Stability, Boundedness, and Square Integrability of Solutions of Neutral Fourth-Order Differential Equations

M. Rahmane, L. D. Oudjedi, and M. Remili

Abstract

The purpose of this paper is to establish a new result, which guarantees the asymptotic stability and boundedness of the zero solution and the square integrability of solutions and their derivatives to neutral type nonlinear differential equations of fourth order. We illustrate our results by an example at the end of the paper.

Key Words: Lyapunov Functional, Neutral Differential Equations of Fourth Order, Uniform Asymptotic Stability, Square Integrability
Mathematics Subject Classification 2010: 34C11, 34D20, 34D23

Introduction

The investigation of qualitative behaviour of the solution of nonlinear delay differential equation of fourth order has received considerable attention and has been subject of many articles in the literature, for instance, Abou-ElEla et al. 11, Bereketoglu [3], Chin [7], Ezeilo [9]-[12], Kang [18], Omeike [19], Rahmane and Fatmi and Remili [21], Rahmane and Remili [22], Remili and Rahmane [28, 29, 30], Sadek [31], Sinha [32], Tejumola and Tchegnani [33], Tunç [34], Vlček [35], Wu and Xiong [36]. For nonlinear differential equations of neutral type, there are few results of stability, boundedness, and square integrability of solutions.

In this article, we investigate some asymptotic properties of solutions of the fourth-order nonlinear neutral delay differential equation

$$
\begin{align*}
(x(t) & +\rho x(t-r))^{\prime \prime \prime \prime}+a(t) x^{\prime \prime \prime}(t)+b(t) x^{\prime \prime}(t)+c(t) x^{\prime}(t) \\
& +d(t) h(x(t))=p\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t), x^{\prime \prime \prime \prime}(t)\right), \tag{1}
\end{align*}
$$

where ρ and r are positive constants to be determined later, $a(),. b(),. c(),. d($.$) ,$ and $h(x)$ are continuous functions depending only on the arguments shown,
and $h^{\prime}(x)$ exists and is continuous. For the sake of convenience, we introduce the following notation

$$
\left\{\begin{array}{l}
X(t)=x(t)+\rho x(t-r), \\
Y(t)=x^{\prime}(t)+\rho x^{\prime}(t-r), \\
Z(t)=x^{\prime \prime}(t)+\rho x^{\prime \prime}(t-r), \\
W(t)=x^{\prime \prime \prime}(t)+\rho x^{\prime \prime \prime}(t-r)
\end{array}\right.
$$

By a solution of (1] we mean a continuous function $x:\left[t_{x}, \infty\right) \rightarrow \mathbb{R}$ such that $X(t) \in C^{3}\left(\left[t_{x}, \infty\right), \mathbb{R}\right)$ and which satisfies equation (1) on $\left[t_{x}, \infty\right)$.

Without further mention, we will assume throughout that every solution $x(t)$ of (1) under consideration here is continuable to the right and nontrivial, i.e, $x(t)$ is defined on some ray $\left[t_{x}, \infty\right)$. Moreover, we tacitly assume that (1) possesses such solutions.

The problem of interest here is to investigate conditions under which all solutions of (11) converge to zero and are square integrable. We shall use appropriate Lyapunov functions and impose suitable conditions on the function $h(x)$.

1 Assumptions and main results

We shall state here some assumptions which will be used on the functions that appeared in equation (1), and suppose that there are positive constants $a_{0}, b_{0}, c_{0}, d_{0}, a_{1}, b_{1}, c_{1}, d_{1}, h_{0}, \delta$, and δ_{0} such that the following conditions hold:
i) $0<a_{0} \leq a(t) \leq a_{1}, 0<b_{0} \leq b(t) \leq b_{1}, 0<c_{0} \leq c(t) \leq c_{1}$, $0<d_{0} \leq d(t) \leq d_{1}$, and $d^{\prime}(t) \leq 0$ for $t \geq 0$.
ii) $\quad h(0)=0, \frac{h(x)}{x} \geq \delta>0$ for $x \neq 0$.
iii) $\quad h_{0}-\frac{a_{0} \delta_{0}}{d_{1}} \leq h^{\prime}(x) \leq \frac{h_{0}}{2}$ for $x \in \mathbb{R}$.
iv) $\quad b_{0}>\frac{c_{1}}{a_{0}}+\frac{a_{1} h_{0} d_{1}}{c_{0}}+\frac{\delta_{0}}{a_{0}}=\kappa$.

The following lemma will be useful in the proof of the next theorem.
Lemma 1 177 Let $h(0)=0, x h(x)>0(x \neq 0)$ and

$$
\delta(t)-h^{\prime}(x) \geq 0(\delta(t)>0) .
$$

Then,

$$
2 \delta(t) H(x) \geq h^{2}(x), \quad \text { where } \quad H(x)=\int_{0}^{x} h(s) d s
$$

The first main result in this paper establishes sufficient conditions under which all solutions of the fourth-order nonlinear differential equation (1) and their first, second, and third derivatives converge to zero as $t \rightarrow \infty$.

Theorem 1 In addition to assumptions (i)-(iv), assume that there are positive constants η_{1} and η_{2} such that the following conditions are satisfied:

H1) $\quad \int_{0}^{+\infty}\left(\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|-d^{\prime}(t)\right) d t \leq \eta_{1} ;$
H2) $\quad\left|p\left(t, x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)\right| \leq|e(t)| \quad$ and $\quad \int_{0}^{+\infty}|e(t)| d t<\eta_{2}$.
Then, there exists a finite positive constant K such that every solution $x($. of (1) and their derivatives $x^{\prime}(),. x^{\prime \prime}(),. x^{\prime \prime \prime}($.$) , and X^{\prime \prime \prime}($.$) satisfy :$

1. $|x(t)| \leq \sqrt{K},\left|x^{\prime}(t)\right| \leq \sqrt{K},\left|x^{\prime \prime}(t)\right| \leq \sqrt{K},\left|X^{\prime \prime \prime}(t)\right| \leq \sqrt{K}$,
for all $t \geq 0$.
2. $\int_{0}^{\infty}\left(x^{2}(s)+x^{\prime 2}(s)+x^{\prime \prime 2}(s)+x^{\prime \prime \prime}(s)\right) d s<\infty$,
provided that

$$
\begin{align*}
\rho<\min \left\{1, \frac{2 \varepsilon}{\alpha h_{0}},\right. & \frac{2 \varepsilon c_{0}}{\alpha c_{1}+\alpha d_{1} \lambda_{0}}, 2 \frac{b_{0}-\kappa-\varepsilon\left(a_{1}+c_{1}\right)}{\alpha b_{1}+\beta+\alpha d_{1} \lambda_{0}+\alpha d_{1}} \\
& \left.\frac{2 \varepsilon a_{0}}{\alpha\left(2 a_{1}+b_{1}+c_{1}+d_{1}\right)+5+\beta}\right\} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{a_{0}}+\varepsilon, \quad \beta=\frac{d_{1} h_{0}}{c_{0}}+\varepsilon \quad \text { and } \quad \varepsilon<\min \left\{\frac{1}{a_{0}}, \frac{d_{1} h_{0}}{c_{0}}, \frac{b_{0}-\kappa}{a_{1}+c_{1}}\right\} . \tag{3}
\end{equation*}
$$

