the commutator subgroup G′
1 can be subnormally embedded into a

two-generator SD-group G2 = H(G1), α : G′
1 → G2. The subnormal

embedding we are looking for can be defined as the composition β ·
α. �
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The proof of statement (B). Assume V ⊆ F∞ is any non-

trivial word set corresponding to the variety V. Again, by Lemma 3

the group G can be subnormally embedded into an SD-group G1 =

K(G,V ) such that β(G) ⊆ U(G1), where U corresponds to VA. By

Lemma 1 the commutator subgroup G′
1 can be subnormally embedded

into some two-generator SD-group G2 = H(G1), α : G′
1 → G2.

If we now show that

(6) β(G) ⊆ V (G′
1),

the statement will be proved because:

a. α(β(G)) is subnormal in G2 (for, β(G) is subnormal in G′
1, and

the latter is subnormal in G2);

b. α(β(G)) lies in V (G2) (for, α(β(G)) ⊆ α(V (G′
1)) ⊆ V (G2)).

To prove (6) we first notice that:

S0 ⊆ N ′ (⊆ G′
1),

where under S0 we understand the first copy of S in S〈z〉. Indeed, we

should simply apply the argument of the proof of Lemma 3 to see that

S0 lies in N ′. We have:

a ∈ V (S0) ⊆ V (G′
1).

Therefore for any g ∈ G:

πg = β(g) = a−1aχg ∈ V (G′
1),

and we can again take: γ = βα. �

The proof of statement (C). This statement directly follows

from Lemma 1, Lemma 3 and from the fact that a subgroup – in this
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case the commutator subgroup G′
1 – of an SD-group (of a fully ordered

group) is an SD-group (a fully ordered group). Also, if G is torsion free,

the groups G1 and G2, evidently, also have that property. Theorem 1

is proved. �

3. Continuum two-Generator SD-Groups

3.1. Bisections. We need a special set of groups constructed by

Ol’shanskii in [O70]. Namely, let {Ln |n ∈ N} be a countable set of

finite groups with the following properties:

(1) Ln ∈ L, where L 6= O is a soluble variety of finite exponent.

(2) Ln /∈ var (L1, . . . , Ln−1, Ln+1, . . .) for an arbitrary n ∈ N,

In fact, as L one can take the variety G5 ∩ B8qr, n = 1, 2, . . . , where

G5 is the variety of soluble groups of length at most 5; q, r are distinct

primes; and B8qr is the Burnside variety of groups of exponents dividing

8qr [O70].

Let us define a bisection (B) as follows. The set N of positive

integers can be split as:

(B) N′ ∪ N′′ = N, where N′ ∩ N′′ = ∅ and N′, N′′ 6= ∅.

Then denote the group L(B) to be the direct product of the groups Ln,

n ∈ N′, the variety V(B) to be the variety generated by the groups Ln,

n ∈ N′′ = N\N′, and the word set V(B) to be that corresponding to

V(B).

3.2. Construction of SD-groups with bisections (B). Take

any torsion free insoluble SD-group G not generating the variety O,
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and put:

(7) G(B) = F∞
(
var (G) var

(
L(B)

))
.

It is easy to see that G(B) is an SD-group. Also, it is a torsion free

group by theorem of Kovács about torsion free relatively free groups of

product varieties [K79]. Since V(B) clearly is a non-trivial word set, we

are in a position to apply Theorem 1 to subnormally embed G(B) into

an appropriate two-generator SD-group

H(B) = H
(
G(B), V(B)

)
.

Since the set of all the bisections (B) is of continuum cardinality, to

prove Theorem 2 it is sufficient to find continuum many bisections

which determine groups H(B) generating pairwise distinct varieties of

groups.

Consider another bisection

(B̃) Ñ′ ∪ Ñ′′ = N, where Ñ′ ∩ Ñ′′ = ∅ and Ñ′, Ñ′′ 6= ∅.

different from (B) and consider the groups G(B̃) and H(B̃) = H
(
G(B̃), V(B̃)

)

corresponding to this bisection (B̃). Here the inequality (B) 6= (B̃), of

course, simply means that N′ 6= Ñ′ (or, equivalently, N′′ 6= Ñ′′). Clearly,

var(L(B)) 6= var(L(B̃)). Moreover:

Lemma 4. If (B) 6= (B̃) then var(G(B)) 6= var(G(B̃)).

Proof. We have

var(G(B)) = var (G) var(L(B))

and

var(G(B̃)) = var (G) var(L(B̃)).

Then by [NV G, Theorm 23.23], if var(G(B)) = var(G(B̃)), we have

var(L(B)) = var(L(B̃)). This contradicts to the fact that (B) 6= (B̃)

and to the selection of the group set {Ln |n ∈ N}. �
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The next step of our construction is the group K(B) = K(G(B), V(B))

that we built for the group G(B) and the word set V(B). The set of

all possible word sets (as well as the set of all varieties of groups) is

of continuum cardinality. In fact, the continuum of distinct bisections

(B) already provide us with continuum of distinct word sets V(B). This,

however, does not mean that building the groups K(B) for continuum

distinct words sets V(B) we will get continuum examples of distinct

SD-groups H(B). The point is that the role of the word set V in K

(and, thus, in H) is in determination of the class c and of the rank k

of the free nilpotent group S = Fk(Nc) that we are using to build the

appropriate group N . The set of such integers is countable. This means

that there exist many (in fact, continuum) word sets V(B) for which the

same nilpotent group S(B) should be chosen. This also means that

the construction, that we have at our disposal at the current moment,

does not yet allow us to build a continuum of SD-groups using the fact

about continuum set of words V(B) only.

