Perfect 3-colorings of cubic graphs of order 8

M. Alaeiyan and A. Mehrabani

Abstract. Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_1, \ldots, A_m such that, for all $i, j \in \{1, \ldots, m\}$, every vertex of A_i is adjacent to the same number of vertices, namely, a_{ij} vertices, of A_j. The matrix $A = (a_{ij})_{i,j \in \{1, \ldots, m\}}$ is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts) of the cubic graphs of order 8. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 8.

Key Words: perfect coloring, parameter matrices, Cubic graph, equitable partition

Mathematics Subject Classification 2010: 03E02, 05C15, 68R05

Introduction

The concept of a perfect m-coloring plays an important role in graph theory, algebraic combinatorics, and coding theory (completely regular codes). There is another term for this concept in the literature as “equitable partition” (see [11]).

The existence of completely regular codes in graphs is a historical problem in mathematics. Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson graphs. We are looking for a positive answer to find the conjecture Delsarte for each cubic graphs of order 8. Therefore, some effort has been done on enumerating the parameter matrices of some Johnson graphs, including $J(6, 3)$, $J(7, 3)$, $J(8, 3)$, $J(8, 4)$, and $J(v, 3)$ (v odd) (see [4, 5, 9]). Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q_n for $n < 24$. He also obtained some constructions and a necessary condition for the existence of perfect 2-colorings of the n-dimensional cube with a given parameter matrix (see [6, 7, 8]).
In this paper all graphs are finite, undirected, simple and connected. Let $G = (V, E)$ be an undirected graph. Two vertices $u, v \in V(G)$ are adjacent if there exists an edge $e = \{u, v\} \in E(G)$ to which they are both incident. The adjacent will be shown $u \leftrightarrow v$.

A cubic graph is a 3-regular graph. In [12], it is shown that the number of connected cubic graphs with 8 vertices is 5. Each graph is described by a drawing as shown in Figure 1.

![Connected cubic graphs of order 8](image)

Figure 1: Connected cubic graphs of order 8

Definition 1 For a graph G and an integer m, a mapping $T : V(G) \to \{1, \ldots, m\}$ is called a perfect m-coloring with matrix $A = (a_{ij})_{i,j \in \{1, \ldots, m\}}$ if it is surjective, and for all i, j, for every vertex of color i, the number of its neighbors of color j is equal to a_{ij}. The matrix A is called the parameter matrix of a perfect coloring. In the case $m = 3$, we use three colors: white, black and red. The sets of white, black and red vertices are denoted by W, B and R, respectively. In this paper, we generally show a parameter matrix by

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

Remark 1 In this paper, we consider all perfect 3-colorings, up to renaming the colors; i.e. we identify the perfect 3-coloring with the matrices:

$$\begin{bmatrix} a & c & b \\ g & i & h \\ d & f & e \end{bmatrix}, \begin{bmatrix} e & d & f \\ h & i & g \\ b & a & c \end{bmatrix}, \begin{bmatrix} e & f & d \\ f & e & d \\ c & b & a \end{bmatrix}, \begin{bmatrix} i & h & g \\ i & g & h \\ c & a & b \end{bmatrix}, \begin{bmatrix} i & g & h \\ i & g & h \\ f & d & e \end{bmatrix},$$

obtained by switching the colors with the original coloring.
1 Preliminaries and Analysis

In this section, we present some results concerning necessary conditions for the existence of perfect 3-colorings of connected graph of order 8 with a given parameter matrix \(A \).

The simplest necessary condition for the existence of perfect 3-colorings of a cubic connected graph with the matrix

\[
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\]

is:

\[a + b + c = d + e + f = g + h + i = 3.\]

Also, it is clear that we cannot have \(b = c = 0, d = f = 0, \) or \(g = h = 0, \) since the graph is connected. In addition, \(b = 0, c = 0, f = 0 \) if \(d = 0, g = 0, h = 0, \) respectively.

The number \(\theta \) is called an eigenvalue of a graph \(G \), if \(\theta \) is an eigenvalue of the adjacency matrix of this graph. The number \(\lambda \) is called an eigenvalue of a perfect coloring \(T \) into three colors with the matrix \(A \), if \(\lambda \) is an eigenvalue of \(A \). The following theorem demonstrates the connection between the introduced notions.

