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Abstract. In the paper we investigate the role of the Newton
polyhedron <, which generates a multianisotropic Sobolev space
W<
p and Gevrey space G<, and the role of the Newton polyhe-

dron <(P ) of a polynomial P (ξ) (of a linear differential operator
P (D)) in the behavior of P (ξ) at infinity and in the smoothness
of solutions of the equation P (D)u = f. The paper is partly of
an overview nature. However, some of the results are new and
not published anywhere (see, for instance, theorems 2.4, 2.5 and
4.2). Some results are proved in a new way (see, for instance,
theorems 3.1, 4.3 and others).
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1 Introduction

We use the following standard notations: N is the set of all natural numbers,
N0 = N∪{0}, Nn

0 = N0× ...×N0 is the set of all n-dimensional multi-indices,
En and R n are the n-dimensional Euclidean spaces of points (vectors) x =
(x1, ..., xn) and ξ = (ξ1, ..., ξn) respectively, R n, + = {ξ : ξ ∈ R n, ξj ≥
0 (j = 1, ..., n)}, R n, 0 = {ξ : ξ ∈ R n, ξ1...ξn 6= 0}.

For ξ ∈ R n, x ∈ En and α ∈ R n, 0 we put | ξ| =
√
ξ2

1 + ...+ ξ2
n, |α| =

α1 + ... + αn, ξα = ξα1
1 ...ξαnn and for α ∈ Nn

0 we put Dα = Dα1
1 ...Dαn

n ,
where Dj = 1

i
∂
∂xj

(j = 1, ..., n).

Let A = {αj = (αj1, ..., α
j
n)}M1 be a finite set of points in R n, +. By the

Newton polyhedron of the set A we mean the minimal convex hull (which
is a polyhedron) < = <(A) in R n, + containing all points of A.
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A polyhedron < with vertices in R n, + is said to be complete (see
[45], or [24]), if < has a vertex at the origin and one vertex (distinct from
the origin) on each coordinate axis of R n, +. The k-dimensional faces of a
polyhedron < are denoted by <ki (i = 1, ...,M

′

k, k = 0, 1, ..., n − 1). The set
of 0-dimensional faces (vertices) of < we denote by <0.

In the sequel, an outward (with respect to <) normal to a supporting
hyperplane of a complete polyhedron < containing some face <ki and not
containing any other face of dimension greater than k will be called simply
an outward normal to the face <ki . Thus, a given vector λ can serve as an
outward normal to one and only one face of a convex complete polyhedron
<.

The face <ki (1 ≤ i ≤ M
′

k, 0 ≤ k ≤ n − 1) of a polyhedron < is said to
be principal (see [45]) if among the outward normals of this face there is
one with at least one positive component. If among the outward normals
of the principal face <ki there is one whose components are all nonnegative
(positive), then the face <ki is said to be regular (completely regular). A
complete polyhedron < is said to be regular (completely regular), if all
its non-coordinate (n−1)-dimensional faces are regular (completely regular)
(see [29], [3] or [11] and [51]).

Let < be a complete polyhedron with vertices in Nn
0 , <0 be the set of

its vertices, Ω be a domain in En, and 1 < p < ∞. Denote by W<
p (Ω)

(respectively W<0

p (Ω)) the set of functions u with bounded norms (see [29]
or [3], paragraph 13)

||u||W<p (Ω) =
∑
α∈<

||Dαu||Lp(Ω) (1.1)

respectively

||u||W<0
p (Ω) =

∑
α∈<0

||Dαu||Lp(Ω). (1.2)

For the collections A1 = {(0, ..., 0) ∪ [α : α ∈ Nn
0 , |α| ≤ m]} and A2 =

{(0, ..., 0) ∪ [α : α ∈ Nn
0 , |α| = m]} the sets <0(A1) and <0(A2) coincide,

where the sets W
<(A1)
p (Ω) (respectively W

<(A2)
p (Ω)) are coinciding with the

Sobolev space Wm
p (Ω) (respectively W̃m

p (Ω)) with the norm

||u||Wm
p

=
∑
|α|≤m

||Dαu||Lp(Ω) (||u||W̃m
p

=
∑
|α|=m

||Dαu||Lp(Ω) + ||u||Lp(Ω)).

Therefore the sets W<
p (Ω) with the suitable norms we will call multian-

isotropic Sobolev spaces.
Sobolev spaces play an outstanding role in the modern Analysis. In

particular, many fields of mathematics are interested in weighted Sobolev
spaces, and first of all they arise in various issues of the theory of partial
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differential equations. A lot of monographs and papers have already been
devoted to this concepts. We mention only some of such works which are
closely related to the present paper.

In [7] it is proved the density of finite functions in the Sobolev space
W l
p(Ω) for any open set Ω. In [8] it is proved the density of the infinitely

differentiable functions in the same class of functions.
In [5] O.V. Besov proved the density of the infinitely differentiable finite

functions in a weighted Sobolev space. In book [38] A. Kufner deals with
properties of weighted Sobolev spaces, the weight function being dependent
on the distance of a point of the domain from the boundary of the domain or
from its part. In the book [44, section 17] V.Maz’ya discusses possibility of
approximation of functions from weighted Sobolev spaces by smooth func-
tions. The paper [17] discusses the density of polynomials in Sobolev-type
function spaces. The problems considered are motivated by consideration
of the spectral representation of certain Jacobi-type orthogonal polynomi-
als. In [56] V. Zhikov considered the case when smooth functions are not
dense in a weighted Sobolev space. In [37] duality and complex interpolation
are investigated for weighted Sobolev spaces. In [12] necessary and sufficient
conditions for approximation by test functions in a type of weighted Sobolev
spaces are given for a weight µ which is a nontrivial positive Radon measure.

All of these works are devoted to isotropic or anisotropic (weighted)
Sobolev spaces, i.e. the spaces which are generated by a homogeneous or
nonhomogeneous vector m = (m1, ...,mn). Their Newton polyhedrons are
(n + 1)-simplices (geometrically, for example in the case n = 2, they are
right triangles with a vertex in origin, isosceles or not). Here we consider a
general case, when the Sobolev space generates a Newton polyhedron of any
kind.

It turned out that for arbitrary collections A (polyhedrons <) the char-
acter of multianisotropic Sobolev spaces can be essentially different from
usual (isotropic or anisotropic) Sobolev spaces. Therefore a natural problem
arose to find some conditions on a polyhedron < of a set A (and on a
domain Ω) under which

1) the norms (1.1) and (1.2) are equivalent, i.e. the spaces W<
p (Ω) and

W<0

p (Ω) coincide
2) the set of infinitely differentiable functions with compact supports in

Ω is dense in the multianisotropic Sobolev space W<
p (Ω).

3) the set W<
p (Ω) is a semilocal space. Recall that a Banach space B(Ω)

is called semilocal if u ∈ B(Ω) and ϕ ∈ C∞0 (Ω) leads ϕu ∈ B(Ω) (see, for
instance, [ 28, Definition 10.1.18]).

We will discuss these problems in 2 of the present paper. It turns out
that there is a very direct connection between the geometric (regularity)
properties of a Newton polyhedron < and the answers to these questions.
We note in this connection that for a Sobolev space Wm

p (Ω) with a large
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set of domains Ω all these questions have there answers (see, for instance,
[3] or [9]). In particular, the spaces Wm

p (Ω) and W̃m
p (Ω) are isometrically

isomorphic.
Let P (D) = P (D1, ..., Dn) =

∑
α

γαD
α be a linear differential operator

with constant coefficients and let P (ξ) = P (ξ1, ..., ξn) =
∑
α

γα ξ
α be its

characteristic polynomial (the complete symbol). Here the sum is taken
over a finite set of multi-indices (P ) = {α ∈ Nn

0 ; γα 6= 0}.
The Newton polyhedron of the set (P ) ∪ {0} is called the Newton

or characteristic polyhedron of the operator P (D) (the polynomial
P (ξ)) (see [48 ], [ 45] or [24]) and is denoted by <(P ).

Newton polyhedron generalizes the notion of the degree of a polyno-
mial in n variables and the notion of degree of partial differential equations.
There are great many applications of Newton polyhedron’s concept to dif-
ferent fields of mathematics (see, for instance, [35], [36] [54], [16], [46] [49]
and others) but in this work we will only deal with multianisotropic Sobolev
spaces generated by some Newton polyhedron, the behavior at infinity of
polynomials, and the regularity properties of solutions of linear partial dif-
ferential equation.

An operator P (D) (a polynomial P (ξ)) is called hypoelliptic (see [28],
Definition 11.1.2 and Theorem 11.1.1) if the following equivalent conditions
are satisfied:

a) if u ∈ D′(Ω) (Ω is an open set in En, D′(Ω) is the set of distributions
defined in Ω) is a solution of the equation P (D)u = 0 then u ∈ C∞(Ω),

b) all solutions u ∈ D′ = D′(En) of the equation P (D)u = f are infinitely
differentiable (belong to C∞ = C∞(En)) for all f ∈ C∞.

c) if | ξ| → ∞, and 0 6= α ∈ Nn
0 then

P (α)(ξ)/P (ξ) ≡ DαP (ξ)/P (ξ)→ 0.

An operator P (D) is called partally hypoelliptic with respect to
the hyperplane x′′ := (x2, ..., xn) = 0 (see [ 28, Definition 11.1.4 ]) when
P (α)(ξ)/P (ξ) → 0 if 0 6= α ∈ Nn

0 and |ξ′′| → ∞ while ξ′ := ξ1 remain
bounded.

A polynomial P (ξ) is called almost hypoelliptic (see [30]) if for a
constant C > 0

|P (α)(ξ)|/[1 + |P (ξ)| ] ≤ C ∀ξ ∈ Rn, ∀α ∈ Nn
0 .

In [19] the following statement was proved: let f and its derivatives be
square integrable on En with a certain exponential weight, then all solutions
of the equation P (D)u = f, which are square integrable with the same
weight, are also such that all their derivatives are square integrable with
this weight, if and only if the operator P (D) is almost hypoelliptic.
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It turnes out that there is a strong connection between the (almost)
hypoelliptisity of operator P (D) (with the simbol P (ξ)) and the behavior
at infinity of the polynomial P. Denote by In the set of polynomials P (ξ) =
P (ξ1, ..., ξn) such that |P (ξ)| → ∞, as |ξ| → ∞. It is easy to verify that
P ∈ In when P (D) is elliptic or hypoelliptic.

In 3 we present some necessary conditions and sufficient conditions on a
polyhedron <(P ) of a polynomial P under which P ∈ In.

In 4 we present conditions on a polyhedron <(P ) differential operator
P (D) with the symbol P ∈ In under which operator P (D) is hypoelliptic
or almost hypoelliptic.

Since partialy hypoelliptic and almost hypoelliptic differential equations
have solutions which are not infinitely differentiable, a natural problem arose
of finding additional assumptions on solutions of those equations ensuring
there infinitely differentiablity, or what is the same, a problem of selection
of infinitely differentiable solutions of those equations from the set of there
distributional solutions. In 4 we discuss this problem too.

We note that this is not first attempt to reveal the role of the Newton
polyhedron in the theory of partial differential equations. In addition to the
papers [35] - [36] of Khovanskii, which are devoted to applications of the
Newton polyhedron to algebraic and geometric problems, it is worth noting
the monograph [24] of Gindikin and Volevich. In this monograph the method
of the Newton polyhedron is applied to various problems of mathematical
physics. However, the issues that are discussed in this paper are not adressed
there.

As already noted in the annotation, work is partally of an overview na-
ture. However, a number of results, such as theorems 2.4, 2.5 and 4.2, are
new and nowhere published. At the same time, the proofs of several results,
such as theorems 3.1 and 4.3, are carried out here in a new way. We hope
that these proofs are more compact and easily perceived.

2 Some properties of multianisotropic

Sobolev and Gevrey spaces

2.1 Multianisotropic Sobolev spaces without weights

Definition 2.1. (See, for example, [43] or [3, section 11]) A measurable
function Φ(ξ) is called Lp-multiplicator (φ ∈ Mp

p ), if the transformation
TΦ : Lp → Lp defined by the equality

TΦf =
1

(2 π)n/2

∫
En

Φ(ξ)F [f ](ξ) ei(x,ξ)dξ ≡ F−1[ΦF [f ]]
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is bounded for all functions f ∈ C∞0 , i.e. there exists a constant C > 0
such that ||TΦf ||p ≤ C ||f ||p for all f ∈ C∞0 .

We mention two statements on which we shall rely in the sequel.
Theorem L (P.I. Lizorkin, see, for example, [43] or [3, section 11])

Let Φ ∈ C(n)(Rn, 0). Then φ ∈ Mp
p if there exists a number M > 0 such

thet |ξk1
1 ... ξknn Dkφ(ξ)| ≤ M for all ξ ∈ Rn, 0, where k = (k1, ..., kn),

kj (j = 1, ..., n) takes only values 0 and 1.
Theorem M (V.P.Mikhailov, see [45]) For any set A of e1, ..., eN0 ∈

Rn,0 with the Newton polyhedron < = <(A) there exists a constant C > 0
such thet for all ξ ∈ Rn

∑
α∈<

|ξα| ≤ C

N0∑
i=1

|ξei|.

