On Characteristic Function of a Contraction, Its Model and Function of Strauss

P. Melik-Adamyan

Abstract

It is shown that the Nagy-Foias characteristic function of a completely nonunitary contraction and a variant of its functional model can be represented by means of a projectionvalued analytic operator function, arising in the representation theory of A.V. Strauss.

Key Words: characteristic function of a contraction, functional model, projection-valued function of Strauss, reproducing kernel.
Mathematics Subject Classification 2010: 47A20, 47A45

Introduction

The present note is rather of a methodical character. A completely nonunitary contraction in a Hilbert space is discussed. Motivated by the work of Sh.N. Saakyan [2], the approach proposed here to a characteristic function and a functional model of a such contraction is based on its partial isometric dilation, acting in a doubled Hilbert space, that somewhat differs from considerations in [2].

Directly related to a characteristic function, a maximal function of a contraction introduced by I. Valuşescu in [5] provides also the functional models, presented by I. Valuşescu in [6] and by J.A. Ball, N. Cohen in [1]. In the case under consideration it coincides, in essence, with a projectionvalued operator function in the representation theory of A.V. Strauss [3], which is closely related to that of M.G Kreĭn. This allows to obtain one more model of a contraction in a reproducing kernel Hilbert space, where values of a kernel are operators acting in the initial Hilbert space.

1 On characteristic function of a contraction

Let \mathfrak{H} be a Hilbert space with an inner product $\langle\cdot, \cdot \cdot\rangle$, $[\mathfrak{H}]$ be a linear space of linear bounded operators acting in \mathfrak{H} and $\left[\mathfrak{H}_{1}, \mathfrak{H}_{2}\right]$ be a space of such operators acting from \mathfrak{H}_{1} to \mathfrak{H}_{2}.

Consider completely nonunitary (c.n.u.) contraction T, that is $\|T\| \leqslant 1$, and there is no subspace of \mathfrak{H}, on which T induces a unitary operator. Then, the number 1 is not an eigenvalue of $T\left(1 \bar{\in} \sigma_{p}(T)\right)$, hence the operator $(I-T)^{-1}$ exists.

Denote

$$
D_{T}=\left(I-T^{*} T\right)^{\frac{1}{2}}, \quad D_{T^{*}}=\left(I-T T^{*}\right)^{\frac{1}{2}} ; \quad \mathfrak{D}_{T}=\overline{D_{T} \mathfrak{H}}, \quad \mathfrak{D}_{T^{*}}=\overline{D_{T^{*} \mathfrak{H}}}
$$

the detect operators and the defect subspaces of T. Then

$$
\begin{equation*}
T D_{T}=D_{T^{*}} T, \quad T^{*} D_{T^{*}}=D_{T} T^{*} \tag{1}
\end{equation*}
$$

Let us form the doubled Hilbert space $\mathcal{H}=\mathfrak{H} \oplus \mathfrak{H}$, denote $\mathcal{H}_{1}=\mathfrak{H} \oplus\{0\}$, $\mathcal{H}_{2}=\{0\} \oplus \mathfrak{H}$ and $\mathcal{P}_{1,2}$ - orthogonal projections in \mathcal{H} onto its subspaces $\mathcal{H}_{1,2}$, which can be identified with the first and second copies of \mathfrak{H}.

Consider operators $\mathcal{V}_{0}, \mathcal{V}$ in \mathcal{H}, given on domains $\mathcal{D}\left(\mathcal{V}_{0}\right)=\mathcal{H}_{1}, \mathcal{D}(\mathcal{V})=\mathcal{H}$ by the block operator matrix

$$
\left[\begin{array}{cc}
T & 0 \\
D_{T} & 0
\end{array}\right] .
$$

It is clear that \mathcal{V}_{0} is an isometry, \mathcal{V} is its partial isometric extension and the dilation of T

$$
T^{n}=\mathcal{P}_{1} \mathcal{V}^{n} \mathcal{P}_{1}, \quad n \geqslant 1
$$

by identifiying \mathcal{H}_{1} with \mathfrak{H}.
It is not hard to see that \mathcal{V}_{0} and \mathcal{V} are c.n.u. contractions, hence there exist the operators $\left(\mathcal{I}-\mathcal{V}_{0}\right)^{-1}$ and $(\mathcal{I}-\mathcal{V})^{-1}(\mathcal{I}$ is the identity operator in $\mathcal{H})$.

