Normal Subgroups in Free Burnside Groups of Odd Period

Varujan Atabekyan
Yerevan State University, Yerevan, Armenia
avarujan@ysu.am

Abstract

In the current paper we announce a positive answer for all prime numbers $n>997$ to the following problem set by Adian in Kourovka Notebook: Is it true that all proper normal subgroups of the group $B(m, n)$ of prime period $n>665$ are not free periodic groups? The current result also strengthens a similar result of Olshanskiy for sufficiently large odd numbers $\mathrm{n}\left(\mathrm{n}>10^{7} 7\right.$).

Key words: Burnside groups, normalizer of subgroup, variety of n-periodic groups, non-abelian simple group

Mathematics Subject Classification 2000: 20F50, 20F05

Problem 7.1 in Kourovka Notebook [1], set by S. I. Adian asks: "It is known that free periodic groups $B(m, n)$ of prime period $n>665$ have many properties similar to the properties of free groups (see. [2]). Is it true that all proper normal subgroups of the group $B(m, n)$ of prime period $n>665$ are not free periodic groups?"

[^0]For odd $n \geq 665$ the free 2-generator periodic group $B(2, n)$ of period n contains isomorphic copies of free periodic groups $B(m, n)$ of any finite rank $m \geq 1$, which first was proved by Adian in [3]. Later Shirvanyan in [4] proved that the group $B(2, n)$ also contains a subgroup isomorphic to the free Burnside groups $B(\infty, n)$ of infinite rank. We proved (see. [5],[6],[7]), that for odd $n \geq 1003$ every noncyclic subgroup of the group $B(2, n)$ contains an isomorphic copy of the free Burnside group $B(\infty, n)$.

Besides the listed results there are a few other known important properties of free periodic groups, similar to the properties of absolutely free groups. As it is established by Adian:

- for odd $n \geq 665$ and $m>1$ the group $B(m, n)$ has exponential growth ([2], VI.2.5),
- in the group $B(m, n)$ the problem of conjugency is solvable,
- the center of the group $B(m, n)$ is trivial,
- the centralizer of any non-trivial element in $B(m, n)$ is a cyclic group ([2], VI.3.2-VI.3.5),
- the group $B(m, n)$ in a non-amenable group (see. [8]).

Thus, the mentioned questions stresses that we need not expect full analogy with absolutely free groups.

The positive answer to the Problem 7.1 [1] for sufficiently large odd n (where $n>10^{78}$) was given by Ol'shanskiy in [9]. He proved ([9], Theorem 1.1), that for sufficiently large odd n the normalizer of any free periodic subgroup N of rank $r \geq 1$ in free periodic group $B(m, n)$ of period n and of any rank $m \geq 1$ coincides with N (the rank $m \geq 1$ may also be infinite). When rank r of free periodic subgroup N is equal to 1 , and $n \geq 665$ is an odd number, then coincidence of the normalizer of N with N immediately follows from the following theorem of Adian: each finite subgroup of the group $B(m, n)$ is cyclic (see. [2], Theorem VII. 1.8). Let us notice that for sufficiently large composite $n\left(n>2 \cdot 10^{77}\right.$) the statement of the mentioned Theorem 1.1 was earlier proved by

Ivanov in [10]. Nevertheless, that prove is no longer valid for prime numbers n.

We proved:
Theorem 1. Let $n \geq 1003$ be an odd number, and N be a nontrivial subgroup of the free Burnside group $B(\mathcal{U}, n)$ with a set of free generators \mathcal{U}. Assume the subgroup N is isomorphic to a free periodic group $B(\mathcal{V}, n)$. Then N coincides with its normalizer in the group $B(\mathcal{U}, n)$.

Corollary 1. Let $n \geq 1003$ be an odd number, and N be a nontrivial subgroup of the free Burnside group $B(\mathcal{U}, n)$ with a set of free generators \mathcal{U}. Then if N is isomorphic to a free periodic group, Then $N=B(\mathcal{U}, n)$.

From this a positive answer to Problem 7.1 [1] immediately follows for all $n>997$.

As it was proved by Adian in [2], [11], [12], groups $B(m, n)$ are rich in normal subgroups. In particular, it is proved in [12] that for odd $n \geq 665$ and $m>65$ the group $B(m, n)$ does not satisfy min and max conditions for normal subgroups (see. also Theorem VI.3.9[2]), it is also proved that the group $B(m, n)$ contains continuum distinct normal subgroups. In article [13] proved are similar properties of the group $B(m, n)$ for all odd $n \geq 1003$ and $m \geq 1$.