Theorem 1 (\([1] \)) If \(T \) is a perfect coloring of a graph \(G \) in \(m \) colors, then any eigenvalue of \(T \) is an eigenvalue of \(G \).

The next theorem can be useful to find the eigenvalues of a parameter matrix.

Theorem 2 Let \(A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) be a parameter matrix of a \(k \)-regular graph.

Then the eigenvalues of \(A \) are

\[\lambda_{1,2} = \frac{\text{tr}(A) - k}{2} \pm \sqrt{\left(\frac{\text{tr}(A) - k}{2}\right)^2 - \frac{\det(A)}{k}}, \quad \lambda_3 = k.\]

Proof. By using the condition \(a + b + c = d + e + f = g + h + i = k \), it is clear that one of the eigenvalues is \(k \). Therefore \(\det(A) = k\lambda_1\lambda_2 \). From \(\lambda_2 = \text{tr}(A) - \lambda_1 - k \), we get

\[\det(A) = k\lambda_1(\text{tr}(A) - \lambda_1 - k) = -k\lambda_1^2 + k(\text{tr}(A) - k)\lambda_1.\]

By solving the equation \(\lambda^2 + (k - \text{tr}(A))\lambda + \frac{\det(A)}{k} = 0 \), we obtain

\[\lambda_{1,2} = \frac{\text{tr}(A) - k}{2} \pm \sqrt{\left(\frac{\text{tr}(A) - k}{2}\right)^2 - \frac{\det(A)}{k}}.\]

\(\square \)
The eigenvalues of the all cubic graphs of order 8 are stated in the next theorem.

Theorem 3 ([12]) The distinct eigenvalues of the graph G_1 are the numbers $3, \sqrt{5}, -1, -\sqrt{5}$. The distinct eigenvalues of the graph G_2 are the numbers $\sqrt{3}, 1, 1 - \sqrt{2}, -1, -\sqrt{3}, -3 + \sqrt{2}$. The distinct eigenvalues of the graph G_3 are the numbers $3, 1.5616, 0.618, 0, -1.618, -2.5616$. The distinct eigenvalues of the graph G_4 are the numbers $3, 1, -1, 3$. The distinct eigenvalues of the graph G_5 are the numbers $3, 1, 1 - \sqrt{2}, -1, -2, -3 + \sqrt{2}$.

The next proposition gives a formula for calculating the number of white, black and red vertices, in a perfect 3-coloring.

Proposition 1 ([3]) Let T be a perfect 3-coloring of a graph G with the matrix $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$.

1. If $b, c, f \neq 0$, then
 \[
 |W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{c}{g}}, |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{f}{h}}, |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{g}{c}}.
 \]

2. If $b = 0$, then
 \[
 |W| = \frac{|V(G)|}{\frac{c}{g} + 1 + \frac{ch}{fg}}, |B| = \frac{|V(G)|}{\frac{f}{h} + 1 + \frac{fg}{ch}}, |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{g}{c}}.
 \]

3. If $c = 0$, then
 \[
 |W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{bf}{dh}}, |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{f}{h}}, |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{dh}{bf}}.
 \]

4. If $f = 0$, then
 \[
 |W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{c}{g}}, |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{cd}{bg}}, |R| = \frac{|V(G)|}{\frac{g}{c} + 1 + \frac{bg}{cd}}.
 \]

In this section, without loss of generality, we may assume $|W| \leq |B| \leq |R|$.
Lemma 1 Let G be a cubic connected graph of order 8. Then G has no perfect 3-coloring T with the matrix that $|W| = 1$.

Proof. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ be a parameter matrix with $|W| = 1$. Consider the white vertex. It is clear that none of its adjacent vertices are white; i.e. $a = 0$. Therefore, we have two cases below.

(1) The adjacent vertices of the white vertex are the same color.