Proof. We first will write equation (1) as the equivalent system

$$
\left\{\begin{array}{l}
x^{\prime}=y, \quad y^{\prime}=z, \quad z^{\prime}=w \tag{4}\\
W^{\prime}(t)=-a(t) w-b(t) z-c(t) y-d(t) h(x)+p(t, x, y, z, w)
\end{array}\right.
$$

It easy to see from (4) that

$$
\left\{\begin{array}{l}
X^{\prime}(t)=y(t)+\rho y(t-r)=Y(t) \\
X^{\prime \prime}(t)=z(t)+\rho z(t-r)=Z(t) \\
X^{\prime \prime \prime}(t)=w(t)+\rho w(t-r)=W(t)
\end{array}\right.
$$

Our main tool is the continuously differentiable function $U=U(t, x, y, z, w)$ defined by

$$
\begin{equation*}
U=G(t) V=e^{-\frac{1}{\eta} \int_{0}^{t} \gamma(s) d s} V, \tag{5}
\end{equation*}
$$

where $\gamma(t)=\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|-d^{\prime}(t)$, the function $V=V(t, x, y, z, w)$ is defined by

$$
\begin{aligned}
2 V= & {[a(t)-\beta+\alpha b(t)] z^{2}+[2 \beta a(t)+2 \alpha c(t)] y z+2 \beta y W+2 z W } \\
& +2 d(t) h(x) y+2 \alpha d(t) h(x) Z+\left[\beta b(t)-\alpha h_{0} d(t)+c(t)\right] y^{2} \\
& +\alpha W^{2}+\alpha \rho d(t)(z(t-r))^{2}+2 \beta d(t) H(x) \\
& +\mu_{1} \int_{t-r}^{t} z^{2}(s) d s+\mu_{2} \int_{t-r}^{t} w^{2}(s) d s,
\end{aligned}
$$

and η is a positive constant to be determined later in the proof. By adding and subtracting some terms, we can rewrite $2 V$ as

$$
\begin{aligned}
2 V= & V_{1}+V_{2}+V_{3}+V_{4}+a(t)\left[\frac{W}{a(t)}+z+\beta y\right]^{2} \\
& +c(t)\left[\frac{d(t) h(x)}{c(t)}+y+\alpha z\right]^{2}+\frac{d^{2}(t) h^{2}(x)}{c(t)} \\
& +\mu_{1} \int_{t-r}^{t} z^{2}(s) d s+\mu_{2} \int_{t-r}^{t} w^{2}(s) d s,
\end{aligned}
$$

where

$$
\begin{aligned}
& V_{1}=2 d(t) \int_{0}^{x} h(s)\left[\frac{d_{1} h_{0}}{c_{0}}-2 \frac{d(t)}{c(t)} h^{\prime}(s)\right] d s, \\
& V_{2}=\left[\alpha b(t)-\beta-\alpha^{2} c(t)\right] z^{2}, \\
& V_{3}=\left[\beta b(t)-\alpha h_{0} d(t)-\beta^{2} a(t)\right] y^{2}+\left[\alpha-\frac{1}{a(t)}\right] W^{2}, \\
& V_{4}=2 \varepsilon d(t) H(x)+2 \alpha \rho d(t) h(x) z(t-r)+\alpha \rho d(t)(z(t-r))^{2} .
\end{aligned}
$$

To prove that V is positive definite, it suffices to show that V_{1}, V_{2}, V_{3}, and V_{4} are positives. Remark that the estimate (3) implies

$$
\begin{equation*}
\frac{1}{a_{0}}<\alpha<2 \frac{1}{a_{0}} \text { and } \frac{d_{1} h_{0}}{c_{0}}<\beta<2 \frac{d_{1} h_{0}}{c_{0}} \tag{6}
\end{equation*}
$$

Then, using conditions i) \sim iv), and inequalities (3) and (6), we obtain

$$
\begin{aligned}
V_{1} & \geq 2 d(t) \int_{0}^{x} h(s) \frac{d_{1}}{c_{0}}\left[h_{0}-2 h^{\prime}(s)\right] d s \\
& \geq 4 \frac{d_{0} d_{1}}{c_{0}} \int_{0}^{x} h(s)\left[\frac{h_{0}}{2}-h^{\prime}(s)\right] d s \geq 0
\end{aligned}
$$

Rearranging V_{2}, we obtain the estimate

$$
\begin{aligned}
V_{2} & =\alpha[b(t)-\beta a(t)-\alpha c(t)] z^{2}+\beta[\alpha a(t)-1] z^{2} \\
& \geq \alpha\left[b(t)-\left(\frac{d_{1} h_{0}}{c_{0}}+\varepsilon\right) a(t)-\left(\frac{1}{a_{0}}+\varepsilon\right) c(t)\right] z^{2}+\beta\left[\frac{a(t)}{a_{0}}-1\right] z^{2} \\
& \geq \alpha\left[b_{0}-\frac{a_{1} d_{1} h_{0}}{c_{0}}-\frac{c_{1}}{a_{0}}-\varepsilon\left(a_{1}+c_{1}\right)\right] z^{2} \\
& \geq \alpha\left[b_{0}-\kappa-\varepsilon\left(a_{1}+c_{1}\right)\right] z^{2} \geq 0 .
\end{aligned}
$$

We also have,

$$
\begin{aligned}
V_{3} & \geq \beta\left(b_{0}-\frac{\alpha}{\beta} h_{0} d_{1}-\beta a_{1}\right) y^{2}+\left(\alpha-\frac{1}{a_{0}}\right) W^{2} \\
& \geq \beta\left(b_{0}-\frac{c_{0}}{a_{0}}-a_{1} \frac{d_{1} h_{0}}{c_{0}}-\varepsilon\left(c_{0}+a_{1}\right)\right) y^{2}+\varepsilon W^{2} \\
& \geq \beta\left(b_{0}-\kappa-\varepsilon\left(c_{1}+a_{1}\right)\right) y^{2}+\varepsilon W^{2} \geq 0 .
\end{aligned}
$$

