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Abstract. In the current paper we announce a positive answer
for all prime numbers n > 997 to the following problem set by
Adian in Kourovka Notebook: Is it true that all proper normal sub-
groups of the group B(m, n) of prime period n > 665 are not free
periodic groups? The current result also strengthens a similar re-
sult of Olshanskiy for sufficiently large odd numbers n (n > 1077).
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Problem 7.1 in Kourovka Notebook [1], set by S. I. Adian asks: “It

is known that free periodic groups B(m, n) of prime period n > 665

have many properties similar to the properties of free groups (see. [2]).

Is it true that all proper normal subgroups of the group B(m, n) of

prime period n > 665 are not free periodic groups?”
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For odd n ≥ 665 the free 2-generator periodic group B(2, n) of

period n contains isomorphic copies of free periodic groups B(m, n)

of any finite rank m ≥ 1, which first was proved by Adian in [3].

Later Shirvanyan in [4] proved that the group B(2, n) also contains a

subgroup isomorphic to the free Burnside groups B(∞, n) of infinite

rank. We proved (see. [5],[6],[7]), that for odd n ≥ 1003 every non-

cyclic subgroup of the group B(2, n) contains an isomorphic copy of

the free Burnside group B(∞, n).

Besides the listed results there are a few other known important

properties of free periodic groups, similar to the properties of absolutely

free groups. As it is established by Adian:

◦ for odd n ≥ 665 and m > 1 the group B(m, n) has exponential

growth ([2], VI.2.5),

◦ in the group B(m, n) the problem of conjugency is solvable,

◦ the center of the group B(m, n) is trivial,

◦ the centralizer of any non-trivial element in B(m, n) is a cyclic

group ([2], VI.3.2-VI.3.5),

◦ the group B(m, n) in a non-amenable group (see. [8]).

Thus, the mentioned questions stresses that we need not expect full

analogy with absolutely free groups.

The positive answer to the Problem 7.1 [1] for sufficiently large odd

n (where n > 1078) was given by Ol’shanskiy in [9]. He proved ([9],

Theorem 1.1), that for sufficiently large odd n the normalizer of any free

periodic subgroup N of rank r ≥ 1 in free periodic group B(m, n) of

period n and of any rank m ≥ 1 coincides with N (the rank m ≥ 1 may

also be infinite). When rank r of free periodic subgroup N is equal to 1,

and n ≥ 665 is an odd number, then coincidence of the normalizer of N

with N immediately follows from the following theorem of Adian: each

finite subgroup of the group B(m, n) is cyclic (see. [2], Theorem VII.

1.8). Let us notice that for sufficiently large composite n (n > 2 · 1077

) the statement of the mentioned Theorem 1.1 was earlier proved by
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Ivanov in [10]. Nevertheless, that prove is no longer valid for prime

numbers n.

We proved:

Theorem 1. Let n ≥ 1003 be an odd number, and N be a non-

trivial subgroup of the free Burnside group B(U , n) with a set of free

generators U . Assume the subgroup N is isomorphic to a free periodic

group B(V, n). Then N coincides with its normalizer in the group

B(U , n).

Corollary 1. Let n ≥ 1003 be an odd number, and N be a non-

trivial subgroup of the free Burnside group B(U , n) with a set of free

generators U . Then if N is isomorphic to a free periodic group, Then

N = B(U , n).

From this a positive answer to Problem 7.1 [1] immediately follows

for all n > 997.

As it was proved by Adian in [2], [11], [12], groups B(m, n) are

rich in normal subgroups. In particular, it is proved in [12] that for

odd n ≥ 665 and m > 65 the group B(m, n) does not satisfy min and

max conditions for normal subgroups (see. also Theorem VI.3.9[2]),

it is also proved that the group B(m, n) contains continuum distinct

normal subgroups. In article [13] proved are similar properties of the

group B(m, n) for all odd n ≥ 1003 and m ≥ 1.

Corollary 2. For any odd n ≥ 1003 and m ≥ 2 the group

B(m, n) contains continuum distinct subgroups which are not free in

the variety of all n-periodic groups.

Ol’shanskiy proved in [9] , that to guarantee Theorem 1 it is suf-

ficient to prove that if N = B(V, n) is a free Burnside group of

sufficiently large period with base V = {a1, a2, ...}, and the word

v = v(a1, a2, ..., am) is not conjugate in N = B(V, n) with the pow-

ers of the generators a1, a2, ...,, then there exists a non-abelian simple
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factor-group N/L such that the canonical image of the generator a1 in
N/L has order n, and images v and a1 are not conjugate with respect

to any automorphism of the group N/L (see Lemma 2.3 [9]).

We proved:

Proposition 1. (Stronger version of Lemma 2.3 [9]). Let N =

B(V, n) is a free Burnside group of the odd period n ≥ 1003 with

base V = {a1, a2, ...}. Assume the word v = v(a1, a2, ..., am) is not

conjugate in N = B(V, n) with a power of the generator a1. Then

there exists a non-abelian simple factor-group N/L such that:

1. canonical image of the generator a1 in N/L has order n,

2. ψ(a1) 6= v(a1, a2, ..., am) for any automorphism ψ : N/L→ N/L.

To compare the results let us notice that in Theorem 3 [13] and

non-cyclic free Burnside group of odd period n ≥ 1003 is a residually

non-abelian simple group (in which the image of the generator a1 has

order n). Proving Theorem 2 we seriously use the work of Adian and

Lisyonok [14], where for any odd n ≥ 1003 an infinite group of period

n with cyclic subgroups is built (the “Tarski monster”).
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