Introduce also the unitary operators in \mathcal{H}

$$
\mathcal{U}=\left[\begin{array}{cc}
D_{T^{*}} & T \tag{2}\\
-T^{*} & D_{T}
\end{array}\right], \quad \mathcal{J}=\left[\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right]
$$

such that $\mathcal{V}=\mathcal{U} \mathcal{J P}_{1}, \mathcal{J}^{2}=\mathcal{I}, \mathcal{J} \mathcal{P}_{1,2} \mathcal{J}=\mathcal{P}_{2,1}$. Then the defect operators of a partial isometry \mathcal{V} are the orthogonal projections $D=\mathcal{P}_{2}, D_{*}=\mathcal{U} \mathcal{P}_{1} \mathcal{U}^{*}$ onto the defect subspaces

$$
\mathfrak{D}=\left\{\left[\begin{array}{l}
0 \tag{3}\\
h
\end{array}\right], h \in \mathfrak{H}\right\}, \quad \mathfrak{D}_{*}=\mathcal{U} \mathcal{P}_{1} \mathcal{H}=\left\{\left[\begin{array}{c}
D_{T^{*}} h \\
-T^{*} h
\end{array}\right], h \in \mathfrak{H}\right\} .
$$

It is evident that

$$
\begin{equation*}
\mathcal{V} D=0, \quad \mathcal{V}^{*} D_{*}=0 \tag{4}
\end{equation*}
$$

A maximal function of a contraction T as the operator function $D_{T^{*}}(I-$ $\left.\omega T^{*}\right)^{-1}$, analytic in the unit disk $|\omega|<1$, was introduced in 5]. Denote $\mathcal{Q}(\omega)=D_{*}\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1}$ its analog for \mathcal{V}.

Proposition 1 The Nagy-Foias characteristic function $\Theta_{T}(\omega)$ of c.n.u. contraction T can be represented as

$$
\begin{equation*}
\Theta_{T}(\omega)=\left(\mathcal{U}^{*} \mathcal{Q}(\omega) \mid \mathfrak{D}\right) \mid \mathfrak{D}_{T} . \tag{5}
\end{equation*}
$$

Proof. The operators D_{*} and $\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1}$ have the following block matrix representations

$$
\begin{gathered}
D_{*}=\left[\begin{array}{cc}
D_{T^{*}}^{2} & -D_{T^{*}} T \\
-T^{*} D_{T^{*}} & T^{*} T
\end{array}\right] \\
\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1}=\left[\begin{array}{cc}
\left(I-\omega T^{*}\right)^{-1} & \omega\left(I-\omega T^{*}\right)^{-1} D_{T} \\
0 & I
\end{array}\right]
\end{gathered}
$$

hence

$$
\mathcal{Q}(\omega)=\left[\begin{array}{cc}
D_{T^{*}}^{2}\left(I-\omega T^{*}\right)^{-1} & D_{T^{*}} \Theta(\omega) \tag{6}\\
-T^{*} D_{T^{*}}\left(I-\omega T^{*}\right)^{-1} & -T^{*} \Theta(\omega)
\end{array}\right]
$$

where $\Theta(\omega)=-T+\omega D_{T^{*}}\left(I-\omega T^{*}\right)^{-1} D_{T}$. Then the restriction $\mathcal{U}^{*} \mathcal{Q}(\omega) \mid \mathfrak{D}$ is

$$
\mathcal{U}^{*} \mathcal{Q}(\omega) \left\lvert\, \mathfrak{D}=\left\{\left[\begin{array}{c}
\Theta(\omega) h \\
0
\end{array}\right], h \in \mathfrak{H}\right\}\right.
$$

The identification of \mathcal{H}_{1} with \mathfrak{H} and the definition of the Nagy-Foias characteristic function as

$$
\Theta_{T}(\omega)=\Theta(\omega) \mid \mathfrak{D}_{T}
$$

brings to (5).
Let us first note that the function $\Theta_{\mathcal{V}}(\omega)=\omega \mathcal{Q}(\omega) \mid \mathfrak{D}$ is the characteristic function of the partial isometry \mathcal{V} in view of (4).