From the estimate on ρ, we have

$$
\begin{aligned}
V_{4} & =2 \varepsilon d(t) \int_{0}^{x} h(\xi) d \xi+\alpha \rho d(t)\left[(z(t-r)+h(x))^{2}-h^{2}(x)\right] \\
& \geq 2 \varepsilon d(t) \int_{0}^{x} h(\xi) d \xi-2 \alpha \rho d(t) \int_{0}^{x} h^{\prime}(\xi) h(\xi) d \xi \\
& \geq 2 d(t) \int_{0}^{x}\left(\varepsilon-\frac{\alpha \rho h_{0}}{2}\right) h(\xi) d \xi \\
& \geq 2 d_{0}\left(\varepsilon-\frac{\alpha \rho h_{0}}{2}\right) H(x) .
\end{aligned}
$$

Thus, there exists a positive number D_{0} such that

$$
2 V \geq D_{0}\left(y^{2}+z^{2}+W^{2}+H(x)\right)
$$

By Lemma 1 and condition iii) we conclude that there exists a positive number D_{1} such that

$$
\begin{equation*}
2 V \geq D_{1}\left(x^{2}+y^{2}+z^{2}+W^{2}\right) ; \tag{7}
\end{equation*}
$$

thus, V is positive-definite. Then we can find positive-definite functions $U_{1}(\|\xi\|)$ and $U_{2}(\|\xi\|)$ such that $U_{1}(\|\xi\|) \leq V \leq U_{2}(\|\xi\|)$. By (5) and inequality (7), we get

$$
\begin{equation*}
U \geq D_{2}\left(x^{2}+y^{2}+z^{2}+W^{2}\right), \tag{8}
\end{equation*}
$$

where $D_{2}=\frac{D_{1}}{2} e^{-\frac{\eta_{1}}{\eta}}$. Therefore, by conditions H1) and H2), we can find positive-definite functions $W_{1}(\|\xi\|)$ and $W_{2}(\|\xi\|)$ such that

$$
W_{1}(\|\xi\|) \leq U \leq W_{2}(\|\xi\|) .
$$

Now we prove that \dot{U} is a negative-definite function. Along any solution $(x(t), y(t), z(t), w(t))$ of system (4), we have
$2 \dot{V}_{\boxed{4}}=V_{5}+V_{6}+V_{7}+V_{8}+V_{9}+2(\beta y+z+\alpha W) p(t, x, y, z, w)$,
where

$$
\begin{aligned}
V_{5}= & -2\left(\frac{d_{1} h_{0}}{c_{0}} c(t)-d(t) h^{\prime}(x)\right) y^{2}-2 \alpha d(t)\left(h_{0}-h^{\prime}(x)\right) y z \\
V_{6}= & -2(b(t)-\alpha c(t)-\beta a(t)) z^{2} \\
V_{7}= & -2(\alpha a(t)-1) w^{2} \\
V_{8}= & -2 \varepsilon c(t) y^{2}-2 \alpha \rho a(t) w_{t} w-2 \alpha \rho b(t) z w_{t}-2 \alpha \rho c(t) y w_{t} \\
& +2 \alpha \rho d(t) h^{\prime}(x) y z_{t}+\mu_{1} z^{2}+\mu_{2} w^{2}-\mu_{1} z_{t}^{2}-\mu_{2} w_{t}^{2} \\
& +2 \alpha \rho d(t) z_{t} w_{t}+2 \rho w w_{t}+2 \beta \rho z w_{t} \\
V_{9}= & d^{\prime}(t)\left[2 \beta H(x)-\alpha h_{0} y^{2}+2 h(x) y+2 \alpha h(x) z\right]+c^{\prime}(t)\left[y^{2}+2 \alpha y z\right] \\
& +b^{\prime}(t)\left[\alpha z^{2}+\beta y^{2}\right]+a^{\prime}(t)\left[z^{2}+2 \beta y z\right]+\alpha \rho d^{\prime}(t)[z(t-r)+h(x)]^{2} \\
& -\alpha \rho d^{\prime}(t) h^{2}(x) .
\end{aligned}
$$

Again, using conditions i), iii), iv), and inequalities (3) and (6), we get

$$
\begin{aligned}
V_{5} & \leq-2\left[d(t) h_{0}-d(t) h^{\prime}(x)\right] y^{2}-2 \alpha d(t)\left[h_{0}-h^{\prime}(x)\right] y z \\
& \leq-2 d(t)\left[h_{0}-h^{\prime}(x)\right]\left[\left(y+\frac{\alpha}{2} z\right)^{2}-\left(\frac{\alpha}{2} z\right)^{2}\right] \\
& \leq \frac{\alpha^{2}}{2} d(t)\left[h_{0}-h^{\prime}(x)\right] z^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
V_{5}+V_{6} & \leq-2\left[b(t)-\alpha c(t)-\beta a(t)-\frac{\alpha^{2}}{4} d(t)\left[h_{0}-h^{\prime}(x)\right]\right] z^{2} \\
& \leq-2\left[b_{0}-\left(\frac{1}{a_{0}}+\varepsilon\right) c_{1}-\left(\frac{d_{1} h_{0}}{c_{0}}+\varepsilon\right) a_{1}-\frac{\alpha^{2}}{4}\left(a_{0} \delta_{0}\right)\right] z^{2} \\
& \leq-2\left[b_{0}-\frac{c_{1}}{a_{0}}-\frac{d_{1} h_{0} a_{1}}{c_{0}}-\frac{\delta_{0}}{a_{0}}-\varepsilon\left(a_{1}+c_{1}\right)\right] z^{2} \\
& \leq-2\left[b_{0}-\kappa-\varepsilon\left(a_{1}+c_{1}\right)\right] z^{2} \leq 0, \\
V_{7} & \leq-2\left[\alpha a_{0}-1\right] w^{2}=-2 \varepsilon a_{0} w^{2} \leq 0,
\end{aligned}
$$