Lemma 2.1 Let 1 < p < ∞ and < = <(A) be the Newton polyhe-
dron of a collection of multi - indices A = { e1, ..., eN0}. Then there exists a
constant C > 0 such that for all u ∈ C∞0

∑
ν∈<

||Dνu||Lp ≤ C

N0∑
i=1

||Deiu||Lp . (2.1)

Proof. Perform the Fourier transformation for functions u ∈ C∞0 . By
applying Theorem M and Parseval’s equality we obtain inequality (2.1) for
p = 2. To prove inequality (2.1) for p 6= 2 note that by properties of Fourier
transformation we have

F [Dνu] = ξνF [u]; F [Deju] = ξe
j

F [u] (j = 1, ..., N0).

A simple computation gives

F [Dνu] =

N0∑
j=1

φj(ξ)F [Deju],

where

φj(ξ) =
ξν+ej

N0∑
k=1

ξ2 ej

≡ ξν+ej

Q(ξ)
(j = 1, ..., N0).

To prove inequality (2.1) for any p ∈ (1,∞) it is sufficient to show that
φj ∈Mp

p (j = 1, ..., N0). For this purpose we apply Theorem L.
The boundedness of {φj} follows immediately from Theorem M. Let us

show the boundedness of (for example) {ξ1
∂φj
∂ξ1
}.

Again, a simple computation gives for each j = 1, ..., N0
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ξ1
∂φj
∂ξ1

= φj(ξ) [(ej1 + ν1)− 2

N0∑
k=1

ek1
ξ2 ek

Q(ξ)
].

Since |ξ2 ek/Q(ξ)| ≤ 1 (k = 1, ..., N0) for all ξ ∈ Rn this implies for

{ξ1
∂φj
∂ξ1
}. In the same way one can prove the boundeness of the other deriva-

tives. Lemma 2.1 is proved. �
Remark 2.1 It follows from results of V.P. Il’in (see [ 29] or [3], Theorem

13.3.2
′
).

Theorem (V.P. Il’in) Let 1 < p < ∞, the domain Ω satisfy the rect-
angle condition (see [2, section 13.1 ]) and let the Newton polyhedron <(A)
of a collection A = { e1, ..., eN0} be completely regular. Then there exists a
constant C > 0 such that for all u ∈ W<

p (Ω)

||u||W<p (Ω) ≡
∑

ν∈<(A)

||Dνu||Lp(Ω) ≤ C

N0∑
i=1

||Deiu||Lp(Ω). (2.2)

Since the reverse inequality is obvious, this implies that for completely
regular polyhedron and the domain Ω satisfying the rectangle condition, the
norms (1.1) and (1.2) are equivalent, i.e. the spaces W<

p (Ω) and W<0

p (Ω)
coincide.

V.P. Il’in proved also that for a collection A with nonregular Newton
polyhedron <(A) (even, for example, complete) the estimate (2.2) can not
be valid.

Lemma 2.2 Let the Newton polyhedron < = <(A) of a collection
of multiindices A = { e1, ..., eN0} be regular. The set of infinitely differen-
tiable finite (in En) functions is dense in W<

p = W<
p (En) if and only if the

inequality (2.1) is valid for all functions u ∈ W<
p .

Proof. Sufficiency. Inequality (2.1) be valid and let ω(t) ∈ C∞0 be a

function of one variable such that ω(t) = 0 outside of (0, 1),
∫ 1

0
ω(t)dt = 1.

Let a function u ∈ W<
p be fixed and put

uh(x) =
1

hn

∫ n∏
i=1

ω(
yi
h

)u(x+ y) dy.

Then it is easily seen that (see, for example [ 3]) 1) uh ∈ C∞, 2)
||u − uh||W<p → 0 as h → 0. The set of infinitely differentiable functions

is dense in W<
p and it remains to proof that every infinitely differentiable

function u ∈ W<
p one can approximate in W<

p by C∞0 −functions.
Let for any k ∈ N χk(x) ∈ C∞0 , 0 ≤ χk(x) ≤ 1 for all x ∈ En,

χk(x) = 1 for |x| ≤ k, χk(x) = 0 for |x| > k + 1, |Dαχk(x)| ≤ M,
where the constant M > 0 does not depend on α ∈ Nn

0 and k. Denote
ϕk(x) = χk(x)u(x). Since u ∈ C∞ it is clear that ϕk ∈ C∞0 . On the other
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hand it follows by the Leibnitz’ formula and the regularity of the polyhedron
< that ϕk ∈ W<

p . Then we get for a number C > 0

N0∑
j=1

||Deju−Dejϕk||Lp =

N0∑
j=1

||Dej [u− ϕk]||Lp =

N0∑
j=1

Dej [u (1−χk)]||Lp(|x| > k) ≤ sup
x,k,α∈<

|Dα[1−χk(x)]
∑
ν∈<

||Dνu||Lp(|x| > k)

≤ C
∑
ν∈<

||Dνu||Lp(|x| > k).

Since u ∈ W<
p , hence Dνu ∈ Lp and, consequently ||Dνu||Lp(|x| >

k) → 0 as k → ∞, i.e. ||u − ϕk||W<p =
N0∑
j=1

||Deju − Dejϕk||Lp → 0 as

k →∞. Sufficiency is proved.

Necessity. By Lemma 2.1 the inequality (2.1) is valid for functions from
C∞0 . If the set C∞0 is dense in W<

p then the inequality (2.1) is valid for all
functions u ∈ W<

p . Lemma 2.2 is proved. �
Combining Lemmas 2.1 and 2.2 we obtain

Theorem 2.1 Let the Newton polyhedron < of a set e1, ..., eN0 be
regular. Then the set C∞0 is dense in W<

p . �
In this section we define the notion of Newton polyhedron for the set of

differential operators (polynomials) too. Let

Qj(D) =
∑
α∈(Qj)

qjαD
α (j = 1, ...,M)

be a set of linear differential operators with constant coefficients. The New-
ton polyhedron of the set

⋃
(Qj) ∪ {0} is called the Newton polyhedron of

the set of operators {Qj(D)} (the polynomials {Qj(ξ)}) and is denoted by
<({Qj}).

For given Ω ⊂ En and 1 < p < ∞ we denote by w
<({Qj})
p (Ω) the set of

functions {u} with the bounded norm

||u||
w
<({Qj})
p (Ω)

=
M∑
j=1

||Qj(D)u||Lp(Ω) + ||u||Lp(Ω).

For differential operators with homogeneous principal parts of the same
degree K.T. Smith in [ 52] and J. Necas in [47] proved that under a certain
assumptions on the domain Ω the following estimate is fulfilled with some
constant C > 0
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∑
ν∈w

<({Qj})
p (Ω)

||Dνu||Lp(Ω) ≤ C ||u||
w
<({Qj})
p (Ω)

∀u ∈ w<({Qj})
p (Ω)

if homogeneous principal parts of polynomials (symbols) Qj(ξ) have not
any common complex zero except of ξ = (0, .., 0).

O.V.Besov in [ 4] obtained a similar result for operators with general-
ized homogeneous principal parts of the same degree and in [ 34] a similar
inequality was proved for more general operators with a completely regular
Newton’s polyhedron

⋃
<(Qj)· �

2.2 Multianisotropic Gevrey spaces
The Gevrey classes Gs(Ω) (see [18], [28, Definition 11.4.1], or [51, Def.

1.4.1]) are intermediate spaces between the spaces C∞(Ω) and A(Ω) and
play the important role in the theory of linear partial differential equations.

The question of finding the largest functional class in which the Cauchy
problem is well-posed is an important example of the role of Gevrey func-
tions as intermediate classes between the analytic and C∞ classes. In fact,
the Cauchy - Kowalevsky Theorem ensures the well posedness in the frame
of analytic functions for any operator with analytic coefficients. However,
the hypothesis of weak hyperbolicity is necessary whenever we require a com-
mon domain of existence of the solution not depending on the initial data.
On the other hand, whereas strict hyperbolicity implies well posedness in
C∞, the Cauchy problem is not well posed in general for weakly hyperbolic
operators, which can be seen immediately for the heat operator in R2. In
the case of weakly hyperbolic operators with constant coefficients, necessary
and sufficient conditions of well - posedness in C∞ were given by [41], [25],
[40], [53 ], in the case of s−hyperbolic operators in [39], [14 ] and others.

Let Ω be an open subset of En and let s ≥ 1 be a fixed real number.
Denote by Gs(Ω) the set of functions f ∈ C∞(Ω) such that for every compact
subset K ⊂ Ω there exists a constant C > 0 such that for all multi - indices
α ∈ Nn

0 and x ∈ K

|Dαf(x)| ≤ C |α|+1(α!)s.

In particular G1(Ω) is the space A(Ω) of all analytic functions.
Let < be a completely regular polyhedron, ∂< be the exterior boundary

of <, i.e the set of points x ∈ < for which outward (with respect to <)
normal λ(x) has only positive components and (see, for example [11])

µ = max
x∈∂<, 1≤j≤n

1

λj(x)
; k(α,<) = inf{t > 0 : α ∈ t−1<}.
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Following Corli [15] and Zanghirati [55] we define a multianisotropic
Gevrey space Gs, <(Ω) as the set of all f ∈ C∞(Ω) such that for every
compact K ⊂ Ω there exists a constant C > 0 such that for all α ∈ Nn

0

and x ∈ K

|Dαf(x)| ≤ C |α|+1(µ k(α,<))s µ k(α,<).

These spaces include as particular cases the standard Gevrey classes (sf.
[18] and [51] for a comprehensive exposition) and the anisotropic Gevrey
classes (cf. [24], [ 50], [2], [55]).

The standard Gevrey classes (as well as the standard Sobolev classes)
can be seen as an example of the multianisotropic Gevrey (Sobolev) spaces
associated to the Newton polyhedron of an elliptic operator having vertices
(0, ..., 0), (m, 0, ..., 0), ..., (0, ..., 0,m).

Let us consider partial differential operators with constant coefficients in
En+1 = Et × Enx non characteristic with respect to the t−hyperplane, i.e.
operators that can be written in the form:

P (D) := P (Dt, Dx) = Dm
t +

∑
|ν|+j≤m, j 6=m

aν j D
ν
xD

j
t .

We say that P (D) is s−hyperbolic (with respect to the variable t, 1 <
s <∞) if for some constant C > 0 its symbol satisfies the condition:

λm +
∑

|ν|+j≤m, j 6=m

aν j ξ
νλj 6= 0

for any (λ, ξ) ∈ Ct × En
x , Im λ < −C (1 + |ξ| 1s ).

In the case Im λ < −C we say that P (D) is hyperbolic (by Petrovskii -
Gȯrding).

Following Daniela Calvo we say that operator P (D) is multiquasihyper-
bolic of order s (1 < s <∞) with respect to a completely regular polyhedron

< if P (λ, ξ) 6= 0 for any (λ, ξ) ∈ Ct × Enx, Im λ < −C |ξ|
1
s
<, where |ξ| < is

weight associated to < as follows

|ξ| < = (
∑
α∈<0

ξ2α)
1

2µ .

In [11] it is proved the following result of well posedness of the Cauchy
problem stating the multianisotropic Gevrey regularity with respect to the
space variables (see [ 11, Theorem 8])

Theorem Let P (D) be a differential operator in Et × Enx, multiquasi-
hyperbolic of order s (1 < s <∞) with respect to a completely regular poly-
hedron <. Let 1 < r < s, and assume fk ∈ Gr, <

0 (En
x ) ≡ Gr, <(Enx) ∩ C∞0 (Enx)

for k = 0, 1, ...,m− 1. Then the Cauchy problem:
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P (D)u = 0; Dk
t u(0, x) = fk(x) ∀x ∈ En, ∀k = 0, 1, ...,m− 1

admits a uniqe solution u ∈ C∞([−T, T ], Gr, <) for any T > 0.
This theorem generalizes analogous results for s−hyperbolic operators,

earlier obtained by Larsson, Cattabriga and others (see, for instans, [14],
[39]).

In monograph [24] S. Gindikin and L. Volevich introduced a notion of
dominantly correct operator, gave an algebraic description of dominantly
correct polynomials and proved the correctness of Cauchy’s problem for such
operators with variable coefficients. They presented sufficient conditions
for correctness of Cauchy’s problem for general differential operators with
variable coefficients of constant strength as well.

In connection with the study of Fourier Lp−multiplicators V.I. Burenkov
and M.Sh. Tuyakbaev introduced in [10] a Gevrey type class Jγ, p(En) which
elements are defined by the norms of Lp− multiplicators. �

2.3 Weighted multianisotropic Sobolev spaces

In this point we consider three kind of weighted multianisotropic Sobolev
spaces connected with the boundedness of a domain Ω, i.e. when A) Ω = En,
B) Ω 6= En, but Ω is unbounded, C) Ω is bounded. In the cases A) - C) a
particular polyhedron and a weight correspond to each Ω.