Note also that the formula (5) makes more precise the corresponding formula in [2].

2 On a functional model of T

The properties of the operator function $\mathcal{Q}(\omega)$ are revealed in the following statement.

Proposition 2 The values of $\mathcal{Q}(\omega)$ are projections in \mathcal{H} onto \mathfrak{D}_{*}. There hold the direct sum decomposition

$$
\begin{equation*}
\mathcal{H}=\operatorname{Ran}\left(\mathcal{V}_{0}-\omega \mathcal{I}\right) \dot{+} \mathfrak{D}_{*}, \tag{7}
\end{equation*}
$$

and the formula

$$
\begin{equation*}
\mathcal{Q}(\omega) \mathcal{V}_{0} f_{0}=\omega \mathcal{Q}(\omega) f_{0}, \quad f_{0} \in \mathcal{D}\left(\mathcal{V}_{0}\right) \tag{8}
\end{equation*}
$$

Proof. It follows from (4) that $\left(\mathcal{I}-\omega \mathcal{V}^{*}\right) D_{*}=D_{*}$, and also $\left(\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1} D_{*}=\right.$ D_{*}, since $\mathcal{I}-\omega \mathcal{V}^{*}$ is bounded invertible.

Operator D_{*} is a projection, hence

$$
\mathcal{Q}^{2}(\omega)=D_{*}\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1} D_{*}\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1}=D_{*}\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1}=\mathcal{Q}(\omega)
$$

Consider the direct sum decomposition

$$
\begin{equation*}
\mathcal{H}=\left(\mathcal{I}-\omega \mathcal{V}^{*}\right) \mathcal{H}=\left(\mathcal{I}-\omega \mathcal{V}^{*}\right) \mathcal{V} \mathcal{H}+\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)(\mathcal{I}-\mathcal{V}) \mathcal{H} \tag{9}
\end{equation*}
$$

In view of (4) one has

$$
\mathcal{Q}(\omega)\left(\mathcal{I}-\mathcal{V}^{*}\right)(\mathcal{I}-\mathcal{V}) \mathcal{H}=D_{*}(\mathcal{I}-\mathcal{V}) \mathcal{H}=\mathfrak{D}_{*}
$$

It is clear from (8) that $\mathcal{Q}(\omega) \mathcal{H}=\mathfrak{D}_{*}$, so (9) takes the form

$$
\mathcal{H}=\left(\mathcal{I}-\omega \mathcal{V}^{*}\right) \mathcal{V H}+\dot{D_{*}}{ }_{*}
$$

Now the definitions of \mathcal{V} and \mathcal{V}_{0} lead to

$$
\left(\mathcal{I}-\omega \mathcal{V}^{*}\right) \mathcal{V} \mathcal{H}=\left(\mathcal{V}-\omega \mathcal{P}_{1}\right) \mathcal{H}=\operatorname{Ran}\left(\mathcal{V}_{0}-\omega \mathcal{I}\right)
$$

and the relation $\mathcal{Q}(\omega) \operatorname{Ran}\left(\mathcal{V}_{0}-\omega \mathcal{I}\right)=0$ completes the proof.
Consider the operator function $\mathcal{Q}_{1}(\omega)=\mathcal{U}^{*} \mathcal{Q}(\omega)=\mathcal{P}_{1} \mathcal{U}^{*}\left(\mathcal{I}-\omega \mathcal{V}^{*}\right)^{-1}$, which essentially maps \mathcal{H} to \mathfrak{H}. Clearly, from (8) one has also

$$
\begin{equation*}
\mathcal{Q}_{1}(\omega) \mathcal{V}_{0} f_{0}=\omega \mathcal{Q}_{1}(\omega) f_{0}, \quad f_{0} \in \mathcal{D}\left(\mathcal{V}_{0}\right) \tag{10}
\end{equation*}
$$