and

$$
\begin{aligned}
V_{8} \leq & {\left[-2 \varepsilon c(t)+\alpha \rho c_{1}+\alpha \rho d_{1} \lambda_{0}\right] y^{2}+\left[\alpha \rho b_{1}+\beta \rho+\mu_{1}\right] z^{2} } \\
& +\left[\alpha \rho a_{1}+\mu_{2}+2 \rho\right] w^{2}+\left[\alpha \rho d_{1} \lambda_{0}-\mu_{1}+\alpha \rho d_{1}\right] z_{t}^{2} \\
& +\left[\alpha \rho a_{1}+\alpha \rho b_{1}-\mu_{2}+\alpha \rho c_{1}+\alpha \rho d_{1}+2 \rho+\beta \rho\right] w_{t}^{2} \\
& -2 \rho\left|w w_{t}\right|+\left(\rho-\rho^{2}\right) w_{t}^{2} \\
\leq & -\left(2 \varepsilon c_{0}-\alpha \rho c_{1}-\alpha \rho d_{1} \lambda_{0}\right) y^{2}+\left(\alpha \rho b_{1}+\beta \rho+\mu_{1}\right) z^{2} \\
& +\left(\alpha \rho a_{1}+2 \rho+\mu_{2}\right) w^{2}+\left(\alpha \rho d_{1} \lambda_{0}+\alpha \rho d_{1}-\mu_{1}\right) z_{t}^{2} \\
& +\left(\alpha \rho a_{1}+\alpha \rho b_{1}+\alpha \rho c_{1}+\alpha \rho d_{1}+\beta \rho+3 \rho-\mu_{2}\right) w_{t}^{2} \\
& -\rho^{2} w_{t}^{2}-2 \rho\left|w w_{t}\right|,
\end{aligned}
$$

where

$$
\lambda_{0}=\max \left\{\frac{h_{0}}{2},\left|h_{0}-\frac{a_{0} \delta_{0}}{d_{1}}\right|\right\} .
$$

By taking

$$
\left\{\begin{array}{l}
\mu_{1}=\alpha \rho d_{1} \lambda_{0}+\alpha \rho d_{1} \\
\mu_{2}=\alpha \rho a_{1}+\alpha \rho b_{1}+\alpha \rho c_{1}+\alpha \rho d_{1}+\beta \rho+3 \rho,
\end{array}\right.
$$

we obtain

$$
\begin{aligned}
V_{8} \leq & -\left(2 \varepsilon c_{0}-\alpha \rho c_{1}-\alpha \rho d_{1} \lambda_{0}\right) y^{2}+\left(\alpha \rho b_{1}+\beta \rho+\mu_{1}\right) z^{2} \\
& +\left(\alpha \rho a_{1}+2 \rho+\mu_{2}\right) w^{2}-\rho^{2} w_{t}^{2}-2 \rho\left|w w_{t}\right| .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
V_{5}+V_{6}+V_{7}+V_{8} \leq & -\rho^{2} w_{t}^{2}-2 \rho\left|w w_{t}\right|-\left(2 \varepsilon c_{0}-\alpha \rho c_{1}-\alpha \rho d_{1} \lambda_{0}\right) y^{2} \\
& -2\left[b_{0}-\kappa-\varepsilon\left(a_{1}+c_{1}\right)\right] z^{2} \\
& +\left[\rho\left(\alpha b_{1}+\beta+\alpha d_{1} \lambda_{0}+\alpha d_{1}\right)\right] z^{2} \\
& -\left(2 \varepsilon a_{0}-\rho\left(2 \alpha a_{1}+5+\alpha b_{1}+\alpha c_{1}+\alpha d_{1}+\beta\right)\right) w^{2}
\end{aligned}
$$

provided that

$$
\begin{array}{r}
\rho<\min \left\{1, \frac{2 \varepsilon}{\alpha h_{0}}, \frac{2 \varepsilon c_{0}}{\alpha c_{1}+\alpha d_{1} \lambda_{0}}, 2 \frac{b_{0}-\kappa-\varepsilon\left(a_{1}+c_{1}\right)}{\alpha b_{1}+\beta+\alpha d_{1} \lambda_{0}+\alpha d_{1}},\right. \\
\left.\frac{2 \varepsilon a_{0}}{\alpha\left(2 a_{1}+b_{1}+c_{1}+d_{1}\right)+5+\beta}\right\} .
\end{array}
$$

Hence, there exists a positive constant D_{3} such that,

$$
\begin{align*}
V_{5}+V_{6}+V_{7}+V_{8} & \leq-2 D_{3}\left(y^{2}+z^{2}+w^{2}+\rho^{2} w_{t}^{2}+2 \rho\left|w w_{t}\right|\right) \\
& \leq-2 D_{3}\left(y^{2}+z^{2}+W^{2}\right) . \tag{9}
\end{align*}
$$

Using condition iii) and Lemma 1, we obtain

$$
h^{2}(x) \leq h_{0} H(x),
$$

consequently,

$$
\begin{aligned}
\left|V_{9}\right| \leq & -d^{\prime}(t)\left[2 \beta H(x)+\alpha h_{0} y^{2}+\left(h^{2}(x)+y^{2}\right)\right] \\
& -d^{\prime}(t)\left[\alpha\left(h^{2}(x)+z^{2}\right)+\alpha \rho h^{2}(x)\right] \\
& +\left|c^{\prime}(t)\right|\left[y^{2}+\alpha\left(y^{2}+z^{2}\right)\right]+\left|b^{\prime}(t)\right|\left[\alpha z^{2}+\beta y^{2}\right] \\
& +\left|a^{\prime}(t)\right|\left[z^{2}+\beta\left(y^{2}+z^{2}\right)\right] \\
\leq & \lambda_{2} \theta(t)\left(y^{2}+z^{2}+W^{2}+H(x)\right) \\
\leq & 2 \frac{\lambda_{2}}{D_{0}} \theta(t) V,
\end{aligned}
$$

where we take

$$
\begin{aligned}
\lambda_{2} & =\max \left\{2 \beta+(\alpha \rho+\alpha+1) h_{0}, \alpha h_{0}+\alpha+2 \beta+2,1+\beta+3 \alpha\right\}, \\
\theta(t) & =\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|-d^{\prime}(t) .
\end{aligned}
$$

By taking $\frac{1}{\eta}=\frac{1}{D_{0}} \lambda_{2}$, we obtain

$$
\begin{align*}
\dot{V}_{\boxed{4}} \leq & -D_{3}\left(y^{2}+z^{2}+W^{2}\right)+\frac{1}{\eta} \theta(t) V \\
& +(\beta y+z+\alpha W) p(t, x, y, z, w) . \tag{10}
\end{align*}
$$