Corollary 2. For any odd $n \geq 1003$ and $m \geq 2$ the group $B(m, n)$ contains continuum distinct subgroups which are not free in the variety of all n-periodic groups.

Ol'shanskiy proved in [9], that to guarantee Theorem 1 it is sufficient to prove that if $N=B(\mathcal{V}, n)$ is a free Burnside group of sufficiently large period with base $\mathcal{V}=\left\{a_{1}, a_{2}, \ldots\right\}$, and the word $v=v\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is not conjugate in $N=B(\mathcal{V}, n)$ with the powers of the generators a_{1}, a_{2}, \ldots, , then there exists a non-abelian simple
factor-group N / L such that the canonical image of the generator a_{1} in N / L has order n, and images v and a_{1} are not conjugate with respect to any automorphism of the group N / L (see Lemma 2.3 [9]).

We proved:
Proposition 1. (Stronger version of Lemma 2.3 [9]). Let $N=$ $B(\mathcal{V}, n)$ is a free Burnside group of the odd period $n \geq 1003$ with base $\mathcal{V}=\left\{a_{1}, a_{2}, \ldots\right\}$. Assume the word $v=v\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is not conjugate in $N=B(\mathcal{V}, n)$ with a power of the generator a_{1}. Then there exists a non-abelian simple factor-group N / L such that:

1. canonical image of the generator a_{1} in N / L has order n,
2. $\psi\left(a_{1}\right) \neq v\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ for any automorphism $\psi: N / L \rightarrow N / L$.

To compare the results let us notice that in Theorem 3 [13] and non-cyclic free Burnside group of odd period $n \geq 1003$ is a residually non-abelian simple group (in which the image of the generator a_{1} has order n). Proving Theorem 2 we seriously use the work of Adian and Lisyonok [14], where for any odd $n \geq 1003$ an infinite group of period n with cyclic subgroups is built (the "Tarski monster").

References

[1] Коуровская тетрадь, Нерешенные вопросы теории групп, Новосибирск. 1980.
[2] С. И. Адян, Проблема Бернсайда и тождества в группах, Наука, М., 1975.
[3] С. И. Адян, "О подгруппах свободных периодических групп нечетного показателя", Сб. статей, посвещенный 80 -летию со дня рождения академика И. М. Виноградова, Тр.МИАН, 112, (1971), 64-72.
[4] В. Л. Ширванян, "Вложение группы $B(\infty, n)$ в группу $B(2, n)$ ", Изв. АН СССР. Сер. матем., 40:1, (1976), 190-208.
[5] В. С. Атабекян, Об аппроксимации и подгруппах свободных периодических групп, Деп. ВИНИТИ 5380-B86.
[6] В. С. Атабекян, "О простых и свободных периодических группах", Вестн. МГУ. Сер. Математика, механика, 6, (1987), 76-78.
[7] V. S. Atabekian, "On embeddings of free Burnside groups of odd exponent $n \geq 1003 "$, Combinatorial and Geometric Geometric Group Theory, May 5-10, Vanderbilt University, Nashville, TN, USA, 2006, 2.
[8] С. И. Адян, "Случайные блуждания на свободных периодических группах, Изв. АН СССР. Сер. матем, 46:6, (1982) 1139-1149.
[9] A. Yu. Olshanskii, "Self-normalization of free soubgroups in the free Burnsaide groups", Groups, rings, Lie and Hopf algebras (St. John's, NF, 2001), Math. Appl., 555, Kluwer Acad. Publ., Dordrecht, 2003, 179--187.
[10] С. В. Иванов, "О пдгруппах свободных бернсайдовых групп нечетного составного периода", Вестн. МГУ, Сер. матем., механика, 1989, 2, 7-11.
[11] С. И. Адян, "О простоте периодических произведений групп", Докл. АН СССР, 241:4, (1978), 745-748.
[12] С. И. Адян, "Нормальные подгруппы свободных периодических групп", Изв. АН СССР. Сер. матем., 45:5, (1981), 931-947.
[13] В. С. Атабекян, "О периодических группах нечетного периода $n \geq 1003$ ", Матем. заметки, 82:4, (2007), 495-500.
[14] С. И. Адян, И. Г. Лысенок, "О группах, все собственные подгруппы которых конечные циклические", Изв. АН СССР. Сер. матем., 55:5, (1991), 933-990.

[^0]: * Presented at the First International Algebra and Geometry Conference in Armenia, 16-20 May, 2007, Yerevan