A) Let α ∈ Nn
0 be an arbitrary multi-index and g ∈ C∞ := C∞(En) be

any positive function such that a) for some positive constants κ and κα

κ−1e−δ |x| ≤ gδ(x) ≤ κ e−δ |x|; |Dαgδ(x)| ≤ κα δ
|α| gδ(x) ∀x ∈ Rn, (2.3)

where gδ(x) = g(δ x) for any δ > 0 .
b) Let T > 0, ST := {x ∈ Rn : |x| < T} and G ⊂ ST . Then there exist

positive numbers σ1 and σ2 such that for any δ > 0 and x ∈ Rn

sup
y∈G

gδ(x+ y) ≤ σ1 gδ(x), sup
y∈G
|gδ(x+ y)− gδ(x)| ≤ σ2 T gδ(x). (2.4)

In [19] it is proved the existence of such a function. Note that the regular-
ization (averaging) of the function H(x) = e−|x| for |x| > 1 and H(x) = e−1

for |x| ≤ 1 can be taken as a function g (see, for instance [3, section 5]).
Let 1 < p < ∞ and δ > 0. Denote by Lp, δ := Lp, g δ(En) the set of

functions locally integrable in En with a bounded norm
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||u||Lp, δ := ||u gδ||Lp = [

∫
En
|u(x)|p gpδ (x) dx ]

1
p (2.5)

and for any regular polyhedron < with vertices in Nn
0 by W<

p, δ the set of
functions u ∈ Lp, δ with a bounded norm

||u||W<p, δ :=
∑
α∈ <

||(Dαu)gδ||Lp =
∑
α∈ <

||Dαu||Lp, δ . (2.6)

By the dimensional reasons one can proof (for a nonweighted Sobolev
spaces see [3, section 9.4] or [29, Theorem 2])

Lemma 2.3 Let < be a completely regular polyhedron, and ν ∈ Nn
0 be

any interior point of <. Then, for any ε > 0 there exists a number C(ε) > 0
such that

||Dνu||Lp, δ ≤ ε||u||W<p, δ + C(ε)||u||Lp, δ ∀u ∈ W<
p, δ. (2.7)

�
Lemma 2.4 Let < be a completely regular polyhedron. Then, one can

introduce in W<
p, δ a norm

||u||′W<p, δ :=
∑
α∈ <

||Dα(ugδ)||Lp (2.6′)

which is equivalent to the norm (2.6).
Proof. By the Leibnitz’ formula

∑
α∈<

Dα(ugδ) =
∑
α∈<

[Dαu]gδ +
∑
α∈<

|α|∑
|β|=1

Cα,βD
α−βuDβgδ. (2.8)

Applying property (2.4) of function gδ we obtain then

||u|| ′W<p, δ ≤ C1||u||W<p, δ ∀u ∈ W
<
p, δ (2.9)

with a positive constant C1 = C1(δ). To prove the reverse inequality write
Leibnitz’ formula (2.8) in the form

∑
α∈<

[Dαu]gδ =
∑
α∈<

Dα(ugδ)−
∑
α∈<

|α|∑
|β|=1

Cα,βD
α−βuDβgδ. (2.8′)

Since |β| > 0 and polyhedron < is completely regular, all multiindices
α− β in the right hand side of (2.8’) are interior points of <. Then for any
ε > 0 we can use the inequality (2.7) for the second sum in the right hand
side of (2.8’), i.e. independent on ε there exist some positive constants C2

and C3, such that for all u ∈ W<
p, δ
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||
∑
α∈<

|α|∑
|β|=1

Cα,βD
α−βuDβgδ||Lp, δ ≤ εC2||u||W<p, δ + C(ε)C3||u||Lp, δ ,

which together with (2.8’) this implies the following inequality

||u||W<p, δ ≤ ||u||
′

W<p, δ
+ εC2||u||W<p, δ + C(ε)C3||u||Lp, δ . (2.10)

Choose the number ε > 0 such that 1− εC2 > 0, move the second term
from the right hand side of the relation (2.10) to the left hand side and
divide both parts of the received inequality by 1 − εC2 > 0. We get with
some positive constants C4 and C5

||u||W<p, δ ≤ C4||u||
′

W<p, δ
+ C5||u||Lp, δ ∀u ∈ W<

p, δ.

Together with inequality (2.9) this proves the lemma. �
Remark 2.2 Let a polyhedron < be not completely regular. Then for

some multi-index α ∈ < and some 0 6= β ∈ Nn
0 the multi-index α − β is

not an interior point of <. Then we can not apply Lemma 2.3 in the proof
of Lemma 2.4. In [19] an analogue of Lemma 2.4 is proved for the regular
polyhedron < when p = 2 . �

Theorem 2.2 Let < be any completely regular polyhedron. The set
C∞0 = C∞0 (En) is dense in W<

p, δ.

Proof. Let u ∈ W<
p, δ, S1 := {x ∈ En : |x| < 1}, ϕ ∈ C∞0 (S1),

ϕ(x) ≥ 0,
∫
ϕ(x)dx = 1, ε > 0 and ϕε(x) = ε−n ϕ(x/ε). Now we put

uε(x) := u ∗ ϕε =

∫
u(x− y)ϕε(y)dy = ε−n

∫
u(x− y)ϕ(y/ε)dy.

It is well known (see, for instance, [3, section 5]) that uε ∈ C∞0 and
||u − uε||Lp → 0 as ε → 0. To complete the proof of the theorem we shall
prove that

||u− uε||W<p, δ → 0 as ε→ 0. (2.11)

Since Dα(uε) = (Dαu)ε we have

||u− uε||W<p, δ =
∑
α∈<

||Dα(u− uε)||Lp, δ =
∑
α∈<

||[Dαu− (Dαu)ε] gδ||Lp ≤

≤
∑
α∈<

||(Dαu) gδ−((Dαu) gδ)ε||Lp +
∑
α∈<

||((Dαu) gδ)ε−(Dαu)ε gδ||Lp . (2.12)
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Since (Dαu) gδ ∈ Lp for u ∈ Lp, and α ∈ <, and a function in Lp is mean
continuous (see, for instance, [ 3]), we get∑

α∈<

||(Dαu) gδ − ((Dαu) gδ)ε||Lp → 0 as ε→ +0. (2.13)

The proof is completed by showing that

Aε :=
∑
α∈<

||((Dαu) gδ)ε − (Dαu)ε gδ||Lp → 0 as ε→ +0. (2.14)

Since ϕε ∈ C∞0 (Sε) for any ε > 0 hence

Aε =
∑
α∈<

||
∫

(Dαu)(x− y)[gδ(x− y)− gδ(x)]ϕε(y)dy||Lp .

In view of the inequality (2.4) it follows when T = ε

Aε ≤ σ2ε
∑
α∈<

||
∫

(Dαu)(x− y) gδ(x− y)ϕε(y)dy||Lp .

Applying here Young’s inequality, we get

Aε ≤ σ2ε
∑
α∈<

|| (Dαu) gδ||Lp ||ϕε||L1 .

Since u ∈ W<
p, δ and ||ϕε||L1 = 1 for any ε > 0, it follows that Aε → 0 as

ε→ 0, i.e the relation (2.14) is proved. Besides since (2.13) and (2.14), our
theorem is proved. �

B) In the present subsection even numbers m and m2 (m > m2) are
fixed and we denote by < = <(m,m2) ⊂ Rn,+ the Newton polyhedron with
the vertices (0, ..., 0), (m, 0, ..., 0), ..., (0, ..., 0,m) and (m,m2, ..., 0). It is
easy to verify that < is a regular (but not completely regular) polyhedron.

Let us introduce some weight functions and weighted multianisotropic
Sobolev spaces connected with the polyhedron < = <(m,m2) and the do-
main Ωκ := {x = (x1, x

′′
) = (x1, x2, ..., xn) ∈ En; |x1| < κ} for a given

κ > 0. Namely, as a weight function we consider a function g ∈ C∞(−1, 1)
of one variable t ∈ E1 such that

1) 0 ≤ g(t) ≤ 1, g(−t) = g(t) for t ∈ E1 and g(t) = 0 for |t| ≥ 1.

2) Let κ > 0 and gκ(t) = g(t/κ). Then

g(l)
κ (t) := Dl[gκ(t)] = κ−1(Dlg)κ(t)



116 H.G. GHAZARYAN

for t ∈ (−κ, κ) and for all l = 0, 1, .... It is easy to verify that such a
function is the following one (for any k ∈ N) g(t) = 1/(2k)!(1 − t2k) for
t ∈ (−1, 1) and g(t) = 0 for |t| ≥ 1 .

Let <′ be the set of multi indices α ∈ < such that (α1, α
′′) ∈ <, (α1 +

1, α′′) /∈ <.
We introduce an integer valued function d(α) with the domain <∩Nn

0 ,
which satisfies the following conditions:

1) d(α1 ± l) = d(α)± l for any l ∈ N such that α1 − l ∈ N0,
2) d(α) < m for α ∈ < \ <′ and 3) d(α) = m for α ∈ <′.
Such a function for the polyhedron <(m,m2) were constructed in [22].
Note that for a polyhedron <, which corresponds to an isotropic Sobolev

space Wm
p (for example, when m2 = 0 in the polyhedron <(m,m2)) the

set <′ coincides with the set {α ∈ <, |α| = m}, and d(α) = |α| for any
α ∈ <.

Let 1 < p < ∞, κ > 0, polyhedron < = <(m,m2), domain Ωκ and
functions g and d be defined as just above. Denote by W<, d

p, g (Ωκ) the set of
functions u locally integrable on Ωκ with a finite norm

||u||W<, dp, g (Ωκ) =
∑
α∈<

||Dαu gd(α)
κ ||L2(Ωκ). (2.15)

Theorem 2.3 The set C∞0 (Ωκ) is dense in W<, d
p, g (Ωκ).

Proof. Let a function u ∈ W<, d
p, g (Ωκ) be fixed. By the definition of the

improper Lebesgue integral, for each ε > 0 there exist numbers δ ∈ (0, κ)
and M ≥ 1 such that

||u||W<, dp, g (Ωκ\ΩMκ−δ)
< ε, (2.16)

where ΩM
κ−δ = {x ∈ En, |x1| < κ− δ, |xj| < M, j = 2, ..., n}.

For the fixed κ, δ and M we construct nonnegative functions ϕδ ∈
C∞0 (E1) of one variable x1 ∈ E1, and ψ ∈ C∞0 (En−1) of variables x′′ =
(x2, ..., xn) ∈ En−1 such that

1) ϕδ(x1) = 1 for |x1| < κ− δ and ϕδ(x1) = 0 for |x1| > κ− δ/2,
2) ψ(x′′) = 1 for |xj| < M and ψ(x′′) = 0 for |xj| ≥M+1 (j = 2, ..., n),
3) for a number b ≥ 1 and for all x = (x1, x

′′) ∈ En

ϕ
(j)
δ ≤ b δ−j (j = 0, 1, ...,m); |Dα′′ψ(x′′)| ≤ b (|α′′| ≤ m).

The existence of such function ψ is obvious. To construct the function ϕδ
we denote by χA the characteristic function of the set A = A(κ, δ) = {|x1| ≤
κ− 3

4
δ} and put for ω : 0 ≤ ω ∈ C∞0 (−1, 1),

∫
ω(x)dx = 1, ωε(x) = ε−1ω(x

ε
)

ϕδ(x1) = (χA ∗ ωδ/4)(x1) =

∫
E1

χA(x1 − t)ωδ/4(t)dt =
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=

∞∫
−∞

χA(z)ωδ/4(x1 − z)dz. (2.17)

It is obvious that ϕδ ∈ C∞0 (E1). Firstly we show that ϕδ satisfies the
condition 1). Let |x1| ≤ κ − δ. Since |t| ≤ δ/4 and |x1 − t| ≤ |x1| + |t|
≤ κ− δ + δ/4 = κ− 3

4
δ hence χA(x1 − t) = 1, and from (2.17) we have for

|x1| ≤ κ− δ

ϕδ(x1) =

δ/4∫
−δ/4

ωδ/4(t)dt =

δ/4∫
−δ/4

(δ/4)−1 ω(
t

δ/4
) dt = 1.

Let now |x1| ≥ κ−δ. Then |x1−t| ≥ |x1|−t > κ−δ/2−δ/4 = κ−κ− 3
4
δ,

therefore χA(x1 − t) = 0 and it follows from (2.17) that ϕδ(x1) = 0. Thus,
condition 1) is proved.

Let us prove the property 3) of function ϕδ. From (2.17) and from the
definition of the function χA we have

ϕδ(x1) =

κ− 3
4
δ∫

−(κ− 3
4
δ)

ωδ/4(x1 − z) dz =
4

δ

κ− 3
4
δ∫

−(κ− 3
4
δ)

ω(
x1 − z
δ/4

) dz.

Therefore

ϕ
(j)
δ (x1) =

4

δ

κ− 3
4
δ∫

−(κ− 3
4
δ)

Dj
x1
ω(
x1 − z
δ/4

) dz =

= (
4

δ
)j+1

κ− 3
4
δ∫

−(κ− 3
4
δ)

(Dj
x1
ω)(

x1 − z
δ/4

) dz = (
4

δ
)j

κ− 3
4
δ∫

−(κ− 3
4
δ)

ω(j)(t) dt.