From (H2), (8), 10) and the Cauchy-Schwartz inequality, we get

$$
\begin{align*}
\dot{U}_{\boxed{4}}= & \left(\dot{V}_{\boxed{4}}-\frac{1}{\eta} \gamma(t) V\right) G(t) \\
\leq & -D_{3}\left(y^{2}+z^{2}+W^{2}\right) G(t) \\
& (\beta y+z+\alpha W) p(t, x, y, z, w)) G(t) \\
\leq & (\beta|y|+|z|+\alpha|W|)|p(t, x, y, z, w)| \\
\leq & D_{4}(|y|+|z|+|W|)|e(t)| \\
\leq & D_{4}\left(3+y^{2}+z^{2}+W^{2}\right)|e(t)| \\
\leq & 3 D_{4}|e(t)|+\frac{D_{4}}{D_{2}} U|e(t)|, \tag{11}
\end{align*}
$$

where $D_{4}=\max \{\alpha, \beta, 1\}$. Integrating (11) from 0 to t, and using the condition (H2) and Gronwall inequality, we obtain

$$
\begin{align*}
U(t, x, y, z, W) \leq & A_{0}+3 D_{4} \eta_{2} \\
& +\frac{D_{4}}{D_{2}} \int_{0}^{t} U(s, x(s), y(s), z(s), W(s))|e(s)| d s \\
\leq & \left(A_{0}+3 D_{4} \eta_{2}\right) e^{\frac{D_{4}}{D_{2}} \int_{0}^{t}|e(s)| d s} \\
\leq & \left(A_{0}+3 D_{4} \eta_{2}\right) e^{\frac{D_{4}}{D_{2}} \eta_{2}}=K_{1}<\infty, \tag{12}
\end{align*}
$$

where $A_{0}=U(0, x(0), y(0), z(0), W(0))$. In view of inequalities 8) and 12),

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}+W^{2}\right) \leq \frac{1}{D_{2}} U \leq K \tag{13}
\end{equation*}
$$

where $K=\frac{K_{1}}{D_{2}}$. Clearly, 13) implies that

$$
|x(t)| \leq \sqrt{K},|y(t)| \leq \sqrt{K},|z(t)| \leq \sqrt{K},|W(t)| \leq \sqrt{K} \quad \text { for all } t \geq 0
$$

Hence,
$|x(t)| \leq \sqrt{K},\left|x^{\prime}(t)\right| \leq \sqrt{K},\left|x^{\prime \prime}(t)\right| \leq \sqrt{K},\left|X^{\prime \prime \prime}(t)\right| \leq \sqrt{K} \quad$ for all $\quad t \geq 0$.
Now, we prove the square integrability of solutions and their derivatives. First, from (10) we obtain

$$
\dot{V}_{\boxed{4}} \leq-D_{3}\left(y^{2}+z^{2}+w^{2}\right)+\frac{1}{\eta} \gamma(t) V+(\beta y+z+\alpha W) p(t, x, y, z, w),
$$

thus,

$$
\begin{align*}
\dot{U}_{\boxed{4}}= & \left(\dot{V}_{\boxed{4}}-\frac{1}{\eta} \gamma(t) V\right) G(t) \\
\leq & -D_{3}\left(y^{2}+z^{2}+w^{2}\right) G(t) \\
& +(\beta y+z+\alpha W) p(t, x, y, z, w) G(t) . \tag{15}
\end{align*}
$$

Now, we define $F_{t}=F(t, x(t), y(t), z(t), w(t))$ by

$$
F_{t}=U+\sigma \int_{0}^{t}\left(y^{2}(s)+z^{2}(s)+w^{2}(s)\right) d s
$$

where $\sigma>0$. It is easy to see that F_{t} is positive definite, since $U=$ $U(t, x, y, z, w)$ is already positive definite. Using the estimate $e^{-\frac{m_{1}}{\eta}} \leq G(t) \leq$ 1 by (H1), and (15), imply

$$
\begin{aligned}
\dot{F}_{t[4]} \leq & -D_{3}\left(y^{2}(t)+z^{2}(t)+w^{2}(t)\right) e^{-\frac{\eta_{1}}{\eta}} \\
& +D_{4}(|y(t)|+|z(t)|+|W(t)|)|p(t, x, y, z, w)| \\
& +\sigma\left(y^{2}(t)+z^{2}(t)+w^{2}(t)\right)
\end{aligned}
$$

where D_{4} is positive constant. By choosing $\sigma=D_{3} e^{-\frac{\eta_{1}}{\eta}}$, we obtain

$$
\begin{align*}
\dot{F}_{t \sqrt[4]{ }} & \leq D_{4}\left(3+y^{2}(t)+z^{2}(t)+W^{2}(t)\right)|e(t)| \\
& \leq D_{4}\left(3+\frac{1}{D_{2}} U\right)|e(t)| \\
& \leq 3 D_{4}|e(t)|+\frac{D_{4}}{D_{2}} F_{t}|e(t)| . \tag{16}
\end{align*}
$$

Integrating the last inequality (16) from 0 to t, by Gronwall inequality and the condition (H2), we get

$$
\begin{aligned}
F_{t} & \leq F_{0}+3 D_{4} \eta_{2}+\frac{D_{4}}{D_{2}} \int_{0}^{t} F_{s}|e(s)| d s \\
& \leq\left(F_{0}+3 D_{4} \eta_{2}\right) e^{\frac{D_{4}}{D_{2}} \int_{0}^{t}|e(s)| d s} \\
& \leq\left(F_{0}+3 D_{4} \eta_{2}\right) e^{\frac{D_{4}}{D_{2}} \eta_{2}}=K_{2}<\infty .
\end{aligned}
$$

Therefore,

$$
\int_{0}^{\infty} y^{2}(s) d s<K_{2} \quad, \quad \int_{0}^{\infty} z^{2}(s)<K_{2} \text { and } \int_{0}^{\infty} w^{2}(s) d s<K_{2}
$$

which implies that

$$
\begin{equation*}
\int_{0}^{\infty} x^{\prime 2}(s) d s \leq K_{2}, \quad \int_{0}^{\infty} x^{\prime \prime 2}(s) d s \leq K_{2}, \quad \int_{0}^{\infty} x^{\prime \prime \prime 2}(s) d s \leq K_{2} \tag{17}
\end{equation*}
$$