Now we follow to [1] and state some facts presented there. The \mathcal{H}-valued function $h(\omega)=\mathcal{Q}_{1}(\omega) \mathfrak{h}, \mathfrak{h} \in \mathcal{H}$ belongs to the Hardy space $H_{\mathfrak{j}}^{2}$ over the unit disk, and

$$
\|h(\omega)\|_{H_{\mathfrak{j}}^{2}} \leqslant\|\mathfrak{h}\|_{\mathcal{H}}
$$

so the map $F_{0}: \mathcal{H} \rightarrow H_{\mathfrak{H}}^{2}\left(F_{0} \mathfrak{h}=h(\omega)\right)$ is contractive.
Completely nonunitary property of \mathcal{V}^{*} leads to $\operatorname{Ker} F_{0}=\{0\}$. The linear manifold $H_{0}=\operatorname{Ran} F_{0}$ of $H_{\mathfrak{j}}^{2}$ endowed with the new inner product

$$
\begin{equation*}
\langle h(\omega), g(\omega)\rangle_{H}=\langle\mathfrak{h}, \mathfrak{g}\rangle_{\mathcal{H}} \tag{11}
\end{equation*}
$$

yields the Hilbert space H, and the map F_{0} defines a unitary operator F : $\mathcal{H} \rightarrow H, F^{-1}=F^{*}$.

Proposition 3 The operator function $K(\omega, \sigma)=\mathcal{Q}_{1}(\omega) \mathcal{Q}_{1}^{*}(\sigma)$ is a reproducing kerned for the Hilbert space H. In a matrix representation of $K(\omega, \sigma)$ the only nonzero block is

$$
\begin{equation*}
K_{11}(\omega, \sigma)=\left[D_{T_{*}}\left(I-\omega T^{*}\right)^{-1}(I-\bar{\sigma} T)^{-1} D_{T^{*}}+\Theta(\omega) \Theta^{*}(\sigma)\right] \in[\mathfrak{H}] . \tag{12}
\end{equation*}
$$

Proof. The proof is immediate. It is clear that for arbitrary $\mathfrak{g} \in \mathcal{H}$ and fixed $\sigma,|\sigma|<1$ one has

$$
K(\omega, \sigma) \mathfrak{g}=\mathcal{Q}_{1}(\omega) \mathcal{Q}_{1}^{*}(\sigma) \mathfrak{g} \in H
$$

The use of (11) brings the reproducing property of $K(\omega, \sigma)$

$$
\begin{array}{r}
\langle h(\sigma), \mathfrak{g}\rangle_{\mathcal{H}}=\left\langle\mathcal{Q}_{1}(\sigma) \mathfrak{h}, \mathfrak{g}\right\rangle_{\mathcal{H}}=\left\langle\mathfrak{h}, \mathcal{Q}_{1}^{*}(\sigma) \mathfrak{g}\right\rangle_{\mathcal{H}}=\left\langle h(\omega), \mathcal{Q}_{1}(\omega) \mathcal{Q}_{1}^{*}(\sigma) \mathfrak{g}\right\rangle_{H}= \\
\langle h(\omega), K(\omega, \sigma) \mathfrak{g}\rangle_{H},
\end{array}
$$

and the formula (12) follows from (6).
Set $K(\omega, \sigma)=K_{11}(\omega, \sigma)$.
Proposition 4 In the decomposition

$$
\begin{equation*}
\mathfrak{H}=\mathfrak{D}_{T^{*}} \oplus \mathfrak{D}_{T^{*}}^{\perp} \quad\left(h=d_{*}+d_{* \perp}\right) \tag{13}
\end{equation*}
$$

the kernel $K(\omega, \sigma)$ takes the following form

$$
K(\omega, \sigma)=\left[\begin{array}{cc}
\frac{1}{1-\omega \bar{\sigma}}\left[I_{*}-\omega \bar{\sigma} \Theta_{T}(\omega) \Theta_{T}^{*}(\sigma)\right] & \bigcirc \tag{14}\\
\bigcirc & I_{* \perp}
\end{array}\right]
$$

where $I_{*}, I_{* \perp}$ are identity operators in $\mathfrak{D}_{T^{*}}, \mathfrak{D}_{T^{*}}^{\perp}$.
Proof. With the use of relations (1) and

$$
\omega\left(I-\omega T^{*}\right)^{-1} T^{*}=\left(I-\omega T^{*}\right)^{-1}-I, \quad \bar{\sigma} T(I-\bar{\sigma} T)^{-1}=(I-\bar{\sigma} T)^{-1}-I
$$