Then

|ϕ(j)
δ (x1)| ≤ (

4

δ
)j

∞∫
−∞

|ω(j)(t)| dt ≡ Cjδ
−j (j = 0, 1, ...,m).

Denoting by b the maximum of the numbers {Cj}, we get the property
3) of the function ϕδ. After the construction of functions ϕδ and ψ we put
v(x) = u(x)ϕδ(x1)ψ(x′′). Then supp v ⊂ ΩM

κ−δ/2.
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It is assumed henceforth that for all α ∈ < the functions Dαu are con-
tinued by zero outside of Ωκ. We denote by Dαu the continued functions
too.

Since v(x) = u(x) for x ∈ ΩM
κ−δ/2 and Dαu ∈ Lp for α ∈ <, we obtain by

(2.16)

∑
α∈<

||(Dαv −Dαu) gd(α)
κ ||Lp(En) =

∑
α∈<

||(Dαv −Dαu) gd(α)
κ ||Lp(En\ΩM

κ−δ/2) ≤

≤
∑
α∈<

[||Dαv gd(α)
κ ||Lp(En\ΩM

κ−δ/2) + ||Dαu gd(α)
κ ||Lp(En\ΩM

κ−δ/2) ≤

≤
∑
α∈<

||Dα[u(x)ϕ
(j)
δ (x1)ψ(x′′)] gd(α)

κ ||Lp(En\ΩM
κ−δ/2) + ε. (2.18)

Since gκ(x1) ≤ (2δ)/κ for x ∈ supp(ϕδ ψ) ∩ (Ωκ \ ΩM
κ−δ/2) and g

d(α)
κ ≤

g
d(β)
κ for β ≤ α, applying the Leibnitz’ formula and properties 1) - 3) of

the functions ϕδ and ψ, we obtain for the first part in the right - hand
side of (2.18) with a constant A1 = A1(κ) > 0∑

α∈<

||Dα[u(x)ϕ
(j)
δ (x1)ψ(x′′)] gd(α)

κ ||Lp(En\ΩM
κ−δ/2) ≤

≤
∑
α∈<

∑
β≤α

Cβ
α ||Dβu(Dα1−β1ϕδ)(D

α2−β2

2 ...Dαn−βn
n ψ) gd(α)

κ ||Lp(En\ΩM
κ−δ/2) ≤

≤
∑
α∈<

∑
β≤α

Cβ
α b
|α−β| δ−(α1−β1) (

δ

κ
)α1−β1 ||Dβu gd(α)

κ ||Lp(En\ΩM
κ−δ/2) ≤

≤ A1

∑
α∈<

||Dβu gd(α)
κ ||Lp(En\ΩM

κ−δ/2) ≤ A1 ε.

From here and (2.18) we get∑
α∈<

||(Dαv −Dαu) gd(α)
κ ||Lp(En) ≤ (A1 + 1) ε. (2.19)

Let h > 0, Sh = {x ∈ Rn, |x| < h}, θ ∈ C∞0 (S), θ(x) ≥ 0,
∫
θ(x)dx = 1,

θh(x) = h−2 θ(x/h) and vh = v ∗ θh.
It is easy to see that vh ∈ C∞(En) for h > 0, where vh(x) = 0 for x 6=

supp v ∪ S̄h. On the other hand since supp v ∪ S̄h ⊂ Ωκ for h ∈ (0, δ/4) we
have vh ∈ C∞0 (Ωκ) for h ∈ (0, δ/4).
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Since gκ(x1) ≤ 1 and u ∈ W<, d
p, g (Ωκ), we obtain Dαv ∈ Lp(En) for all

α ∈ <, where (see, for instance, [3] 6.3. (2)) Dα(vh) = (Dαv)h. Then by
Yung’s inequality and by the continuity in the mean of functions from Lp
we get ∑

α∈<

||Dα(vh − v) gd(α)
κ ||Lp(En) ≤

∑
α∈<

Dα(vh − v) ||Lp(En) =

=
∑
α∈<

||(Dαv)h −Dαv ||Lp(En) ≤
∑
α∈<

sup
|x|<h
||Dαv(x− y)−Dαv(x) ||Lp(En) → 0

as h→ 0.
Since ε > 0 is arbitrary, from (2.16) - (2.19) we complete the proof of

the theorem. �

2.4 Semilocallity of weighted multianisotropic Sobolev spaces

It is easy to verify that classical Sobolev spaces (isotropic or anisotropic)
are semilocal. It turnes out that for the multianisotropic Sobolev space
W<
p := W<

p (En) generated by a regular polyhedron <, weighted spaces
W<
p, δ := W<

p, δ(En) and W<, d
p, g (Ωκ) considered in the section 2 are also semilo-

cal. Indeed, by applying Leibnitz’ formula one can easily prove
Theorem 2.4 Let < be a regular polyhedron forming spaces W<

p and
W<
p, δ, and let < = <(m,m2) (see point 2.2.B) be the polyhedron forming the

space W<, d
p, g (Ωκ). Then these spaces are semilocal, i.e. if u belongs to one

of those spaces and ϕ ∈ C∞0 (En) (ϕ ∈ C∞0 (Ωκ) in the last case) then ϕu
also belongs to the corresponding space. �

C) In this point we consider a two dimensional multianisotropic weighted
Sobolev space with bounded domain Ω ⊂ E2. We prove the semilocality in
a limited sense of such space.

At this point, the natural numbers l and m (l < m) and, as a conse-
quence, the polyhedron < = <(l,m) = {υ ∈ N2

0, υ1 ≤ l, υ1 + υ2 ≤ m}
will be fixed. The polyhedron < is a regular quadrangle in R2, + with ver-
tices (0, 0), (l, 0), (l,m − l), and (0,m). Note that the polyhedron < is not
completely regular since the one dimensional side [(l, 0)− (l,m− l)] of quad-
rangle < is perpendicular to semi axis (0, α1), or what is the same, the second
coordinate of outward normal of this side is zero.

Let a and b be positive numbers and
∏

=
∏

(a, b) := {(x, y) ∈ E2,
x ∈ (−a, a), y ∈ (−b, b)}. It is easy to see that a linear transformation of
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coordinates does not change the type of Newton polyhedron. Therefore by
linear transformation x = x, y = b y1 one can pass from the rectangle

∏
(a, b)

to the rectangle
∏

=
∏

(a) :=
∏

(a, 1).

Finally, as a weighted function we consider the function g(t) = 1− t2 for
|t| ≤ 1 and g(t) = 0 for |t| > 1 and for p ∈ (1,∞) denote by W<

p, g(
∏

) :=

W
<(l,m)
p, g (

∏
(a)) the set of functions u ∈ Lp(

∏
) with a bounded norm

||u||W<p, g(
∏

) =
∑
α∈<

||Dαu g|α|(y)||Lp(
∏

). (2.20)

By regularity of the polyhdron < and definition of the weight function g
it follows that W<

p, g is a weighted Sobolev type Banach space.

By Ẇ<
p, g(
∏

) we denote the supplement of the set C∞0 (
∏

) by the norm

(2.20) and by W<
p, g, loc(

∏
) the set of functions u ∈ W<

p, g(
∏′) for any a′ ∈

(0, a), where
∏′ = ∏(a′) := {(x, y) ∈

∏
; −a′ < x < a′} ⊂

∏
.

Remark 2.3 It is easy to see that u ∈ W<
p, g, loc(

∏
) if and only if

u(x, y)ψ(x) ∈ W<
p, g(
∏

) for any ψ ∈ C∞0 (−a, a). �
Below, in the proof of Theorem 2.4 we will use following simple assertions

(for proofs see [23]).

Lemma 2.5 Let δ ∈ (0, 1), m ∈ N and k, n ∈ N0, k + n ≤ m. Then

1) gn(t) ≤ (2 δ)n for any t : 1− δ ≤ |t| < 1

2) gm−k(t) ≤ (2 δ)ngm−k−n(t) for any t : 1− δ ≤ |t| ≤ 1

3) There exists a number σ = σ(m) > 0 such that

| d
k

dtk
gm(t)| ≤ σ gm−k(t) ∀t ∈ (−1, 1), (k = 0, 1, ...,m).

Lemma 2.6 Let δ > 0. There exists a function υδ(t) such that

1) υδ ∈ C∞0 (−1 + δ/2, 1− δ/2); 2) 0 ≤ υδ(t) ≤ 1 ∀t ∈ E1;

3) υδ(t) = 1; for |t| ≤ 1−δ; 4) for each k ∈ E0 there is a number Ck > 0,

independent of δ, such that |υ(k)
δ (t)| ≤ Ck δ

−k ∀t ∈ E1, (k = 0, 1, ...). �
Theorem 2.5 Let u ∈ W<

p, g, loc(
∏

) and ψ ∈ C∞0 (−a, a). Then

u(x, y)ψ(x) gm(y) ∈ Ẇ<
p, g

(∏)
.

Proof. Let δ ∈ (0, 1), and the function υδ(y) be chosen by Lemma 2.6,
d1 = max {Ck; 1 ≤ k ≤ m} and

∏
δ =

∏
(a, 1) \

∏
(a, 1− δ). Then, by the

property 3) of the function υδ it follows

I := ||u(x, y)ψ(x) gm(y)[1− υδ(y)]||W<p, g(
∏

) =

= ||u(x, y)ψ(x) gm(y)[1− υδ(y)]||W<p, g(
∏
δ)

=
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=
∑
α∈<

||Dα[u(x, y)ψ(x) gm(y)(1− υδ(y))]||Lp(
∏
δ)
.

Let us apply the properties 2) and 4) of the function υδ and Leibnitz’
formula to estimate the expression I. We get (below || · || = || · ||Lp(

∏
δ)

)

I ≤
∑
α∈<

||Dα[u(x, y)ψ(x) gm(y)]||+

+d1

∑
α∈<, α2>0

α2∑
β2=1

Cβ2
α2
δ−β2 ||Dα − (0, β2)[u(x, y)ψ(x) gm(y)]||,

where {Cj
i } are binomial coefficients. By applying once more Leibnitz’ for-

mula we obtain

I ≤ {
∑
α∈<

||Dα[u(x, y)ψ(x) gm(y)]||+

+
∑

α∈<, α2>0

α2∑
β2=1

Cβ2
α2
δ−β2 ||Dα−(0,β2)[u(x, y)ψ(x) [Dβ2gm(y)]||}+

+d1 {
∑

α∈<, α2>0

α2∑
β2=1

Cβ2
α2
δ−β2 ||Dα−(0,β2)[u(x, y)ψ(x) gm(y)]||+

+
∑

α∈<, α2>0

α2∑
β2=1

Cβ2
α2
δ−β2

α2−β2∑
γ2=1

Cγ
α2−β2

||Dα−(0,γ2)[u(x, y)ψ(x)Dγ2

2 g
m(y)]||}

=: I1 + d1 I2. (2.21)

By Lemma 2.5 we get for the term I1

I1 ≤
∑
α∈<

||Dα[u(x, y)ψ(x) gm(y)]||+

+σ
∑

α∈<, α2>0

α2∑
β2=1

Cβ2
α2
δ−β2 ||Dα−(0,β2)[u(x, y)ψ(x) [Dβ2gm(y)]||.

Analogously, for the term I2 we have with a constant σ1 > 0

I2 ≤
∑

α∈<, α2>0

α2∑
β2=1

Cβ2
α2
δ−β2 (2δ)β2||Dα−(0,β2)[u(x, y)ψ(x)] gm−β2(y)]||+
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+σ1

∑
α∈<, α2>0

α2∑
β2=1

δ−β2

α2−β2∑
γ2=1

(2δ)−β2||Dα−(0,β2+γ2)[u(x, y)ψ(x)]gm−β2−γ2(y)]||.

Grouping corresponding terms in the estimates for I1 and I2 we get from
(2.21) with a constant d2 > 0

I ≤ d2

∑
α∈<

α2∑
β2=0

||Dα−(0,β2)[u(x, y)ψ(x)] gm−β2(y)]||. (2.22)

Since m − β2 ≥ |α − (0, β2)| for α ∈ < : 0 ≤ β2 ≤ α2 and g(y) ≤ 1 for
|y| ≤ 1 by the definition of function g we have

gm−β2(y) ≤ g|α−(0,β2)|(y) ∀y ∈ (−1, 1). (2.23)

On the other hand, since the polyhedron < is regular, the set {α−(0, β2) :
α ∈ <, 0 ≤ β2 ≤ α2} ⊂ <. Therefore it follows from (2.22), (2.23) with a
constant d3 > 0

I ≤ d3

∑
α∈<

||Dα[u(x, y)ψ(x)] g|α|(y)]||Lp(
∏
δ)
. (2.24)

According to the Remark 2.3 Dα[u(x, y)ψ(x)] g|α|(y) ∈ Lp(
∏

) for all
α ∈ <. Besides, mes

∏
δ → 0 as δ → +0. Therefore the right - hand side of

(2.24) tends to zero as δ → +0 i.e.