Next, multiplying (1) by $x(t)$ and integrating by parts from 0 to t, we obtain

$$
\begin{equation*}
\int_{0}^{t} d(s) x(s) h(x(s)) d s=I_{1}(t)+I_{2}(t)+I_{3}(t)+I_{4}(t)+I_{5}(t)+L_{0} \tag{18}
\end{equation*}
$$

where
$I_{1}(t)=x^{\prime}(t) X^{\prime \prime}(t)-x(t) X^{\prime \prime \prime}(t)-\int_{0}^{t} x^{\prime \prime 2}(s) d s-\rho \int_{0}^{t} x^{\prime \prime}(s) x^{\prime \prime}(s-r) d s$, $I_{2}(t)=-a(t) x(t) x^{\prime \prime}(t)+\int_{0}^{t} a^{\prime}(s) x(s) x^{\prime \prime}(s) d s+\int_{0}^{t} a(s) x^{\prime}(s) x^{\prime \prime}(s) d s$, $I_{3}(t)=-b(t) x(t) x^{\prime}(t)+\int_{0}^{t} b^{\prime}(s) x(s) x^{\prime}(s) d s+\int_{0}^{t} b(s) x^{\prime 2}(s) d s$, $I_{4}(t)=-\frac{1}{2} c(t) x^{2}(t)+\frac{1}{2} \int_{0}^{t} c^{\prime}(s) x^{2}(s) d s$,
$I_{5}(t)=\int_{0}^{t} x(s) p\left(t, x(s), x^{\prime}(s), x^{\prime \prime}(s), x^{\prime \prime \prime}(s)\right) d s$,
and

$$
L_{0}=\left[X^{\prime \prime \prime}(0)+a(0) x^{\prime \prime}(0)+b(0) x^{\prime}(0)\right] x(0)-x^{\prime}(0) X^{\prime \prime}(0)+\frac{1}{2} c(0) x^{2}(0) .
$$

From (14), (17) and conditions (i) and (H1), we have

$$
\begin{aligned}
I_{1}(t) \leq & (2+\rho) K+\frac{1}{2} \rho \int_{0}^{t} x^{\prime \prime 2}(s) d s+\frac{1}{2} \rho \int_{0}^{t} x^{\prime \prime 2}(s-r) d s \\
\leq & (2+\rho) K+\frac{1}{2} \rho \int_{0}^{t} x^{\prime \prime 2}(s) d s \\
& +\frac{1}{2} \rho \int_{-r}^{0} x^{\prime \prime 2}(s) d s+\frac{1}{2} \rho \int_{0}^{t-r} x^{\prime \prime 2}(s) d s \\
I_{2}(t) \leq & a_{1} K+K \int_{0}^{t}\left|a^{\prime}(s)\right| d s+a_{1} \int_{0}^{t} x^{\prime}(s) x^{\prime \prime}(s) d s \\
\leq & a_{1} K+\frac{1}{2} a_{1}\left(x^{\prime 2}(t)-x^{\prime 2}(0)\right)+K \int_{0}^{t}\left|a^{\prime}(s)\right| d s \\
I_{3}(t) \leq & b_{1} K+K \int_{0}^{t}\left|b^{\prime}(s)\right| d s+b_{1} \int_{0}^{t} x^{\prime 2}(s) d s \\
I_{4}(t) \leq & \frac{1}{2} c_{1} K+\frac{1}{2} K \int_{0}^{t}\left|c^{\prime}(s)\right| d s \\
I_{5}(t) \leq & \sqrt{K} \int_{0}^{t}|e(s)| d s
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} I_{1}(t) & \leq(2+\rho) K+\frac{1}{2} \rho K_{2}+\frac{1}{2} \rho \int_{-r}^{0} x^{\prime \prime 2}(s) d s+\frac{1}{2} \rho \int_{0}^{+\infty} x^{\prime \prime 2}(s) d s, \\
& \leq(2+\rho) K+\rho K_{2}+\frac{1}{2} \rho K r=L_{1}, \\
\lim _{t \rightarrow+\infty} I_{2}(t) & \leq 2 a_{1} K+K \eta_{1}=L_{2}, \quad \lim _{t \rightarrow+\infty} I_{3}(t) \leq b_{1} K+K \eta_{1}+b_{1} K_{2}=L_{3}, \\
\lim _{t \rightarrow+\infty} I_{4}(t) & \leq \frac{1}{2} c_{1} K+\frac{1}{2} K \eta_{1}=L_{4}, \quad \text { and } \lim _{t \rightarrow+\infty} I_{5}(t) \leq \sqrt{K} \eta_{2}=L_{5} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(I_{1}(t)+I_{2}(t)+I_{3}(t)+I_{4}(t)+I_{5}(t)\right) \leq \sum_{i=1}^{5} L_{i}<\infty . \tag{19}
\end{equation*}
$$

Consequently, (18) and (19), and condition ii) give

$$
\int_{0}^{\infty} x^{2}(s) d s \leq \frac{1}{d_{0} \delta} \int_{0}^{\infty} d(s) x(s) h(x(s)) d s \leq \frac{1}{d_{0} \delta} \sum_{i=0}^{5} L_{i}<\infty
$$

which completes the proof of the theorem.
Remark 1 If $p(t, x, y, z, w)=0$, similarly to above proof, the inequality (9) becomes

$$
V_{5}+V_{6}+V_{7}+V_{8} \leq-2 D_{3}\left(y^{2}+z^{2}+\left(|w|+\rho\left|w_{t}\right|\right)^{2}\right),
$$

then,

$$
\begin{align*}
\dot{V}_{\boxed{4}} \leq & -D_{3}\left(y^{2}+z^{2}+\left(|w|+\rho\left|w_{t}\right|\right)^{2}\right) \\
& +\frac{1}{\eta}\left(\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|-d^{\prime}(t)\right) V . \tag{20}
\end{align*}
$$

From (H1), (8), (20) and the Cauchy-Schwartz inequality, we get

$$
\begin{aligned}
\dot{U}_{\boxed{4}]} & =\left(\dot{V}_{\boxed{4}]}-\frac{1}{\eta} \gamma(t) V\right) G(t) \\
& \leq-D_{3}\left(y^{2}+z^{2}+\left(|w|+\rho\left|w_{t}\right|\right)^{2}\right) G(t) \\
& \leq-\mu\left(y^{2}+z^{2}+\left(|w|+\rho\left|w_{t}\right|\right)^{2}\right) \leq-\mu\left(y^{2}+z^{2}+W^{2}\right),
\end{aligned}
$$

where $\mu=D_{3} e^{-\frac{n_{1}}{\eta}}$. It can also be seen that the only solution of system (4) for which $\dot{U}_{[4]}(t, x, y, z, W)=0$ is the solution $x=y=z=w=0$. The above discussion guarantees that the trivial solution of equation (1) is uniformly asymptotically stable, and the same conclusion as in the proof of Theorem 1 can be drawn for square integrability of solutions of equation (1).