not complicated derivations lead to

$$
\begin{aligned}
\Theta(\omega) \Theta^{*}(\sigma)= & {\left[-T+\omega D_{T^{*}}\left(I-\omega T^{*}\right)^{-1} D_{T}\right]\left[-T^{*}+\bar{\sigma} D_{T}(1-\bar{\sigma} T)^{-1} D_{T^{*}}\right]=} \\
& =I-(1-\omega \bar{\sigma}) D_{T^{*}}\left(I-\omega T^{*}\right)^{-1}(I-\bar{\sigma} T)^{-1} D_{T^{*}} .
\end{aligned}
$$

Thus, the formula (12) can be rewritten as
$K(\omega, \sigma)=\frac{1}{1-\omega \bar{\sigma}}\left[I-\Theta(\omega) \Theta^{*}(\sigma)\right]+\Theta(\omega) \Theta^{*}(\sigma)=\frac{1}{1-\omega \bar{\sigma}}\left[I-\omega \bar{\sigma} \Theta(\omega) \Theta^{*}(\sigma)\right]$.
Since

$$
\Theta_{T}(\omega)=\Theta(\omega)\left|\mathfrak{D}_{T} \in\left[\mathfrak{D}_{T}, \mathfrak{D}_{T^{*}}\right], \quad \Theta_{T}^{*}(\sigma)=\Theta^{*}(\sigma)\right| \mathfrak{D}_{T^{*}} \in\left[\mathfrak{D}_{T^{*}}, \mathfrak{D}_{T}\right]
$$

hence

$$
\Theta(\omega) \Theta^{*}(\sigma) d_{*}=\Theta_{T}(\omega) \Theta_{T}^{*}(\sigma) d_{*} .
$$

For arbitrary $h \in \mathfrak{H}$ it holds

$$
\left(D_{T^{*}} d_{* \perp}, h\right)=\left(d_{* \perp}, D_{T^{*}} h\right)=0,
$$

so $D_{T^{*}} d_{* \perp}=0$, hence

$$
\left[I-\Theta(\omega) \Theta^{*}(\sigma)\right] d_{* \perp}=\left[I-T T^{*}\right] d_{* \perp}=D_{T_{*}}^{2} d_{* \perp}=0
$$

and $(\sqrt{14})$ is proved.

Denote by Ω the multiplication operator by the independent variable ω in H with the domain $\mathcal{D}(\Omega)=\{h(\omega) \in H ; \omega h(\omega) \in H\}$. It is proved in [4] that $\mathcal{D}(\Omega)=F \mathcal{D}\left(\mathcal{V}_{0}\right)$, so formula (10) can be represented as

$$
\mathcal{V}_{0} f_{0}=F^{-1} \Omega F f_{0}, \quad f_{0} \in \mathcal{D}\left(\mathcal{V}_{0}\right)
$$

Since

$$
\mathcal{V}_{0} f_{0}=\left[\begin{array}{c}
T h \\
D_{T} h
\end{array}\right], \quad f_{0}=\left[\begin{array}{c}
h \\
0
\end{array}\right], \quad h \in \mathfrak{H},
$$

we get the functional model of c.n.u. contraction T in the form

$$
T h=\mathcal{P}_{1} F^{-1} \Omega F\left[\begin{array}{l}
h \\
0
\end{array}\right]
$$

3 Maximal function $\mathcal{Q}(\omega)$ and the projectionvalued function of Strauss

Let A_{0} be a closed Hermitian operator in \mathfrak{H} with the domain $\mathcal{D}\left(A_{0}\right)$ not dense in $\mathfrak{H}, \overline{\mathfrak{D}\left(A_{0}\right)} \neq \mathfrak{H}$. Assume that A_{0} is simple, that is A_{0} does not induce a self-adjoint operator on any linear submanifold in \mathfrak{H}.