I ≡ ||u(x, y)ψ(x) gm(y)[1− υδ(y)]||W<p, g(
∏
δ)
→ 0 as δ → +0. (2.25)

Now we show that for every ε > 0 there is a function φε ∈ C∞0 such that

||u(x, y)ψ(x) gm(y)υδ(y)− φε(x, y)||W<p, g(
∏

) < ε. (2.26)

For the fixed functions u and ψ we denote by ũψ the extension by zero
of the function uψ in hole space E2. Then the function ũ ψ gm υδ will be
extended by zero in E2 too. Further we will suppose that all these functions
are extended by zero in E2 and omit in the notation the tilde sign.

Let supp ψ ⊂ [−a+ ∆, a−∆]; ∆ > 0 and (see Lemma 2.6) supp υδ ⊂
[−1 + δ/4, 1− δ/4]. Then

supp (uψ gm υδ) ⊂ [−a+ ∆, a−∆]× [−1 + δ/4, 1− δ/4].

Let S1 := {(x, y) ∈ E2; |x|2 + |y|2 < 1} be an open circle in E2, 0 ≤
ω ∈ C∞0 (S1),

∫
ω(x)dx = 1, h > 0 and ωh(x) = h−2ω(x/h). Then (see, for

example [6])
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supp [uψ gm υδ) ∗ ωh] ⊂ supp [uψ υδ] + supp ωh

and putting h0 = min {∆, δ/4} we get for any h ∈ (0, h0)

supp [uψ gm υδ)] ∗ ωh ⊂ supp [uψ υδ] + supp ωh ⊂
∏

. (2.27)

Since (see [3, section 2] or [6, section 3]) [uψ gm υδ)] ∗ ωh ⊂ C∞, in view
of (2.27) we have

[uψ gm υδ)] ∗ ωh ∈ C∞0 (
∏

). (2.28)

Let us apply Minkowski’s inequality and properties of ω to estimate the
following expression∑

α∈<

||Dα[uψ gm υδ ∗ ωh]−Dα[uψ gm υδ)]||Lp(
∏

) =

∑
α∈<

||
∫
|y|<h
{Dα[uψ gm υδ](x−z1, y−z2)−Dα[uψ gm υδ](x, y)}ωh(z) dz||Lp(

∏
)

≤
∑
α∈<

sup
|z|<h

Dα[uψ gm υδ](· − z1, · − z2)||Lp(
∏

) · ||ωh||L1(
∏

) =

=
∑
α∈<

sup
|z|<h

Dα[uψ gm υδ](· − z1, · − z2)||Lp(
∏

). (2.29)

Since a function in Lp is mean continuous, this implies that

∑
α∈<

||Dα[uψ gm υδ ∗ ωh]−Dα[uψ gm υδ)]||Lp(
∏

) → 0 as h→ 0. (2.30)

Let h ∈ (0, h0) and φh = [u(x, y)ψ(x) gm(y) υδ(y)] ∗ ωh(x, y), then

||uψ gm − φh||W<p,g(
∏

) = ||uψ gm(1− υδ) + uψ gm υδ − φh||W<p,g(
∏

) ≤

≤ ||uψ gm(1− υδ)||W<p,g(
∏

) + ||uψ gm υδ − φh||W<p,g(
∏

). (2.31)

In view of (2.25) one can choose the number δ0 > 0 such that for δ ≤ δ0

||uψ gm(1− υδ)||W<p,g(
∏

) ≤
ε

2
. (2.32)

On the other hand in view of (2.30) for the given number δ0 one can
choose the number h ∈ (0, h0) such that
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||uψ gm υδ − φh||W<p,g(
∏

) ≤
ε

2
. (2.33)

The relations (2.31) - (2.33) implies (2.26), which completes the proof of
Theorem 2.5. �

Remark 2.4 One can consider n− dimensional polyhedron

< = <(l,m, ...,m) = {υ ∈ Nn
0 , υ1 ≤ l, |υ| = υ2 + ...+ υn ≤ m},

n− dimensional right parallelepiped∏
=
∏

(a, b2, ..., bn) = {(x, y) = (x, y2, ..., yn) ∈ Rn,

x ∈ (−a, a), yj ∈ (−bj, bj) (j = 2, ..., n)}.

n− dimensional space W<
p, g(
∏

) = W
<(l,m,m,...,m)
p, g (

∏
(a, b2, ..., bn)) and prove

an analogue of Theorem 2.5. But here we prefer 2 dimensional case by
technical reasons. �

We present two examples showing that for nonregular Newton polyhe-
dron < the multianisotropic Sobolev spaceW<

p (Ω) in general is not semilocal.
The first example refers to a bounded domain, and the second one to an un-
bounded domain Ω. In preparing these examples, the author consulted with
Professor V.N. Margaryan, for which he expresses his deep gratitude to him.

Example 1. Let n = 2 and < be the Newton polyhedron of multi -
indices (0, 0), (1, 0), (0, 1), (2, 1) ∈ N2

0. It is easily seen that < is a nonregular
quadrangle (the projection (2,0) of the vertex (2,1) of < on the axis 0α1 does
not belong to <).

Let u(x) = u(x1, x2) = x
4/3
1 + x2, and ∆1 = {−1 ≤ x1 ≤ 1, −1 ≤

x2 ≤ 1}. Then a simple computation shows that u,D(1, 0)u,D(0,1)u,D(2,1)u

belong to L2(∆1), and D(2, 0)u = 4
9
x
−2/3
1 /∈ L2(∆1).

Let ψ ∈ C∞0 (∆1), ψ(x) = ψ(x1, x2) = x2 for x ∈ ∆1/2. Since
D(0, 1)ψ(x) = 1 for x ∈ ∆1/2, it follows that

D(2,1)(ψ(x)u(x)) =
4

9
D(0,1)ψ(x)x

−2/3
1 =

4

9
x
−2/3
1 /∈ L2(∆1),

i.e. ψ u /∈ W<
2 (∆1), which means that W<

2 (∆1) is not semilocal. �
Example 2. Let a polyhedron < be as in Example 1, and the function

f ∈ C∞0 (−1, 1) be chosen such that

A(f) ≡
1∫

−1

[f(t) + 5tf ′(t) + 2t2f ′′(t)]2dt 6= 0, (2.34)

u(x, y) = x2
1 f(x2

1 x2); Ω = {(x1, x2) ∈ E2, |x1| < 1, −∞ < x2 <∞}. Then
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||u||2L2(Ω) =

∫ ∫
Ω

x4
1f

2(x2
1 x2) dx1dx2 =

∫
|x1|<1

x4
1 [

∞∫
−∞

f 2(x2
1 x2) dx2]dx1 =

=

∫
|x1|<1

x2
1 [

∞∫
−∞

f 2(x2
1 x2)d(x2

1 x2)]dx1 =

∫
|x1|<1

x2
1 [

∫
|x2

1 x2|<1

f 2(x2
1 x2) dx2]dx1 =

=

1∫
−1

x2
1 [

1∫
−1

f 2(r)dr]dx1 <∞.

For D1, 0u we have D1, 0u = 2x1 f(x2
1 x2) + x2

1 (2x1 x2)f
′
(x2

1 x2), where

∫ ∫
Ω

|x1 f(x2
1 x2)|2dx1 dx2 =

∫
|x1|<1

[

∫
|x2

1 x2|<1

|f(x2
1 x2)|2d(x2

1 x2)]dx1 <∞,

∫ ∫
Ω

x2
1 |x2

1 x2|2|f
′
(x2

1 x2)|2dx1 dx2 =

∫
|x1|<1

[

∫
|r|<1

r2 |f ′(r)|2dr]dx1 <∞.

Therefore D1, 0u ∈ L2(Ω). It is obvious that D(0, 1)u = x4
1 f
′
(x2

1 x2) ∈
L2(Ω).

For D2, 0u and D(2,1) we have respectively

D2, 0u = 2 f(x2
1 x2) + 10(x2

1 x2) f
′
(x2

1 x2) + 4 (x2
1 x2)2 f

′′
(x2

1 x2);

D(2,1) = x2
1 [12 f

′
(x2

1 x2) + 18 (x2
1 x2) f

′′
(x2

1 x1) + 4 (x2
1 x2)2 f

′′′
(x2

1 x2)].

Denoting by x1 = x1, x
2
1 x2 = r, hk(r) = rk−1 f (k−1)(r) (k = 1, 2, 3) we

have for each k = 1, 2, 3

∫ ∫
Ω

x2
1 |x2

1 x2|2(k−1) |hk(x2
1 x2)|2dx1 dx2 =

1∫
−1

x2
1 [

1∫
−1

|hk(r)|2dr]dx1 <∞,

i.e D(2,1)u ∈ L2(Ω).
As for D2, 0u, we get by the condition (2.34) that

∫ ∫
Ω

|D2, 0u|2dx1 dx2 = A(f)

1∫
−1

dx1

x2
1

=∞,
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i.e. D2, 0u /∈ L2(Ω).
Taking a function ψ ∈ C∞0 (Ω), as in Example 1, where ∆1/2 ⊂ ∆1 ⊂ Ω,

we get D2,1(ψ u) = ψ′x2
D2, 0u+ψD2,1u = D2, 0u+ψD2,1u for x ∈ ∆1/2. As

above one can see that ψD2,1u ∈ L2(Ω) and since D2, 0u /∈ L2(Ω) hence
D2,1(ψ u) /∈ L2(Ω), i.e. W<

2 (Ω) is not semilocal. �

3 Behavior at infinity of polynomials of

many variables

Let < = <(P ) be the Newton polyhedron of the polynomial P (ξ) =
P (ξ1, ..., ξn), <ki (i = 1, ...,Mk, k = 0, ..., n− 1) be its principal faces, and

P i,k(ξ) =
∑
α∈<ki

γαξ
α

be subpolynomials corresponding to the principal faces <ki (i = 1, ...,Mk,
k = 0, ..., n− 1). A face <ki (1 ≤ i ≤ Mk, 0 ≤ k ≤ n− 1) is called nonde-
generate if P i, k(ξ) 6= 0 for all ξ ∈ Rn, 0. If all principal faces of <(P ) are
nondegenerate, P is called nondegenerate. In [ 45] it is proved

Theorem (V. P. Mikhailov) Let a polynomial P with the complete
Newton polyhedron < = <(P ) be nondegenerate.Then a) P ∈ In, b) there
is a constant C > 0 such that∑

α∈<

|ξ|α ≤ C[1 + |P (ξ)|] ∀ξ ∈ Rn.

First we prove two elementary statements, which give necessary condi-
tions for P ∈ In.

Lemma 3.1 If the Newton polyhedron < = <(P ) of a polynomial P
is not complete then P /∈ In.

Proof. Since < is not complete, < has no vertex on one of coordi-
nate axes of Rn, for example on axis (0, ξ1). Then P (ξs) = P (s, 0, ..., 0) =
const (s = 1, 2, ...) while |ξ|s = s→∞, as s→∞. �

Mikhailov’s theorem together with this lemma solves a problem of P ∈
In for nondegenerate polynomials P. Namely: a nondegenerate polynomial
is in In if and only if the Newton polyhedron <(P ) is complete. �

Let 0 6= λ ∈ Rn. A polynomial R(ξ) is said to be λ−homogeneous of
degree d(λ) if for any ξ ∈ Rn and t > 0, R(tλ ξ) := R(tλ1 ξ1, ..., t

λn ξn)
= td(λ)R(ξ). For λ−homogeneous polynomial R(ξ) we put Σ(R) = {η ∈
Rn, 0, |η| = 1, R(η) = 0} and for η ∈ Σ(R) denote A(η) = A(η,R) = {ν ∈
Nn

0 ;DνR(η) 6= 0}, ∆(η) = ∆(η,R) = max
ν∈A(η)

(λ, ν).

In [ 45] it is also proved that a subpolynomial P i, k(ξ) of a polynomial
P (ξ) is λ−homogeneous for any λ ∈ Λ(< k

i ), where Λ(< k
i ) (1 ≤ i ≤
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Mk, 1 ≤ k ≤ n−1) is the set of outward normals of the face < k
i of Newton

polyhedron <(P ).
It is obvious that for any principal face < k

i (1 ≤ i ≤ Mk, 1 ≤ k ≤
n − 1) of the complete polyhedron <(P ) of the polynomial P (ξ) and for
any λ ∈ Λ(< k

i ) the polynomial P can be represented in the form of sum of
λ−homogeneous polynomials

P (ξ) =

N(λ)∑
j=0

Pj(ξ) =

N(λ)∑
j=0

∑
(λ, α)=dk(λ)

γαξ
α, (3.1)

where Pj(ξ) = Pj(ξ, λ) (j = 0, 1, ..., N(λ)), P0(ξ) ≡ P i0,k0(ξ), d0(λ) >
d1(λ) > ... > dN1−1(λ) > dN1(λ) = 0 > dN1+1(λ) > ... > dN(λ) and
Pj(ξ) ≡ 0 (j = N1 + 1, ..., N) when the face < k

i is regular or completely
regular.