If they are black, then $b = 3$ and $c = 0$. From $c = 0$, we get $g = 0$. Also, since the graph is connected, $f, h \neq 0$. Hence, we obtain the following matrices:

$$
\begin{bmatrix}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{bmatrix}
$$

If the adjacent vertices of the white vertex are red, then $c = 3, b = 0$. From $b = 0$, we get $d = 0$. Also, since the graph is connected, $f, h \neq 0$. Hence, we obtain the following matrices:

$$
\begin{bmatrix}
0 & 0 & 3 \\
1 & 1 & 1 \\
1 & 2 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 3 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{bmatrix}
$$

Finally, by using Remark [1] and the fact that $|W| \leq |B| \leq |R|$, it is obvious that there are only six matrices in (1), as shown $A_1, A_2, A_3, A_4, A_5, A_6$.

$$
A_1 = \begin{bmatrix}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{bmatrix}, \quad
A_2 = \begin{bmatrix}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{bmatrix}, \quad
A_3 = \begin{bmatrix}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{bmatrix}, \quad
A_4 = \begin{bmatrix}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{bmatrix},
$$

$$
A_5 = \begin{bmatrix}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{bmatrix}, \quad
A_6 = \begin{bmatrix}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{bmatrix}
$$

(2) The adjacent vertices of the white vertex are different colors. It immediately gives that $b, c \neq 0$. Also, it can be seen that $d = g = 1$. An easy computation, as in (1), shows that there are only five matrices that can be a parameter matrix in this case, as shown A_7, A_8, A_9, A_{10}.
A_{11}.

$A_7 = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $A_8 = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$, $A_9 = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$, $A_{10} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$, $A_{11} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$.

By using the Proposition 1, it can be seen that no matrix can be a parameter.

□

We now present two lemmas which can be useful to reach our goal.

Lemma 2 Let G be a cubic connected graph of order 8. If T is a perfect 3-coloring with the matrix A, and $|W| = |B| = 2$, $|R| = 4$, then A should be one of the following matrices:

$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$.

Proof. First, suppose that $b, c \neq 0$. As $|W| = 2$, by Proposition 1, it follows that $\frac{b}{d} + \frac{c}{g} = 3$. From $b + c \leq 3$, we have $b = 2$, $c = g = d = 1$, or $c = 2$, $b = g = d = 1$. If $b = 2$, $c = g = d = 1$, we get a contradiction of $|B| = 2$. If $c = 2$, $b = d = g = 1$, then we conclude from $|B| = 2$ and $|R| = 4$ that $h = 1$, $f = 2$. Therefore $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ or $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.

Second, suppose that $b = 0$ and, in consequence, $d = 0$. As $|R| = 4$, by Proposition 1, it follows that $\frac{g}{c} + \frac{h}{f} = 1$. Therefore, $c = f = 2$, $g = h = 1$, or $c = f = 3$, $h = 2$, $g = 1$, or $c = f = 3$, $g = 2$, $h = 1$. If $c = f = 2$, $g = h = 1$, then $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$. In the other two cases, we get a contradiction of $|B| = 2$.

Third, suppose that $c = 0$ and, in consequence, $g = 0$. As $|B| = 2$, by Proposition 1, it follows that $\frac{d}{b} + \frac{f}{h} = 3$. Therefore $d = 2$, $b = f = h = 1$, or $f = 2$, $b = h = d = 1$. If $d = 2$, $b = f = h = 1$, then we get a contradiction of $|R| = 4$. If $f = 2$, $b = h = d = 1$, then $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}$.
Finally, note that the matrix \[
\begin{bmatrix}
0 & 1 & 2 \\
1 & 2 & 0 \\
1 & 0 & 2 \\
\end{bmatrix}
\] is the same as the matrix \[
\begin{bmatrix}
2 & 1 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2 \\
\end{bmatrix}
\] up to renaming the colors, by Remark 1. □

Lemma 3 Let \(G \) be a cubic connected graph of order 8. If \(T \) is a perfect 3-coloring with the matrix \(A \), and \(|W| = 2, |B| = |R| = 3 \), then \(A \) should be the following matrix:

\[
\begin{bmatrix}
0 & 3 & 0 \\
2 & 0 & 1 \\
0 & 1 & 2 \\
\end{bmatrix}
\]

Proof. First, suppose that \(b, c \neq 0 \). As \(|W| = 2 \), by Proposition 1 it follows that \(\frac{b}{d} + \frac{c}{g} = 3 \). From \(b + c \leq 3 \), we get \(b = 2, c = g = d = 1 \), or \(c = 2, b = g = d = 1 \). If \(b = 2, c = g = d = 1 \), we get a contradiction of \(|B| = 3 \). If \(c = 2, b = d = g = 1 \), then from Proposition 1 we have \(f = 2, h = 3 \), which is a contradiction of \(g + h \leq 3 \).