Let some $\gamma \in C^{+}(\operatorname{Im} \gamma>0)$ be fixed. Then $\operatorname{Ran}\left(A_{0}-\gamma I\right), \operatorname{Ran}\left(A_{0}-\bar{\gamma} I\right)$ are subspaces of \mathfrak{H} and their orthogonal complements

$$
\mathfrak{N}_{\gamma}=\mathfrak{H} \ominus \operatorname{Ran}\left(A_{0}-\bar{\gamma} I\right), \quad \mathfrak{N}_{\bar{\gamma}}=\mathfrak{H} \ominus \operatorname{Ran}\left(A_{0}-\gamma I\right)
$$

are called the defect subspaces of A_{0}.
It is known that $\mathcal{D}\left(A_{0}\right) \cap \mathfrak{N}_{\gamma}=\{0\}, \overline{\mathcal{D}\left(A_{0}\right)+\mathfrak{N}_{\gamma}}=\mathfrak{H}$, hence the operator A_{γ} defined on $\mathcal{D}\left(A_{\gamma}\right)=\mathcal{D}\left(A_{0}\right)+\mathfrak{N}_{\gamma}$ as

$$
A_{\gamma} f=A_{0} f_{0}+\gamma f_{\gamma}, \quad f_{0} \in \mathcal{D}\left(A_{0}\right), f_{\gamma} \in \mathfrak{N}_{\gamma}
$$

is a maximal dissipative extension of A_{0}, since $\operatorname{Ran}\left(A_{\gamma}-\bar{\gamma} I\right)=\mathfrak{H}$ (see [3]).
Consider the Cayley transforms of A_{0}, A_{γ}

$$
\begin{gathered}
V_{0}=\left(A_{0}-\gamma I\right)\left(A_{0}-\bar{\gamma} I\right)^{-1}, \quad \mathcal{D}\left(V_{0}\right)=\operatorname{Ran}\left(A_{0}-\bar{\gamma} I\right), \\
\operatorname{Ran} V_{0}=\operatorname{Ran}\left(A_{0}-\gamma I\right), \\
V=\left(A_{\gamma}-\gamma I\right)\left(A_{\gamma}-\bar{\gamma} I\right)^{-1}, \quad \mathcal{D}(V)=\mathfrak{H}, \\
\operatorname{Ran} V=\operatorname{Ran}\left(A_{\gamma}-\gamma I\right)=\operatorname{Ran}\left(A_{0}-\gamma I\right) .
\end{gathered}
$$

Clearly, operator V is an extension of isometry V_{0}, and V_{0}, V are c.n.u. in view of simplicity of A_{0}, A.

Proposition 5 The operator V is a partial isometry and $\operatorname{Ker} V=\mathfrak{N}_{\gamma}$.

Proof. It is sufficient to show that $\operatorname{Ker} V=\mathfrak{N}_{\gamma}$. Let $g_{\gamma} \in \mathfrak{N}_{\gamma}$ and $\left(A_{\gamma}-\right.$ $\bar{\gamma} I)^{-1} g_{\gamma}=f_{0}+f_{\gamma}$. Then

$$
g_{\gamma}=\left(A_{0}-\bar{\gamma} I\right) f_{0}+(\gamma-\bar{\gamma}) f_{\gamma}
$$

implies $f_{0}=0$, so

$$
V g_{\gamma}=(\gamma-\bar{\gamma})\left(A_{\gamma}-\gamma I\right) f_{\gamma}=0
$$

If $V h=\left(A_{\gamma}-\gamma I\right)\left(A_{\gamma}-\bar{\gamma} I\right)^{-1} h=0$, then $\left(A_{\gamma}-\bar{\gamma} I\right)^{-1} h=f \in \mathfrak{N}_{\gamma}$, hence $h=(\gamma-\bar{\gamma}) f \in \mathfrak{N}_{\gamma}$, with the result.

The converse statement is also true.
Proposition 6 Let the operator V is a c.n.u. partial isometry. Then its Cayley transform

$$
\begin{equation*}
A=(\gamma I-\bar{\gamma} V)(I-V)^{-1} \tag{15}
\end{equation*}
$$

is a maximal dissipative extension of a simple Hermitian operator

$$
\begin{equation*}
A_{0}=\left(\gamma I-\bar{\gamma} V_{0}\right)\left(I-V_{0}\right)^{-1}, \quad V_{0}=V \mid \operatorname{Ker}^{\perp} V \tag{16}
\end{equation*}
$$