Remark 3.1 One can verify that a) for any polynomial P ∈ In with
real coefficients there is a number r ≥ 0 such that either P (ξ) > 0 for all
|ξ| > r, or P (ξ) < 0 for all |ξ| > r, b) polynomials P (ξ) and |P (ξ)|2
simultaneously belong or not to In. Therefore without loss of generality in
the sequel we assume that In consists of polynomials with real coefficients
such that P (ξ) > 0 for all ξ ∈ Rn.

Let Γ := <k0
i0

(1 ≤ i0 ≤ Mk, 1 ≤ k0 ≤ n − 1) be a degenerate principal
face of the complete Newton polyhedron < = <(P ) of the polynomial P
and η ∈ Σ(Γ). Let for λ ∈ Λ(Γ) polynomial P be represented in the
form (3.1). Define the number J = J(Γ, η, λ) as follows: 0 < J ≤ N(λ),
P0(η) = ...PJ−1(η) = 0 and PJ(η) 6= 0.

Lemma 3.2 Let < = <(P ) be the complete Newton polyhedron of a
polynomial P ∈ In with principal faces <ki (i = 1, ...,Mk, k = 0, 1, ..., n− 1)
and Γ := <k0

i0
(1 ≤ i0 ≤ Mk, 1 ≤ k0 ≤ n − 1) be a degenerate principal

face. Then a) P i, k(ξ) ≥ 0 (i = 1, ...,Mk, k = 0, 1, ..., n − 1) ∀ξ ∈ Rn,
b) let for each λ ∈ Λ(Γ) polynomial P be represented in the form (3.1),
then b.1) dJ(Γ,η,λ) > 0 (or, what is the same, J(Γ, η, λ) < N1(λ)) and b.2)
PJ(Γ,η,λ) > 0 for all η ∈ Σ(Γ).

Proof of point a). Suppose to the contrary that P i1,k1(η) < 0 for
some pair (i1, k1) and some point 0 6= η ∈ Rn . Let λ ∈ Λ(<i1,k1) and
ξs = sλη (s = 1, 2, ...). Represent polynomial P in the form (3.1), then by
λ−homogeneity of polynomials {Pj} and conditions d0(λ) > d1(λ) > ... >
dN(λ) we get P (ξs) = P i1,k1(η) sd0(λ)[1 + o(1)] → −∞ as s → ∞, which
contradicts the assumption P ∈ In.

To prove the point b.1) suppose that dJ(Γ,η0,λ0) ≤ 0 for a pair (λ0, η0)

(λ0 ∈ Λ(Γ), η0 ∈ Σ(Γ)). Acting as above we obtain P (ξs) = P (sλ
0
η0) =

P i1,k1(η0) sd(Γ,η0,λ0) [1 + o(1)] as s → ∞, which means that the sequence
P (ξs) is bounded, whereas |ξs| → ∞ as s → ∞. In the same manner we
can prove the point b.2). �
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So, let P be a degenerate polynomial, i.e. the Newton polyhedron < =
<(P ) of P have degenerate principal faces. Without loss of generality one
can assume that all of the principal faces of <(P ) are nondegenerate with
the exception of one principal face Γ := <k0

i0

When a polynomial P is degenerate, the partial solution of problem
P ∈ In is given by the following statement

Theorem 3.1 Let < = <(P ) be the complete Newton polyhedron of
the polynomial P : P (ξ) > 0 ∀ξ ∈ Rn. Let all the principal faces <ki (i =
1, ...,Mk, k = 0, 1, ..., n− 1) of < except of the principal face Γ := <k0

i0
(1 ≤

i0 ≤ Mk, 1 ≤ k0 ≤ n − 1) be nondegenerate, and the face Γ be degenerate.
Let J(Γ, η, λ) = 1 for all λ ∈ Λ(Γ) and η ∈ Σ(Γ). Then P ∈ In if and
only if d1(Γ, η, λ) > 0 and P1(η) > 0 for all λ ∈ Λ(Γ) and η ∈ Σ(Γ).

Proof. The necessity is contained in Lemma 3.2. To prove the sufficiency
we apply the method of V.P. Mikhailov, applied to the nondegenerate case,
and modified by us for degenerate case (see [45] and [ 33]). Suppose, on the
contrary, that there exist a sequence {ξs} and a number C > 0 such that
|ξs| → ∞ as s→∞ and |P (ξs)| ≤ C (s = 1, 2, ...).

It can be assumed without loss of generality that all of the coordinates
of the vectors {ξs} are positive. Let

ρs = exp

√√√√ n∑
j=1

(ln ξsj )
2, λsi =

ln ξsi
ln ρs

, i = 1, ..., n, (3.2)

then ξs = ρλ
s

s (ξsi = ρ
λsi
s , i = 1, ..., n), λs being the unit vector (s =

1, 2, ...). Clearly ρs → ∞ if |ξs| → ∞, or if a coordinate of ξs tends to
zero.

Sins the vectors λs lie on the unite sphere, then the sequence {λs} has
a limit point λ∞. It can be assumed that λs → λ∞. From the convexity of
<(P ) it follows that λ∞ is an outword normal to one and only one face of
<(P ).

We take in Rn a basis (e1,1, e1,2, ..., e1,n) in which e1,1 = λ∞. Then
λs = Σn

i=1κ
s
1, i e

1, i, and because of λs → λ∞ = e1,1 as s → ∞, it follows
κs1, i = o(κs1,1) = o(1) for i = 2, 3, ..., n.

If Σn
i=2κ

s
1, i e

1, i = 0 for sufficiently large s then we denote by (e1, ..., en)
the basis (e1,1, e1,2, ..., e1,n) . Otherwise it can be assumed that

n∑
i=2

κs1, i e
1, i 6= 0

for all s ∈ N and that, as s→∞,

[Σn
i=2κ

s
1, i e

1, i]/|Σn
i=2κ

s
1, i e

1, i| → e2,2; |e2,2| = 1.
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We go over in the subspace spanned by (e1,2, ..., e1,n) to a new basis
(e2,2, ..., e2,n). Then

λs = κs1, 1 e
1,1 +

n∑
i=2

κs2, i e
2, i,

where it is clear that κs2, 2 = o(κs1, 1), κs2, i = o(κs2, 1), as s→∞ , i = 3, ..., n.
Proceeding analogously in a subspace with basis (e2,3, ..., e2,n) etc..., we

obtain (after the corresponding re - notation) λs =
n∑
i=1

κsi e
i, where κs1 →

1, κsi+1 = o(κsi ) (i = 1, ..., n− 1), as s→∞.
We note in this connection that there exist natural numbers s0 and m

such that for all s ≥ s0 we have κsi > 0 (i = 1, ...,m) and κsi = 0 (i =
m+ 1, ..., n) m ≤ n.

Let <k1
i1
,<k2

i2
, ...,<kmim denote the faces of <(P ) satisfying the condition

that <k1
i1

lies in the hyperplane of support of <(P ) with outward normal

e1, <k2
i2

lies in the hyperplane of support of <k1
i1

(treating as an isolated

object) and either coincides with <k1
i1
, or is a subspace of <k1

i1
. If there is

more than one subface of <k1
i1

with normal e2, we take as <k2
i2

the subface
containing the point α at which the value of (e2, α) is maximal, and so on.

From the construction of the faces <k1
i1
,<k2

i2
, ...,<kmim we see that their

dimensions are nonincreasing: k1 ≥ k2 ≥ ... ≥ km and (see notation (3.2))

ξs = ρ

n∑
j=1

κsje
j

s (s = 1, 2, ...), (3.3)

where ρs →∞, as s→∞, and for a r (1 ≤ r ≤ m) and b ≥ 1

ρ
κsj
s →∞ (j = 1, ..., r), ρ

κsr+1
s → b, (s = 1, 2, ...).

For r = m = n we put κsr+1 = 0 (s = 1, 2, ...).
Let, as above, P ij ,kj(ξ) denote the part of the polynomial P whose

multi indices belong to <kjij , and let α denote an arbitrary point belonging

to all of the <ijkj (j = 1, ...,m), i.e. α ∈ <kmim . We will study the behavior of

the polynomial P, as ρs →∞, , and {ξs} which is defined by the formula
(3.3). The index s will be omitted for the sake of simplicity in notation.

Then from the ejhomogeneity of the polynomials {P ij ,kj(ξ)} and from
the convexity of <(P ) and its faces, we get for certain positive σ1, ..., σr
and 1 ≤ r ≤ m ≤ n ( en+1 is a unite vector)

P (ξ) = ρ(α, κ1 e1) [P i1, k1(ρ

n+1∑
j=2

κj e
j

) + o(ρ−σ1 κ1)] =

= ρ(α, κ1 e1+κ2 e2) [P i2, k2(ρ

n+1∑
j=3

κj e
j

) + o(ρ−σ2 κ2)] =
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... = ρ
(α,

r∑
j=1

κj e
j)

[P ir, kr(ρ

n+1∑
j=r+1

κj e
j

) + o(ρ−σr κr)]· (3.4)

Since ρ κr+1 → b ≥ 1, it follows that ρ

n+1∑
j=r+1

κj e
j

→ be
r+1 ≡ η. Clearly,

0 < ηi < ∞ (i = 1, ..., n) (in accordance with the definition of ηi (i = 1 ≤
i ≤ n)) as finite powers of a positive number).

We consider two cases: a) (e1, α) > 0 and b) (e1, α) = 0. The case
(e1, α) < 0 is impossible, as the equation for the hyperplane of support
with outward unit normal λ of a polyhedron < can be written in the
form (λ, α) = d, where d ≥ 0 is the distance from the origin to the given
hyperplane and α is a roving point of the hyperplane (see, for example, [1]).

Case a). Firstly, suppose P ir, kr(η) 6= 0. Since (e1, α) > 0 and κi =
o(κ1) for i = 2, ..., n as s → ∞, we eventually have (α,Σr

1κj e
j) > 0

beginning at some number s0. Therefore (3.4) implies

P (ξ) = ρ
(α,

r∑
j=1

κj e
j)

[P ir, kr(η) + o(1)],

which means that |P (ξs)| → ∞ as s→∞, and contradicts our assumption
on the boundedness of {|P (ξs)|}.

Suppose now P ir, kr(η) = 0. Since (e1, α) > 0, the face <krir is principal,

hence <krir coincides with the degenerate face Γ and η ∈ Σ(Γ). In this case
we represent P in the form (see (3.1))

P (ξ) = P0(ξ) + P1(ξ) + r(ξ). (3.5)

Since P0(ξ) ≥ 0 for all ξ ∈ Rn and P1(η) ≡ PJ(η) > 0 for all η ∈ Σ(Γ)
it follows from (3.4) that for sufficiently large |ξ|

P0((ρ

n+1∑
j=r+1

κj e
j

)) ≡ P ir, kr(ρ

n+1∑
j=r+1

κj e
j

) ≥ 0, P1((ρ

n+1∑
j=r+1

κj e
j

)) > 0. (3.6)

On the other hand since di(Γ, λ) < d1 ≡ d1(Γ, λ) (i = 2, 3, ...) and
d1 > 0 hence 7

|r(ξ)| = o(ρd1) as |ξ| → ∞. (3.7)

From (3.4) - (3.7) we get |P (ξs)| ≥ C ρd1
s |P1(η)| for sufficiently large |ξs|

with a constant C > 0, i.e. |P (ξs)| → ∞, as |ξs| → ∞ which contradicts
our assumption on the boundedness of {|P (ξs)|}.

Case b) (e1, α) = 0. In this case the face whose outward normal is e1

clearly passes through the origin and hence is not a principal face of <(P ).
Consequently e1

i ≤ 0 (i = 1, ..., n). In this connection, if a nonprincipal face
with outward normal e1 has the dimension l, then l among the numbers
e1

1, ..., e
1
n are equal to zero the remaining numbers being negative. It can
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clearly be assumed without loss of generality that e1
1 = ... = e1

l = 0, e1
l+1 <

0, ..., e1
n < 0. Since

e1
j = lim

s→∞
ln ξsj/[

n∑
k=1

(ln ξsk)
2]1/2 < 0 (j = l + 1, ..., n),

we have ξj < 1 (j = l + 1, ..., n) beginning at some point. On the other
hand, since |ξ| → ∞, we have ξi → ∞ for a certain i ∈ [1, l]. But since
e1
i = 0 for those i, it follows (at least for a subsequence of sequence {ξs})

that ξj → 0 for at least one j ∈ (l, n].
Suppose (after modifying the notations) ξ1 → ∞, ..., ξl0 → ∞ (l0 ≤ l)

and ξl0+1 → 0, ..., ξl0+l1 → 0 (l0 + l1 ≤ n). Let ψ(ξ) = max1≤j≤l0 ξj, then,
clearly,

lnψ(ξ)/[
n∑
k=1

(ln ξk)
2]1/2 → 0 (as |ξs| → ∞). (3.8)

On the other hand, there exist positive constants M1 and M2 such that

M1 ≤
l0∑
k=1

(ln ξk)
2/[ln ψ(ξ)]2 ≤M2. (3.9)

It follows from (3.8) and (3.9) that

n∑
k=l0+1

(ln ξk)
2/[lnψ(ξ)]2 →∞ (as |ξs| → ∞).