Second, suppose that \(b = 0 \) and, in consequence, \(d = 0 \). As \(|R| = 3 \), by Proposition 1 it follows that \(\frac{g}{c} + \frac{h}{f} = \frac{5}{3} \). Therefore, \(c = 3, g = 2, h = f = 1 \), or \(f = 3, h = 2, c = g = 1 \). If \(c = 3, g = 2 \), then \(h = f = 1 \), and we get a contradiction of \(|W| = 2 \). If \(c = 0 \) and, in consequence, \(g = 0 \). As \(|B| = 3 \), by Proposition 1 it follows that \(\frac{d}{b} + \frac{f}{h} = \frac{5}{3} \). Therefore \(h = 3, f = 2, b = d = 1 \), or \(b = 3, d = 2, f = h = 1 \). If \(h = 3, f = 2 \), then \(A = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \). In the other case, we get a contradiction of \(|W| = 2 \).

Finally, note that the matrix \[
\begin{bmatrix}
0 & 3 & 0 \\
2 & 0 & 1 \\
0 & 1 & 2 \\
\end{bmatrix}
\] is the same as the matrix \[
\begin{bmatrix}
0 & 3 & 0 \\
2 & 0 & 1 \\
0 & 1 & 2 \\
\end{bmatrix}
\] up to renaming the colors, by Remark 1. □

By using the Lemmas 1, 2 and 3 it can be seen that only the following matrices:

\[
A_1 = \begin{bmatrix}
0 & 1 & 2 \\
1 & 0 & 2 \\
1 & 1 & 1 \\
\end{bmatrix},
A_2 = \begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 1 & 1 \\
\end{bmatrix},
A_3 = \begin{bmatrix}
0 & 3 & 0 \\
2 & 0 & 1 \\
0 & 1 & 2 \\
\end{bmatrix},
A_4 = \begin{bmatrix}
2 & 1 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2 \\
\end{bmatrix},
\] can be parameter ones.
2 Perfect 3-colorings of cubic graphs with 8 vertices

In this section we enumerate the parameter matrices of all perfect 3-colorings of cubic graphs with 8 vertices. As it has been shown in section 3, only matrices A_1, A_2, A_3 and A_4 can be parameter matrices. With consideration of cubic graphs eigenvalues and using Theorems 1, 2 and 3, it can be seen that the connected cubic graphs with 8 vertices can have a perfect 3-coloring with the matrices A_1, A_2 and A_3 which is represented by table 1.

<table>
<thead>
<tr>
<th>graphs</th>
<th>matrix A_1</th>
<th>matrix A_2</th>
<th>matrix A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
<tr>
<td>G_2</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
<tr>
<td>G_3</td>
<td>\times</td>
<td>\times</td>
<td>$\sqrt{}$</td>
</tr>
<tr>
<td>G_4</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
<tr>
<td>G_5</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
</tbody>
</table>

Table 1

Theorem 4 There are no perfect 3-colorings with the matrix A_1 for the graph G_5.

Proof. Contrary to our claim, suppose that T is a perfect 3-coloring with the matrix
\[
\begin{bmatrix}
0 & 1 & 2 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{bmatrix}
\]
for the graph G_5. Without restriction of generality, suppose that $T(a_1) = 1$. Therefore, again without restriction of generality, suppose that $T(a_2) = T(a_8) = 3$ and $T(a_5) = 2$. From $T(a_5) = 2$, we can easily seen that $T(a_4) = T(a_6) = 3$. Therefore $T(a_4) = 2$, which is a contradiction with third row of the matrix A_1. \Box

Theorem 5 The parameter matrices of cubic graphs of order 8 are listed in the following table.