Proof. Since V is c.n.u., the operator $(I-V)^{-1}$ exists, $\operatorname{Ran}(I-V)=\mathcal{D}(A)$ is dense in \mathfrak{H} in view of $\operatorname{Ker}\left(I-V^{*}\right)=\{0\}$. Thus
$\mathcal{D}(A)=(I-V) \mathfrak{H}=(I-V) \operatorname{Ker} V \dot{+}(I-V) \operatorname{Ker}^{\perp} V=\operatorname{Ker} V \dot{+}(I-V) \operatorname{Ker}^{\perp} V$.
If $h_{0} \in \operatorname{Ker} V$, so $(I-V) h_{0}=h_{0}$, then also $(1-V)^{-1} h_{0}=h_{0}$, and

$$
A h_{0}=(\gamma I-\bar{\gamma} V) h_{0}=\gamma h_{0} .
$$

The operator $V_{0}=V \mid \operatorname{Ker}^{\perp} V$ is a c.n.u. isometry, hence its Cayely transform (16), defined on

$$
\mathcal{D}\left(A_{0}\right)=\operatorname{Ran}\left(I-V_{0}\right)=(I-V) \operatorname{Ker}^{\perp} V
$$

is Hermitian. Now the formula (17) takes the form

$$
\mathcal{D}(A)=\mathcal{D}\left(A_{0}\right) \dot{+} \operatorname{Ker} V,
$$

hence $A f=A_{0} f_{0}+\gamma h_{0}$, so A is a dissipative extension of A_{0}. It follows from

$$
(A-\bar{\gamma} I)=(\gamma I-\bar{\gamma} V)(I-V)^{-1}-\bar{\gamma} I=(\gamma-\bar{\gamma})(I-V)^{-1}
$$

that $(A-\bar{\gamma} I) \mathcal{D}(A)=(A-\bar{\gamma} I) \operatorname{Ran}(I-V)=\mathfrak{H}$, completing the proof.

In the base of a representation theory of Strauss it lies the direct sum decomposition

$$
\begin{equation*}
\mathfrak{H}=\operatorname{Ran}\left(A_{0}-\lambda I\right)+\mathfrak{N}_{\bar{\gamma}}, \quad \lambda \in C^{+}, \tag{18}
\end{equation*}
$$

proved in [3]. Formula (18) defines an operator-function $P(\lambda)$ analytic in C^{+}, which values are skew projections in \mathfrak{H} onto $\mathfrak{N}_{\bar{\gamma}}$ parallel to $\operatorname{Ran}\left(A_{0}-\lambda I\right)$. Assigning $\mathfrak{N}_{\bar{\gamma}}$-valued function $h(\lambda)=P(\lambda) h$ to each $h \in \mathfrak{H}$, one has the following representation of the Hermitian operator A_{0}

$$
\begin{equation*}
P(\lambda)\left[A_{0} f_{0}\right]=\lambda P(\lambda) f_{0}, \quad f_{0} \in \mathcal{D}\left(A_{0}\right) \tag{19}
\end{equation*}
$$

Now, going back to the decomposition (7) and formula (8), consider the Hermitian Cayley transform \mathcal{A}_{0} of the isometry \mathcal{V}_{0} in \mathcal{H}, and the linear fractional function $\lambda=\frac{\gamma-\bar{\gamma} \omega}{1-\omega}$, mapping the unit disk $|\omega|<1$ onto the upper half-plane C^{+}.

The defect subspaces of \mathcal{A}_{0} denote $\mathcal{N}_{\gamma}, \mathcal{N}_{\bar{\gamma}}$.
Proposition 7 Decomposition (7) coincides with

$$
\begin{equation*}
\mathcal{H}=\operatorname{Ran}\left(\mathcal{A}_{0}-\lambda \mathcal{I}\right)+\mathcal{N}_{\bar{\gamma}} . \tag{20}
\end{equation*}
$$

Proof. For the operator \mathcal{A}_{0} one has

$$
\begin{aligned}
& \mathcal{D}\left(\mathcal{A}_{0}\right)=\operatorname{Ran}\left(\mathcal{I}-\mathcal{V}_{0}\right)=\left\{\left[\begin{array}{c}
(I-T) h \\
-D_{T} h
\end{array}\right], h \in \mathfrak{H}\right\} \\
& \operatorname{Ran}\left(\mathcal{A}_{0}\right)=\left\{\left[\begin{array}{c}
(\gamma I-\bar{\gamma} T) h \\
-\bar{\gamma} D_{T} h
\end{array}\right], h \in \mathfrak{H}\right\}
\end{aligned}
$$