2 Example

We consider the following fourth-order non-autonomous differential equation of neutral type

$$
\begin{align*}
& \left(x(t)+\frac{1}{322} x(t-r)\right)^{\prime \prime \prime \prime}+\left(e^{-t} \sin t+2\right) x^{\prime \prime \prime} \\
& +\left(\frac{\sin (t)+7 e^{t}+7 e^{-t}}{e^{t}+e^{-t}}\right) x^{\prime \prime}+\left(e^{-2 t} \sin ^{3} t+2\right) x^{\prime} \\
& +\left(\frac{1}{20 \cosh t}+\frac{1+2\left(1+t^{2}\right)}{20\left(1+t^{2}\right)}\right)\left(\frac{x}{x^{2}+1}+\frac{x}{10}\right) \\
& =\frac{2 \sin t}{t^{2}+\left(x(t)+x^{\prime}(t)\right)^{2}+\left(x^{\prime \prime}(t) x^{\prime \prime \prime}(t)\right)^{2}+1} . \tag{21}
\end{align*}
$$

By taking

$$
\begin{aligned}
p\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t), x^{\prime \prime \prime}(t)\right) & =\frac{2 \sin t}{t^{2}+\left(x(t)+x^{\prime}(t)\right)^{2}+\left(x^{\prime \prime}(t) x^{\prime \prime \prime}(t)\right)^{2}+1} \\
& \leq e(t)=\frac{2 \sin t}{t^{2}+1} \\
h(x) & =\frac{x}{x^{2}+1}+\frac{x}{10}, \\
h_{0}-\frac{a_{0} \delta_{0}}{d_{1}}=-\frac{53}{10} \leq h^{\prime}(x) & =\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}+\frac{1}{10}(x) \leq \frac{h_{0}}{2}=\frac{11}{10}, \\
a_{0}=1 \leq a(t) & =e^{-t} \sin t+2 \leq a_{1}=3, \\
b_{0}=\frac{13}{2} \leq b(t) & =\frac{\sin (t)+7 e^{t}+7 e^{-t}}{e^{t}+e^{-t}} \leq b_{1}=\frac{15}{2}, \\
c_{0}=1 \leq c(t) & =e^{-2 t} \sin ^{3} t+2 \leq c_{1}=3, \\
d_{0}=\frac{1}{10} \leq d(t) & =\frac{1}{20 \cosh t}+\frac{1+2\left(1+t^{2}\right)}{20\left(1+t^{2}\right)} \leq d_{1}=\frac{1}{5},
\end{aligned}
$$

and

$$
\begin{aligned}
b_{0} & =\frac{13}{2}>\kappa=\frac{d_{1} h_{0} a_{1}}{c_{0}}+\frac{c_{1}+\delta_{0}}{a_{0}}=\frac{291}{50}, \quad \text { for } \quad \delta_{0}=\frac{3}{2}, \\
\varepsilon & =\frac{1}{20}<\min \left\{\frac{1}{a_{0}}, \frac{d_{1} h_{0}}{c_{0}}, \frac{b_{0}-\kappa}{a_{1}+c_{1}}\right\}, \\
\lambda_{0} & =\frac{53}{10}=\max \left\{\frac{h_{0}}{2},\left|h_{0}-\frac{a_{0} \delta_{0}}{d_{1}}\right|\right\},
\end{aligned}
$$

we find

$$
\begin{aligned}
\alpha=\frac{21}{20}= & \frac{1}{a_{0}}+\varepsilon, \quad \beta=\frac{49}{100}=\frac{d_{1} h_{0}}{c_{0}}+\varepsilon \\
\rho=\frac{1}{322}< & \min \left\{1, \frac{2 \varepsilon}{\alpha h_{0}}, \frac{2 \varepsilon c_{0}}{\alpha\left(c_{1}+d_{1} \lambda_{0}\right)}, 2 \frac{b_{0}-\kappa-\varepsilon\left(a_{1}+c_{1}\right)}{\alpha\left(b_{1}+d_{1} \lambda_{0}+d_{1}\right)+\beta}\right. \\
& \left.\frac{2 \varepsilon a_{0}}{\alpha\left(2 a_{1}+b_{1}+c_{1}+d_{1}\right)+5+\beta}\right\} .
\end{aligned}
$$

It follows easily that

$$
\begin{aligned}
\int_{0}^{+\infty}|e(t)| d t & =\int_{0}^{+\infty}\left|\frac{2 \sin t}{t^{2}+1}\right| d t \leq \int_{0}^{+\infty} \frac{2}{t^{2}+1} d t=\pi \\
\int_{0}^{+\infty}\left|a^{\prime}(t)\right| d t & =\int_{0}^{+\infty}\left|(\cos t) e^{-t}-(\sin t) e^{-t}\right| d t \leq \int_{0}^{+\infty} 2 e^{-t} d t=2 \\
\int_{0}^{+\infty}\left|b^{\prime}(t)\right| d t & =\int_{0}^{+\infty}\left|\frac{\left(e^{t}+e^{-t}\right) \cos t-\left(e^{t}-e^{-t}\right) \sin t}{\left(e^{t}+e^{-t}\right)^{2}}\right| d t \\
& \leq \int_{0}^{+\infty}\left(\frac{1}{e^{t}+e^{-t}}+\frac{e^{t}-e^{-t}}{\left(e^{t}+e^{-t}\right)^{2}}\right) d t \leq \frac{\pi}{2} \\
\int_{0}^{+\infty}\left|c^{\prime}(t)\right| d t & =\int_{0}^{+\infty}\left|3\left(\cos t \sin ^{2} t\right) e^{-2 t}-2\left(\sin ^{3} t\right) e^{-2 t}\right| d t \\
& \leq \int_{0}^{+\infty} 5 e^{-2 t} d t=\frac{5}{2}
\end{aligned}
$$

and

$$
\int_{0}^{+\infty}\left(-d^{\prime}(t)\right) d t=\int_{0}^{+\infty} \frac{1}{20}\left(\frac{\sinh t}{\cosh ^{2} t}+\frac{2 t}{\left(1+t^{2}\right)^{2}}\right) d t=\frac{1}{10} .
$$

Therefore

$$
\int_{0}^{+\infty}\left(\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|-d^{\prime}(t)\right) d t<+\infty
$$

Thus, all the assumptions of Theorem[1 hold, so solutions of (21) are bounded and square integrable.