From this, by going over to a subsequence if necessary, we get that for
some j ∈ [l0 + 1, n]

| ln ξj|/ lnψ(ξ)→∞ (as |ξs| → ∞),

i.e. | ln ξj| → ∞ ”faster” than lnψ(ξ) → ∞. Hence for a σ > 0 ξj =
o([ψ(ξ)]−σ) (as |ξs| → ∞), or, equivalently,

ξα1
j [ψ(ξ)]α2 → 0 (as |ξs| → ∞) (3.10)

for any α1 > 0 and α2 ≥ 0.
Let ξ̆ = (ξ̆1, ..., ξ̆n), where ξ̆j = 0 if j satisfy the condition (3. 10) and

ξ̆j = ξj otherwise. As a result, the polynomial P (ξ) = P (ξ1, ..., ξn) turns to

a polynomial P (ξ̆) of less than n variables, the dimension of <̆(P ) is less
than the dimension of <(P ), and the (generate or nongenerate) principal
faces of <̆(P ) are those and only those of <̆(P ) that are principal faces of
<(P ).
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Thus, in the course of the proof of the theorem, the assumption of bound-
edness of the polynomial P leades either to a contradiction, or to a poly-
nomial P (ξ̆) and polyhedron <̆(P ) in a space of the dimension less than
n. Repeating the arguments presented above in the proof of this theorem
with respect to the polynomial P (ξ̆) and polyhedron <̆(P ), and so on, we
clearly arrive after a finite number of steps at either a contradiction, or the
assumption of boundedness of a polynomial of one variable with nonzero
main coefficient (for a one dimensional polyhedron <̆(P ) ). In this case the
contradiction is obvious. �

Remark 3.2 In the case J(Γ, η, λ) > 1 for a (η, λ), the necessary
and sufficient conditions for P ∈ I2 (for polynomials of two variables) are
obtained in [20].

Remark 3.3 In the general case (n ≥ 2 ) when J(Γ, η, λ) > 1 for
a (η, λ), by repeating the arguments presented above in the proof of this
theorem one can prove the following

Theorem 3.1
′

Let (as in Theorem 3.1) Γ be a (unique) degenerate face
of the complete Newton polyhedron of a polynomial P : P (ξ) > 0 ∀ξ ∈ Rn.
Let J(Γ, η, λ) ≥ 1, and for any η ∈ Σ(P0) there exists a neighborhood U(η)
of η such that Pj(ξ) ≥ 0 (j = 1, ..., J(Γ, η, λ) − 1) for all λ ∈ Λ(Γ) and
ξ ∈ U(η).

Then P ∈ In if and only if dJ(Γ, η, λ) > 0 and PJ(η) > 0 for all
λ ∈ Λ(Γ) and η ∈ Σ(Γ).

Remark 3.4 Let the polynomial P satisfies the hypotheses of Theorem
3.1’ and let Υ(Γ) = {µ : µ ∈ <, (λ, µ) ≤ J(Γ, η, λ) ∀λ ∈ Λ(Γ)}. By
applying the same method one can prove that there exists a constant C > 0
such that ∑

ν∈Υ(Γ)

| ξν | ≤ C [1 + |P (ξ)|] ∀ξ ∈ Rn.

�

4 Properties of the smoothness of solutions

of general partial differential equations de-

pending on the Newton Polyhedrons.

Let P (D) = P (D1, ..., Dn) =
∑
α

γαD
α be a nondegenerate linear differential

operator with constant coefficients and let P (ξ) = P (ξ1, ..., ξn) =
∑
α

γα ξ
α

be its characteristic polynomial (the complete symbol). Let < = <(P ) be
the complete Newton polyhedron of P.
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Theorem 4.1 Let < = <(P ) be the Newton polyhedron of a nondegen-
erate operator P (D) (polynomial P (ξ)) . Then 1) P is hypoelliptic if and
only if < is completely regular, 2) P is almost hypoelliptic if and only if <
is regular.

Proof of the point 1. Let < = <(P ) be the comletely regular Newton
polyhedron of a nondegenerate operator P (D) (polynomial P (ξ) ). Prove
that P is hypoelliptic. According Hörmander’s theorem (see point C)) it is
sufficient to prove that for any 0 6= ν ∈ Nn

0

|DνP (ξ)|/|P (ξ)| → 0, as |ξ| → ∞. (4.1)

Since the polyhedron < is comletely regular for obvious geometric rea-
sons, it follows that for any 0 6= ν ∈ Nn

0 the points (multi indices) α ∈
(DνP ) are nonprincipal points of the polyhedron <. It is proved in [45] that
for any nonprincipal point β ∈ <

|ξβ|/
∑
α∈<

|ξα| → 0, as |ξ| → ∞.

This, together with Mikhailov’s Theorem implies (4.1).
Let us prove that a polynomial with the noncompletely regular Newton’s

polyhedron (regardless of nondegenerateness) can not be hypoelliptic.
Note that noncompletely regularity of the polyhedron < means geomet-

rically that the projection of some principal vertex of < on some coordinate
hyperplane either a) falls outside the limits of < (if < is nonregular), or b)
coincides with some principal vertex of < (if < is regular).

Case a). Let e = (e1, ..., en) be a vertex of < such that its projection
e′ = (0, ..., 0, ek+1, ..., en) on the coordinate hyperplane α1 = ... = αk =
0 (1 ≤ k ≤ n − 1) falls outside the limits of <. Let us construct the
(n− 1)dimensional hyperplane which passes through the point e′, does not
passes through the origin, and does not have any common point with <. Let
λ be the outward normal, and (λ, α) = d be the equation of this hyperplane.
Then d > 0, (λ, e′) = d, and (λ, α) < d for all α ∈ <.

Let ν = (e1, ..., ek, 0, ..., 0), for the vector λ, the polynomials P and
DνP is represented in the form (3.1) of sum of λ−homogeneous polynomials,
a point η ∈ Rn be chosen such that DνP (η) 6= 0, and ξs = sλ η (s =
1, 2, ...). Then

DνP (ξs) = DνP (η) sd; P (ξs) = o(sd), as s→∞, (4.2)

i.e. the polynomial is nonhypoelliptic.
Case b). Let e′ = (0, ..., 0, ek+1, ..., en) coincide with some principal

vertex of the polyhedron <. Then, constructing the (n − 1)dimensional
hyperplane supporting to < which passes through the point e′, does not
passes through the origin, and does not have a common point with the
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polyhedron <, and repeating the previos arguments, we obtain the following
estimate

|DνP (ξs)| ≥ C1s
d; |P (ξs)| ≤ C2s

d (s = 1, 2, ...),

we obtain that hypoelliptic of the polynomial P is not hypoelliptic.
Proof of the point 2) is completely analogous to the proof of the

point 1) so we omit the details. �
The following proposition shows that, in contrast to hypoelliptic poly-

nomials, which Newton polyhedron can have degenerate faces of any kind,
a Newton polyhedron of an almost hypoelliptic polynomial can have only
completely regular degenerate faces.

Theorem 4.2 Let < = <(P ) be a regular Newton polyhedron of a poly-
nomial P (ξ). Let all completely regular faces of < be nondegenerate. Then
the polynomial P is almost hypoelliptic if and only if P is nondegenerate,
i.e. all noncompletly regular principal faces of < are also nondegenerate.

Proof. We prove that under the conditions of the theorem, all principal
faces of < are nondegenerate. Since 0 dimensional faces (vertices) of < are
nondegenerate, we begin our proof with one dimensional faces. Let Γ be
an one dimensional principal (but not completly regular) degenerate face of
<(P ). We prove that P can not be almost hypoelliptic.

Let λ ∈ Λ(Γ), and (λ, α) = d0 be an equation of the (n−1) dimensional
support hyperplane of the polyhedron <, containing Γ, and not containing
the points of < \ Γ. Since the face Γ is not completely regular, λ has at
least one nonpositive coordinate. Let λ1 ≤ 0.

Put m1 = max{α1; α ∈ Γ}, Γ1 = {α ∈ Γ; α1 = m1} and show that the
set Γ1 consists of a unique point, and hence is a 0 dimensional subface of
Γ, i.e. a vertex of <. Really, if Γ contains two different points α1 and α2

with α1
1 = α2

1, hence α1 = m1 for all α ∈ Γ (since an 1−dimensional face
is uniquely determined by its two points). Then Γ is perpendicular to the
0α1 axis, i.e. λ1 > 0, which contradicts our assumption.

Thus, Γ1 coincides with a principal vertex e = (m1, e2, ..., en) of <.
With the help of a vector λ, represent the polynomials P and Dm1

1 P
in the form (3.1) of sums of λ−homogeneous polynomials and consider be-
haviors of these polynomials on the sequence ξs = sλ η = (sλ1 , ..., sλn) (s =
1, 2, ...), where η ∈ Σ(Γ). We obtain

P (ξs) = P0(η)sd0 +
M∑
j=1

Pj(η)sdj =
M∑
j=1

Pj(η)sdj , (4.3)

Dm1
1 P (ξs) = Dm1

1 [γe(ξ
s)e +

∑
α∈Γ,α1<m1

γα(ξs)α] +
M∑
j=1

Dm1
1 Pj(ξ

s) =
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= γe (m1!) |ηe22 ...η
en
n | sd0−λ1m1 +

M∑
j=1

Dm1
1 Pj(η)sdj−λ1m1 .

Since λ1 ≤ 0, hence d0 − λ1m1 > d1 − λ1m1 and as s → ∞, these
relations lead to

|P (ξs)| = o(sd0), |Dm1
1 P (ξs)| = γe (m1!) |ηe22 ...η

en
n | sd0−λ1m1 (1 + o(1)).

Since ηe22 ...η
en
n 6= 0, the last relations show that P is not almost hypoel-

liptic.
Let now Γ be a 2−dimensional principal (but not completely regular)

degenerate face of <(P ), λ ∈ Λ(Γ) and let, for definiteness, λ1 ≤ 0.
Introduce notation m1 and Γ1 as above and prove that in this case either
Γ0 consists of a unique point (i.e. is a vertex), or is a 1−dimensional subcase
of <(P ).

Let us show that in the case when Γ1 contains more than one point, all
of them lie on one straight line. Suppose. to the contrary that there are
three points αj ∈ Γ, αj1 = m1 (j = 1, 2, 3), not lying on a straight line.
Since these three points uniquely determine a 2−dimensional face Γ, that
means the plane passing through Γ is perpendicular to the axis 0α1, i.e.
λ1 > 0, which contradicts our assumption.

Since all subfaces of a principal face are principal, Γ0 is either 0− di-
mensional or 1−dimensional principal face of < and in both cases the sub-
polynomial P0 has a form

P0(ξ) = [
∑

α∈Γ,α1=m1

+
∑

α∈Γ,α1<m1

]γαξ
α =

= ξm1
1 q(ξ2, ..., ξn) +

∑
α∈Γ,α1<m1

γαξ
α, (4.4)

were in the 0−dimensional case q(η2, ..., ηn) 6= 0. If Γ1 is one-dimensional
completely regular face then q(η2, ..., ηn) 6= 0 by the assumption of our
theorem. If Γ1 is one-dimensional principal but not completely regular
face, then q(η2, ..., ηn) 6= 0 since the part of the theorem already proved.

Considering behaviors of polynomials P and Dm1
1 P on the sequence

ξs = sλ η = (sλ1 , ..., sλn) (s = 1, 2, ...), where η ∈ Σ(Γ), for the polynomial
P we obtain the representation (4.3). For the polynomial Dm1

1 P, according
to (4.4) we get

Dm1
1 P (ξs) = (m!)q(η2, ..., ηn)sd0−λ1m1 +

M∑
j=1

Dm1
1 Pj(η)sdj−λ1m1 . (4.5)
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Since q(η2, ..., ηn) 6= 0, arguing as above one can show that (4.3) and
(4.5) leads that the polynomial P is not almost hypoelliptic.

If n ≥ 4, arguing as above we prove that the polynomial P is nonde-
generate.

Almost hypoellipticity of a nondegenerate polynomial with regular New-
ton’s polyhedron follows from Theorem 4.1. �

Corollary 4.1 Let the Newton polyhedron <(P ) of a polynomial P be
an n−dimensional rectangular parallelepiped with the vertex in the origin.
Then P is almost hypoelliptic if and only if P is nondegenerate.

The proof is a corollary of a geometrical obvious fact: completely regular
faces of an n−dimensional rectangular parallelepiped with the vertex in the
origin can be only his vertices. �

Let now Γ ≡ <ki be some degenerate face of the Newton’s polyhedron
<(P ) of a polynomial P. For a λ ∈ Λ(Γ) and an η ∈ Σ(Γ) represent
the polynomial P in the form (3.1) and introduce the notations J(Γ, λ, η),
A(Pj, λ, η) and ∆(Pj, λ, η) (j = 0, 1, ..., J = J(Γ, λ, η)) as in the point 3.