Clearly, both

$$
\operatorname{Ran}\left(\mathcal{A}_{0}-\bar{\gamma} \mathcal{I}\right)=\mathcal{D}\left(\mathcal{V}_{0}\right)=\mathcal{P}_{1} \mathcal{H}, \quad \operatorname{Ran}\left(\mathcal{A}_{0}-\gamma \mathcal{I}\right)=\operatorname{Ran} \mathcal{V}_{0}=\mathcal{U} \mathcal{J} \mathcal{P}_{1} \mathcal{H}
$$

are subspaces and their orthogonal complements are

$$
\mathcal{N}_{\gamma}=\left[\mathcal{D}\left(\mathcal{V}_{0}\right)\right]^{\perp}=\mathcal{P}_{2} \mathcal{H}=\mathfrak{D}, \quad \mathcal{N}_{\bar{\gamma}}=\operatorname{Ran}^{\perp} \mathcal{V}_{0}=\mathfrak{D}_{*}
$$

On account of

$$
\mathcal{V}_{0}=\left(\mathcal{A}_{0}-\gamma \mathcal{I}\right)\left(\mathcal{A}_{0}-\bar{\gamma} I\right)^{-1}, \quad \omega=\frac{\lambda-\gamma}{\lambda-\bar{\gamma}}
$$

it is readily seen that

$$
\mathcal{V}_{0}-\omega \mathcal{I}=\frac{\gamma-\bar{\gamma}}{\lambda-\bar{\gamma}}\left(\mathcal{A}_{0}-\lambda \mathcal{I}\right)\left(\mathcal{A}_{0}-\bar{\gamma} \mathcal{I}\right)^{-1}
$$

hence $\operatorname{Ran}\left(\mathcal{V}_{0}-\omega \mathcal{I}\right)=\operatorname{Ran}\left(\mathcal{A}_{0}-\lambda \mathcal{I}\right)$, since $\operatorname{Ran}\left(\mathcal{A}_{0}-\bar{\gamma} \mathcal{I}\right)^{-1}=\mathcal{D}\left(\mathcal{A}_{0}\right)$. The proof is complete.

Thus, the maximal function $\mathcal{Q}(\omega)$ and the function of Strauss $\mathcal{P}(\lambda)$ which corresponds to the decomposition (20), are connected by the relation

$$
\mathcal{P}(\lambda)=\mathcal{Q}\left(\frac{\lambda-\gamma}{\lambda-\bar{\gamma}}\right)
$$

References

[1] J.A. Ball, N. Cohen, De Branges-Rovnyak Operator Models and Systems Theory: A Survey, Oper. Theory Adv. Appl, Vol. 50, Birkhäuser, Basel, 1991, pp. 93-136.
[2] Sh.N. Saakyan, On the theory of presentations of contractions and their characteristic functions, DAN Arm. SSR, 69, No 4, 1979, 205-208 [Russian].
[3] A.V. Straus, On extensions and characteristic functions of symmetric operator, Izv. Akad. Nauk SSSR, Ser. Math., 32, No 1, 1968, 186-207 [Russian]. [English translation: Math USSR, Izv., 2, 1968, 181-204.]
[4] A.V. Strauss, Functional models of linear operators, Oper. Theory Adv. Appl.,Vol. 123, Birkhäuser, Basel, 2001, pp. 469-484.
[5] I. Valuşescu, The maximal function of a contraction, Acta Sci. Math. 42, 1980, pp. 183-188.
[6] I. Valuşescu, Some connections between maximal function and linear systens, Math.Reports, 12 (62), 2, 2010, pp. 189-199.

Perch Melik-Adamyan
Institute of Mechanics of NAS Armenia
$24 b$ Marshal Baghramian Ave.
Yerevan 0019, Armenia
maperch@gmail.com
Please, cite to this paper as published in Armen. J. Math., V. 9, N. 2(2017), pp. 93101