<table>
<thead>
<tr>
<th>graphs</th>
<th>matrix A_1</th>
<th>matrix A_2</th>
<th>matrix A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
<tr>
<td>G_2</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
<tr>
<td>G_3</td>
<td>\times</td>
<td>\times</td>
<td>$\sqrt{}$</td>
</tr>
<tr>
<td>G_4</td>
<td>$\sqrt{}$</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
<tr>
<td>G_5</td>
<td>\times</td>
<td>$\sqrt{}$</td>
<td>\times</td>
</tr>
</tbody>
</table>

Table 2
Proof. As it has been shown in the table 1, only the matrices A_1, A_2 and A_3 can be parameter matrices. Hence, from Theorem 4 it suffices to show that there are perfect 3-colorings with the matrices in the table 2. The graph G_1 has perfect 3-colorings with the matrices A_1 and A_2. Consider two mappings T_1 and T_2 as follows:

$$T_1(a_2) = T_1(a_6) = 1, T_1(a_4) = T_1(a_8) = 2,$$
$$T_1(a_1) = T_1(a_3) = T_1(a_5) = T_1(a_7) = 3.$$

$$T_2(a_1) = T_2(a_2) = 1, T_2(a_5) = T_2(a_6) = 2,$$
$$T_2(a_3) = T_2(a_4) = T_2(a_7) = T_2(a_8) = 3.$$

It is clear that T_1 and T_2 are perfect 3-colorings with the matrices A_1 and A_2, respectively.

The graph G_2 has perfect 3-colorings with the matrices A_1 and A_2. Consider two mappings T_1 and T_2 as follows:

$$T_1(a_1) = T_1(a_3) = 1, T_1(a_5) = T_1(a_7) = 2,$$
$$T_1(a_2) = T_1(a_4) = T_1(a_6) = T_1(a_8) = 3,$$
$$T_2(a_1) = T_2(a_5) = 1, T_2(a_3) = T_2(a_7) = 2,$$
$$T_2(a_2) = T_2(a_4) = T_2(a_6) = T_2(a_8) = 3.$$

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices A_1 and A_2, respectively.

The graph G_3 has perfect 3-colorings with the matrix A_3. Consider a mapping T_1 as follows:

$$T_1(a_2) = T_1(a_8) = 1, T_1(a_1) = T_1(a_3) = T_1(a_7) = 2,$$
$$T_1(a_4) = T_1(a_5) = T_1(a_6) = 3.$$

It is clear that T_1 is a perfect 3-colorings with the matrices A_3.

The graph G_4 has perfect 3-colorings with the matrices A_1 and A_2. Consider two mappings T_1 and T_2 as follows:

$$T_1(a_2) = T_1(a_7) = 1, T_1(a_5) = T_1(a_8) = 2,$$
$$T_1(a_1) = T_1(a_3) = T_1(a_4) = T_1(a_6) = 3,$$
$$T_2(a_2) = T_2(a_5) = 1, T_2(a_7) = T_2(a_8) = 2,$$
$$T_2(a_1) = T_2(a_3) = T_2(a_4) = T_2(a_6) = 3.$$
It is clear that T_1 and T_2 are perfect 3-colorings with the matrices A_1 and A_2, respectively.

The graph G_5 has perfect 3-colorings with the matrix A_3. Consider a mapping T_1 as follows:

$$
T_1(a_4) = T_1(a_8) = 1, T_1(a_2) = T_1(a_6) = 2,
T_1(a_1) = T_1(a_3) = T_1(a_5) = T_1(a_7) = 3.
$$

It is clear that T_1 is a perfect 3-colorings with the matrices A_3.

□

References

Mehdi Alaeiyan
*School of Mathematics,
Iran University of Science and Technology
Narmak 16846, Tehran, Iran.*
alaeiyan@iust.ac.ir

Ayoob Mehrabani
*School of Mathematics,
Iran University of Science and Technology
Narmak 16846, Tehran, Iran.*
amehrabani@mathdep.iust.ac.ir

Please, cite to this paper as published in