References

[1] Abou-El-Ela, A. M. A.; Sadek, A. I.; Mahmoud, A. M. On the stability of solutions of certain fourth-order nonlinear nonautonomous delay differential equation. Int. J. Appl. Math. 22 (2009), no. 2, pp. 245-258.
[2] Andres, J. and Vlček, V.; On the existence of square integrable solutions and their derivatives to fourth and fifth order differential equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 28 (1989), no. 1, pp. 65-86.
[3] Bereketoglu, H., Asymptotic stability in a fourth order delay differential equation. Dynam. Systems Appl. 7 (1998), no. 1, pp. 105-115.
[4] Burton T. A., Stability and periodic solutions of ordinary and functional differential equations .Mathematics in Science and Engineering, Volume 178, Academic Press, INC, 1985.
[5] Burton T.A., Volterra Integral and Differential Equations, Mathematics in Science and Engineering V(202)(2005), 2nd edition.
[6] Cartwright, M. L.; On the stability of solutions of certain differential equations of the fourth order. Quart. J. Mech. Appl. Math. 9 (1956), pp. 185-194.
[7] Chin, P. S. M.; Stability results for the solutions of certain fourth-order autonomous differential equations.Internat. J. Control. 49 (1989), no. 4, pp. 1163-1173.
[8] El'sgol'ts, L., Introduction to the Theory of Differential Equations with Deviating Arguments. Translated from the Russian by Robert J. McLaughlin Holden-Day, Inc., San Francisco, Calif.-LondonAmsterdam, 1966.
[9] Ezeilo, J. O. C., A stability result for solutions of a certain fourth order differential equation. J. London Math. Soc. 37 (1962), pp. 28-32.
[10] Ezeilo, J. O. C., On the boundedness and the stability of solutions of some differential equations of the fourth order. J. Math. Anal. Appl. 5 (1962), pp. 136-146.
[11] Ezeilo, J. O. C., Stability results for the solutions of some third and fourth order differential equations. Ann. Mat. Pura Appl. 66 (1964), no. 4, pp. 233-249.
[12] Ezeilo, J. O. C.; Tejumola, H. O., On the boundedness and the stability properties of solutions of certain fourth order differential equations. Ann. Mat. Pura Appl. 95 (1973), no.4, pp. 131-145.
[13] Graef, J. R; Beldjerd, D; Remili, M. On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay. PanAmerican Mathematical Journal 25 (2015), pp. 82-94.
[14] Greaf, J. R; Oudjedi, L. D, and Remili, M. Stability and square integrability of solutions of nonlinear third order differential equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 22 (2015), pp. 313-324.
[15] J. R. Graef, L. D. Oudjedi and M. Remili. Stability and Square Integrability of solutions to third order neutral delay differential equations. Tatra Mt. Math. Publ. 71 (2018), pp. 81-97.
[16] Hale, J. K., Theory of Functional Differential Equations. Springer Verlag, New York, 1977.
[17] Hara, T. On the asymptotic behavior of the solutions of some third and fourth order non- autonomous differential equations. Publ. RIMS, Kyoto Univ. 9 (1974), pp. 649-673.
[18] Kang, Huiyan; Si, Ligeng, Stability of solutions to certain fourth order delay differential equations. Ann. Differential Equations 26 (2010), no. 4, pp. 407-413.
[19] Omeike, P. S. M.; Boundedness of solutions of the fourth order differential equation with oscillatory restoring and forcing terms. Analele stiintifice ale univesitatii" AL.I. CUZA" DIN IASI (S.N.) Matematica, Tomul LIV 1 2008, pp. 187-195.
[20] Oudjedi, L; Beldjerd, D; and Remili, M. On the stability of solutions for non-autonomous delay differential equations of third-order, Differential Equations and Control Processes 1 (2014), pp. 22-34.
[21] Rahmane, M; Fatmi, L; and Remili, M. On stability and boundedness of solutions of fourth-order differential equations with multiple delays. International Conference on Mathematics and Information Technology (ICMIT) (2017), pp. 376-383.
[22] Rahmane, M; Remili, M. On stability and boundedness of solutions of certain non autonomous fourth-order delay differential equations. Acta Universitatis Matthiae Belii, series Mathematics 23 (2015), pp. 101114.
[23] Remili, M; Beldjerd, D. A boundedness and stability results for a kind of third order delay differential equations. Applications and Applied Mathematics 10 (2015), no. 2, pp. 772-782.
[24] Remili, M; Beldjerd, D. On ultimate boundedness and existence of periodic solutions of kind of third order delay differential equations. Acta Universitatis Matthiae Belii, series Mathematics (2016), pp. 1-15.
[25] Remili, M; Beldjerd, D. Stability and ultimate boundedness of solutions of some third order differential equations with delay. Journal of the Association of Arab Universities for Basic and Applied Sciences 23 (2017), pp. 90-95.
[26] Remili, M; Oudjedi, L. D; and Beldjerd, D. On the qualitative behaviors of solutions to a kind of nonlinear third order differential equations with delay. Communications in Applied Analysis 20 (2016), 53-64.
[27] Remili, M; Oudjedi, L. D. On asymptotic stability of solutions to third order nonlinear delay differential equation. Filomat 30 (2016), no. 12, pp. 3217-3226.
[28] Remili, M; Rahmane, M. Sufficient conditions for the boundedness and square integrability of solutions of fourth-order differential equations. Proyecciones Journal of Mathematics 35 (2016), no. 1, pp. 41-61.
[29] Remili, M; Rahmane, M. Stability and square integrability of solutions of nonlinear fourth order differential equations. Bull. Comput. Appl. Math. 4 (2016), no.1, pp. 21-37.
[30] Remili, M; Rahmane, M. Boundedness and square integrability of solutions of nonlinear fourth order differential equations. Nonlinear Dynamics and Systems Theory 16 (2016), no. 2, pp. 192-205.
[31] Sadek A I. On the stability of solutions of certain fourth order delay differential equations. Applied Mathematics and Computation 148 2004, no. 2, pp. 587-597.
[32] Sinha, A. S. C., On stability of solutions of some third and fourth order delay-differential equations. Information and Control 23 (1973), pp. 165-172.
[33] Tejumola, H.O.; Tchegnani, B., Stability, boundedness and existence of periodic solutions of some third and fourth order nonlinear delay differential equations. J. Nigerian Math. Soc. 19 (2000), pp. 9-19.
[34] Tunç, C., On the stability of solutions of non-autonomous differential equations of fourth order with delay. Funct. Differ. Equ. 17 (2010), no. 1-2, pp. 195-212.
[35] Vlček, V.; On the boundedness of solutions of a certain fourth-order nonlinear differential equation. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 27 (1988), no. 1, pp. 273-288.
[36] Wu, X., Xiong, K.; Remarks on stability results for the solutions of certain fourth-order autonomous differential equations. Internat. J. Control. 69 (1998), no. 2, pp 353-360.

Mebrouk Rahmane
Department of Mathematics,
of University of Adrar Ahmed Draia.
01000 Adrar. Algeria.
mebroukrahmane@gmail.com
Linda D. Oudjedi
Department of Mathematics, of University of Oran 1 Ahmed Ben Bella.
31000 Oran. Algeria.
oudjedi@yahoo.fr
Moussadek Remili
Department of Mathematics, of University of Oran 1 Ahmed Ben Bella.
31000 Oran. Algeria.
remilimous@gmail.com
Please, cite to this paper as published in Armen. J. Math., V. 11, N. 10(2019), pp. $1-17$