As a supplement of Lemma 3.1 let us prove
Lemma 4.1 Let Γ ≡ <ki be some principal degenerate face of the

regular Newton’s polyhedron <(P ) of an almost hypoelliptic polynomial P.
Then for all λ ∈ Λ(Γ) and η ∈ Σ(Γ)

dj(λ)−∆(Pj, λ, η) ≤ dJ(Γ,λ,η) (j = 0, 1, ..., J − 1). (4.6)

Proof. We argue by contradiction. Suppose that for some values
of λ, η, J = J(Γ, λ, η), and j ∈ [0, J − 1] the inequality (4.6) is violated.
Assuming the pair (λ, η) is fixed, omit (λ, η) in the notation and denote
by j0 the least of such j. Thus, let

dj −∆(Pj) ≤ dJ (j = 0, 1, ..., j0 − 1), dj0 −∆(Pj0) > dJ . (4.7)

Choose a multiindex β ∈ Nn
0 in such a way that DβPj0(η) 6= 0 and

(λ, β) = ∆(Pj0). Consider polynomials P and DβP on the sequence ξs =
sλ η (s = 1, 2, ...).

Since dj > dj0 (j = 0, 1, ..., j0 − 1), it follows from (4.7) that ∆(Pj0) <
∆(Pj) (j = 0, 1, ..., j0− 1). Then Pj(η) = DβPj(η) = 0 (j = 0, 1, ..., j0− 1),
DβPj0(η) 6= 0 and according to the representation (3.1) and the inequality
(4.7) we obtain

P (ξs) = PJ(η) sdJ + o(sdJ ), as s→∞. (4.8)

For the polynomial DβP we get for all s ∈ N

DβP (ξs) = sdj0−∆(PJ0
) DβPJ0(η) +

M∑
j=j0+1

sdj−∆(PJ0
) DβPJ(η).
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Since dj < dj0 (j = j0 + 1, ...,M), it follows from here that

|DβP (ξs)| = |DβPJ0(η)| sdj0−∆(PJ0
) (1 + o(1)), as s→∞. (4.9)

Since DβPJ0(η) 6= 0, the relations (4.8) - (4.9) together with (4.7) con-
tradict the almost hypoellipticity of P. �

Below, we get necessary and sufficient condition for almost hypoellipticity
of degenerate polynomials with regular Newton’s polyhedron. To simplify
our presentation we will consider only two-dimensional polynomials with
real coefficients. Firstly we present a simple statement needed below.

Lemma 4.2 Let λ = (λ1, λ2) ∈ R2, Q(ξ) = Q(ξ1, ξ2) ∈ I2 be a λ−
homogenous polynomial and η ∈ Σ(Q). Then, there exist a neighborhood
U(η) of η, a natural number m = m(η), a pair of λ− homogeneous smooth
functions r(ξ) and q(ξ) such that q(η) = 0, D1q(η)D2q(η) 6= 0, r(η) 6= 0
and

Q(ξ) = r(ξ) [q(ξ)]m ∀ξ ∈ U(η). (4.10)

Proof. Since Σ(Q) consists of bounded number of (isolated) points
{ η1, ..., ηNQ} , one can represent the polynomial Q in the form

Q(ξ) = r(ξ)

NQ∏
j=1

(ξ1 − κj ξλ1/λ2

2 )mj ≡ r(ξ)

NQ∏
j=1

qj(ξ), (4.11)

where mj are natural numbers, κj 6= 0 are pairwise distinct real numbers,
qj(η

j) = 0 (j = 1, ..., NQ), r ∈ C∞(R2), r(ξ) 6= 0 for ξ ∈ Rn,0. �
We present an elementary statement which we will use in the proof of

Theorem 4.3.

Lemma 4.3 Let a, b, c, d, e be some positive numbers such that a < c,
e < c, and (a − e)/(c − e) ≤ b/d. Then for all x ≥ 1 and y ∈ [0, 1]
(xayb)/(xcyd + xe) ≤ 1.

Proof. It is sufficient to prove this inequality for such a, b, c, d, e for
which b < d and (a−e)/(c−e) = b/d. Dividing both parts of this inequality
by xe and replacing xc−e by x and yd by y we get an equivalent inequality
(xy)b/d ≤ xy + 1, which is obvious since b < d. Lemma 4.3 is proved.

Theorem 4.3 Let all principal faces of the regular Newton’s polygon
<(P ) of polynomial P ∈ I2 be nondegenerate, except of a (unique) com-
pletely regular one - dimensional face Γ ≡ <1

i0
which is degenerate. Let λ

(which is defined uniquely) be the outward normal of Γ, and J = J(Γ, λ, ηj) =
1 (j = 1, ..., NP ).

Then P is almost hypoellitic if and only if

d0 −∆(ηj,Γ) ≤ d1 (j = 1, ..., NP ). (4.12)
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Proof. The necessity is contained in Lemma 4.1. To prove the suffi-
ciency, we assume that for some multiindex ν ∈ N2

0 and a sequence {ξs} :
|ξs| → ∞ and |DνP (ξs)|/|P (ξs)| → ∞, as s → ∞. In this connection it
is sufficiently to assume that |ν| = 1 (see [20]). For definiteness one can
assume that ν = (1, 0). Thus, let

|D1P (ξs)|/|P (ξs)| → ∞ as s→∞. (4.13)

Proceeding as in the proof of Theorem 3.1, we get ξs = ρ
κs1e

1+κs2e
2

s =

ρ
κs1λ
s ρ

κs2e
2

s , where κs1 → 1, κs2 = o(κs1) and ρ
κs2e

2

s → η as s→∞.
In the case a) when P ir,kr(η) 6= 0 we come to the contradiction as in

the proof of Theorem 3.1. If P ir,kr(η) = 0 we get the one-dimensional
degenerate face Γ with outward normal e1 = λ and with the point η ∈
Σ(Γ).

By the vector λ and point η ∈ Σ(Γ) represent polynomials P and D1P
in the form (3.1) of sum of λ−homogeneous polynomials (see also Lemma
4.2 and representation (4.10))

P (ξ) = P0(ξ) + P1(ξ) + p(ξ) = r(ξ) [q(ξ)]m + P1(ξ) + p(ξ), 4.14)

D1P (ξ) = D1P0(ξ) +D1P1(ξ) +D1p(ξ) =

= D1[r(ξ) [q(ξ)]m] +D1P1(ξ) +D1p(ξ). (4.15)

First we prove that there are positive numbers C0 and C1 such that for
all s ∈ N

|D1P0(ξs)| ≤ C0[|P0(ξs)|+ |P1(ξs)|]; |D1P1(ξs)| ≤ C1|P1(ξs)|. (4.16)

Let the number s0 be chosen in such a way that τ s ≡ ρ
κs2e

2

s ∈ U(η) for
all s ≥ s0.Then

P0(ξs) = ρκ
s
1d0
s P0(τ s) = ρκ

s
1d0
s r(τ s) [q(τ s)]m; P1(ξs) = ρκ

s
1d1
s P1(τ s). (4.17)

For the polynomials D1P0 and D1P1, respectively

D1P0(ξs) = ρκ
s
1(d0−λ1
s {m[q(τ s)]m−1D1q(τ

s) r(τ s) + [q(τ s)]mD1r(τ
s)}, (4.18)

D1P1(ξs) = ρκ
s
1(d1−λ1)
s D1P1(τ s). (4.19)
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Since q(τ s)→ q(η) as s→∞ and r(η)P1(η) 6= 0, it follows from (4.16)
- (4.19) that with some positive numbers C2 and C3

|P0(ξs)| ≥ C2 ρ
κs1d0
s |q(τ s)|m; |P1(ξs)| ≥ C2 ρ

κs1d1
s , (4.20)

|D1P0(ξs)| ≤ C3 ρ
κs1(d0−λ1)
s |q(τ s)|m−1; |D1P1(ξs)| ≤ C3 ρ

κs1(d1−λ1)
s . (4.21)

If m = 1, then ∆(η, P0) = min{λ1, λ2} and the condition (4.12) assumes
the form d0 −min{λ1, λ2} ≤ d1. Therefore d0 − λ1 ≤ d1 and since κs1 → 1
as s→∞, the estimates (4.16) lead immediately from (4.20) - (4.21). Thus,
in the sequel we assume that m > 1.

Reasoning as above, in this case we get ∆(η, P0) = m min{λ1, λ2} ≤
mλ1 and the condition (4.12) assumes the form

d0 −mλ1 ≤ m min{λ1, λ2} ≤ d1.

By the definition of the polynomial p(ξ) it follows that

|p(ξs)| = o(ρκ
s
1 d1
s ); |D1p(ξ

s)| = o(ρκ
s
1 (d1−λ1)
s ) as s→∞. (4.22)

It follows from (4.20) - (4.22) that to prove the inequality (4.16) it is
sufficient to show that there is a constant C4 > 0 such that for sufficiently
large s

ρκ
s
1(d0−λ1)
s |q(τ s)|m−1 ≤ C4[ρκ

s
1d0
s |q(τ s)|m + ρκ

s
1d1
s ]. (4.23)

Applying Lemma 4.3 for xs = ρ
κs1
s , ys = |q(τ s)|, a = (d0− λ1), b = m− 1,

c = d0, d = m, e = d1 we get estimate (4.23) for sufficiently large s.
Note that the conditions of Lemma 4.3 are fulfilled since κs1 → 1 ρs →∞,

|q(τ s)| → 0, as s→∞, i.e. xs →∞, ys → 0 as s→∞ and

a− e
c− e

=
d0 − d1 − λ1

d0 − d1

≤ m− 1

m
=
b

d
.

Since P ∈ I2, Pj(ξ
s) ≥ 0 (j = 0, 1) for sufficiently larges s, and the

relation (4.16) lead to contradiction with (4.13). �
Let the multianisotropic weighted Sobolev space W<

p,δ = W<
p,δ(R

n) be
defined as in subsection 2.2.A, k ∈ N, <k = {k< = α ∈ Nn

0 : α/k ∈ Nn
0 ∩<}

and

W∞
p,δ =

∞⋂
k=1

W<k
p,δ , N(P, δ) = {u ∈ W<

2,δ : 〈u, P (−D)ϕ)〉 = 0 ∀ϕ ∈ C∞0 }.

Note that the set W∞
p,δ is a Frechet space where W∞

p,δ ⊂ C∞.
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Applying Theorem 2.2 from [21] it is proved

Theorem 4.4 Let P ∈ In be a differential operator with constant coeffi-
cients and with the regular Newton polyhedron <. Operator P is almost hy-
poelliptic if and only if there exists a number δ > 0 such that N(P, δ) ⊂ W∞

2,δ.

Let P (D) be a nondegenerate operator with regular Newton polyhedron
< = <(m,m2), defined in subsection 2.2.B. It is easy to verify that P (D)
is almost hypoelliptic and simultaneously partially hypoelliptic with respect
to the hyperplane x′′ = 0. Let us introduce the multianisotropic weighted
space W<

p, δ(Ωκ) as in subsection 2.2.B, the set <l = <l(m,m2) for any
l ∈ N as above and denote by

N(P, κ) = {u;D(0,α′′)u ∈ L2(Ωκ), |α′′| ≤ m, P (D)u = 0 on Ωκ}.

The following theorem is proved in [22] by applying Theorem 2.3.

Theorem 4.5 Let < = <(m,m2) be the regular Newton polyhedron
of a nondegenerate operator P (D). Then there exists a number κ0 > 0
such that for any κ ≥ κo a) N(P, κ) ⊂ W<l

2, δ(Ωκ) (l = 0, 1, ...) and b)
N(P, κ) ⊂ C∞(Ωκ).

Let P (D) = P (D1, D2) be a nondegenerate operator with regular New-
ton polyhedron < = <(l,m) = {υ ∈ N2

0 , υ1 ≤ l, υ1 + υ2 ≤ m}, considered
in subsection 2.4.C. Let the rectangle

∏
=
∏

(a) =
∏

(a, 1) and the multi-

anisotropic weighted space W<
p, g(
∏

) = W
<(l,m)
p, g (

∏
(a)) be defined also as in

the subsection 2.4.C.

For j = −1, 0, 1, 2, ... we denote <j = {υ ∈ N2
0 , υ1 ≤ l, |υ| ≤ m + j}.

It is obvious that <j is a regular quadrangle (j = −1, 0, 1, 2, ...), where
<−1 = {υ ∈ N2

0 , υ1 ≤ l, υ1 + υ2 ≤ m− 1}.
Applying Theorem 2.5 the following theorem have been proved in [23]

Theorem 4.6 Let P (D) be a nondegenerate operator with the regular
Newton quadrangle < and the function f satisfies the following conditions

Dj
2f g

m+j ∈ L2(
∏

(a′)), ∀j ∈ N0, ∀a′ ∈ (0, a).

Then, any generalized solution u = u(x, y) ∈ W<−1

2, g, loc(
∏

(a)) of the equa-
tion P (D)u = f is an infinitely differentiable function in

∏
(a) with respect

to the wariable y ∈ (0, 1).
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