But this observation also allows us to modify and shorten one of

the segments of our proof. Namely, let us restrict ourselves to such

a set (of continuum cardinality) of word sets V(B) which correspond

to a fixed pair of integers c and k. It will be sufficient to prove that

this set already can give rise to continuum two-generator (torsion free)

SD-groups.

Lemma 5. Assume (B) and (B̃) are two distinct bisections of the

type mentioned: S(B) = S(B̃). If var(G(B)) 6= var(G(B̃)) then var(K(B)) 6=
var(K(B̃)).

Proof. As we saw in the proof of Lemma 3, for the given bisection

(B) the group K(B) contains the first copy of G(B). That copy together

with N(B) generates the direct wreath product G(B) wr N(B). Since the
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group N(B) discriminates the variety NcA, the group G(B) wrN(B) gen-

erates var
(
G(B)

)
var

(
N(B)

)
= var

(
G(B)

)
NcA = var

(
K(B)

)
. Thus, tak-

ing another bisection (B̃) we would get var(K(B̃)) = var(G(B̃))NcA (re-

call that according to the remark proceeding this lemma, we can use

the same variety Nc for both bisections). The latter is distinct from

var
(
G(B)

)
NcA whenever the bisections are distinct. �

The final step of our argument is the construction of the two-

generator group H(B) = H(K(B)).

Lemma 6. If var(K(B)) 6= var(K(B̃)) then var(H(B)) 6= var(H(B̃)).

Proof. The proof will immediately follow from the fact that

var(H(B)) = var(K(B) wr 〈f〉) = var(K(B))A.

Let us take any non-identity w = w(x1, . . . , xn) for the variety var(K(B))A

and show that w can be falsified on some elements of H(B), as well. This

will prove the point because H(B) evidently belongs to var(K(B))A.

Take c1, . . . , cn ∈ K(B) wr 〈f〉 such that w(c1, . . . , cn) = 1. Clearly:

ci = fmiρi, where ρi belongs to the base subgroup K
〈f〉
(B); i = 1, . . . , n.

Finitely many elements ρi in this direct wreath product have only

finitely many non-trivial “coordinates” ρi(f
j), i = 1, . . . , n; j ∈ Z.

This means that there is a big enough positive integer n∗ such that if

we replace (trivial) “coordinates” ρi(f
j), |j| > n∗ of each ρi by arbi-

trarily chosen values from the group K(B), and denote these new strings

by ρ′
i correspondingly, then we will still have:

w(fm1ρ′
1, . . . , f

mnρ′
n, ) 6= 1.

Since all the powers fm1 , . . . , fmn already belong to H(K(B)), the proof

will be completed if we show the following rather more general fact: for

arbitrary positive integer n0 and arbitrary pregiven values dj ∈ K(B),
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j = −n0, . . . , n0 the group H(K(B)) contains such an element ρ′′ ∈
H(K(B)) ∩ K

〈f〉
(B) for which: ρ′′(f j) = dj ; j = −n0, . . . , n0.

Taking into account the “shifting” effect of the element f , it will be

sufficient to show that for any pregiven d ∈ K(B) there is an element

ρ′′′
d ∈ H(K(B)) ∩ K

〈f〉
(B) such that:

ρ′′′
d (f j) =





d if j = 0

1 if −2n0 ≤ j ≤ 2n0 and j 6= 0.

(Notice that we did not put any requirements on ρ′′′(f j) for j > 2n0

or for j < −2n0.) The elements ρ′′ will then be products of elements

of type ρ′′′
d (for various d’s) and of their conjugates by powers of f . It

remains to construct elements ρ′′′
d (for any d and n0) by means of two

generators ω(B) and f . We have:

ω(B)(f
i) =

{
gk, if i = 2k, k = 0, 1, 2, ...,

1, if i ∈ Z\{2k | k = 0, 1, 2, ...},

where this time the countable group K(B) is presented as K(B) =

{g0, g1, . . .}. The element d can be presented as a product gi · gj for

infinitely many pairs gi, gj ∈ K(B). On the other hand, the number

of all possible pairs gi, gj with a common upper bound on |i| and |j|
clearly is finite. Thus, there necessarily exists a pair gi, gj such that

d = gi · gj and 2i, 2j > 2n0. Then:

ρ′′′
d = ωf−2i

ωf−2j

.

�

Lemmas 4, 5, 6 prove Theorem 2 because the continuum of two-

generator torsion free SD-groups we constructed do generate pairwise

distinct varieties of groups. And none of these groups is locally soluble

because it would then be a soluble group, and, thus, it could not contain

the initial group G(B) that was chosen to be insoluble.
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