Principal filters of some ordered Γ-semigroups

N. Kehayopulu and M. Tsingelis

Abstract. For an intra-regular or a left regular and left duo ordered Γ -semigroup M, we describe the principal filter of Mwhich plays an essential role in the structure of this type of po- Γ -semigroups. We also prove that an ordered Γ -semigroup M is intra-regular if and only if the ideals of M are semiprime and it is left (right) regular and left (right) duo if and only if the left (right) ideals of M are semiprime.

Key Words: ordered Γ -semigroup, filter, intra-regular, left regular Mathematics Subject Classification 2000: 06F99 (20M99)

1 Introduction and prerequisites

Our aim is to describe the principal filters of intra-regular ordered Γ -semigroups and the principal filters of ordered Γ -semigroups which are both left regular and left duo. Croisot, who used the term "inversive" instead of "regular", connects the matter of decomposition of a semigroup with the regularity and semiprime conditions [2]. A semigroup S is said to be left (resp. right) regular if for every $a \in S$ there exists $x \in S$ such that $a = xa^2$ (resp. $a = a^2 x$). That is, if $a \in Sa^2$ (resp. $a \in a^2 S$) for every $a \in S$ which is equivalent to saying that $A \subseteq A^2S$ (resp. $A \subseteq SA^2$) for every $A \subseteq S$. A semigroup S is said to be intra-regular if for every $a \in S$ there exist $x, y \in S$ such that $a = xa^2y$. In other words, if $a \in Sa^2S$ for every $a \in S$ or $A \subseteq SA^2S$ for every $A \subseteq S$. For decompositions of an intra-regular, of a left regular or both left and right regular semigroup we refer to [1, 7]. The concepts of intra-regular ordered semigroup and of right regular ordered semigroup have been introduced in [3, 4] in which the decomposition of an intra-regular ordered semigroup into simple components and the decomposition of a right regular and right duo ordered semigroup into right simple components have been studied. The principal filter of S has a very simple form for both ordered and unordered case of Γ -semigroups, and it plays an essential role in their decomposition.

For the sake of completeness, let us first give the definition of a Γ semigroup. In this paper we use the definition of Γ -semigroup introduced by Saha in [8]: Given two nonempty sets M and Γ , M is called a Γ -semigroup if there exists a mapping $M \times \Gamma \times M \to M \mid (a, \gamma, b) \to a\gamma b$ such that $(a\gamma b)\mu c = a\gamma(b\mu c)$ for every $a, b, c \in M$ and every $\gamma, \mu \in \Gamma$. An ordered Γ -semigroup (shortly, po- Γ -semigroup) is clearly a Γ -semigroup M with an order relation " \leq " on M such that $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$ for every $c \in M$ and every $\gamma \in \Gamma$. For a subset H of M we denote by (H]the subset of M defined by

$$(H] = \{t \in M \mid t \le a \text{ for some } t \in H\}.$$

We mention the properties we use in the paper: Clearly M = (M], and for any subsets A, B, C of M, we have the following: $A \subseteq (A]$; if $A \subseteq$ B, then $A\Gamma C \subseteq B\Gamma C$ and $C\Gamma A \subseteq C\Gamma B$; if $A \subseteq B$, then $(A] \subseteq (B]$; $(A]\Gamma(B] \subseteq (A\Gamma B]; ((A]\Gamma(B)] = ((A]\Gamma B] = (A\Gamma(B)] = (A\Gamma B]; \text{ if } a \leq b,$ then $A\Gamma a \subseteq (A\Gamma b]$ and $a\Gamma A \subseteq (b\Gamma A]; ((A)] = (A].$ Let us prove the last one: Since $A \subseteq (A]$, we have $(A] \subseteq ((A]]$. Let now $t \in ((A]]$. Then $t \leq x$ for some $x \in (A]$ and $x \leq a$ for some $a \in A$. Since $t \in S$ and $t \leq a$, where $a \in A$, we have $t \in (A]$. As one can easily see, the following are equivalent: (1) $a \in A$ and $S \ni b \leq a$, then $b \in A$. (2) $(A] \subseteq A$. (3) (A] = A. A nonempty subset A of M is called a subsemigroup of M if, for every $a, b \in A$ and every $\gamma \in \Gamma$, we have $a\gamma b \in A$, that is if $A\Gamma A \subseteq A$. A nonempty subset A of M is called a *left* (resp. *right*) *ideal* of M if (1) $M\Gamma A \subseteq A$ (resp. $A\Gamma M \subseteq A$ and (2) if $a \in A$ and $M \ni b \leq a$, then $b \in A$ (equivalently (A] = A, which in turn is equivalent to (A] = A). It is called an *ideal* (or two-sided ideal) of M if it is both a left and right ideal of M. Clearly every left (resp. right) ideal of M is a subsemigroup of M. A po- Γ -semigroup M is called *left* (resp. *right*) *duo* if the left (resp. right) ideals of M are two-sided. A subsemigroup F of M is called a *filter* of M if (1) for every $a, b \in M$ and every $\gamma \in \Gamma$ such that $a\gamma b \in F$, we have $a \in F$ and $b \in F$ and (2) if $a \in F$ and $M \ni b \ge a$, then $b \in F$. For an element x of M, we denote by N(x) the filter of M generated by x (that is, the least with respect to the inclusion relation filter of M containing x). A subset T of M is called *semiprime* if $x \in M$ and $\gamma \in \Gamma$ such that $x\gamma x \in T$ implies $x \in T$.

As we know, many results on semigroups (ordered semigroups) can be transferred into Γ -semigroups (*po*- Γ -semigroups) just putting a Gamma in the appropriate place, while for some other results the transfer needs subsequent technical changes. A Γ -semigroup M is called *intra-regular* if $a \in$ $M\Gamma a\Gamma a\Gamma M$ for every $a \in M$, equivalently if $A \subseteq M\Gamma a\Gamma a\Gamma M$ for every $A \subseteq$ M. It is called *left* (resp. *right*) *regular* if $a \in M\Gamma a\Gamma a$ (resp. $a \in a\Gamma a\Gamma M$) for every $a \in M$, equivalently if $A \subseteq M\Gamma a\Gamma a$ (resp. $a \in a\Gamma a\Gamma M$) for every $a \in M$, equivalently if $A \subseteq M\Gamma a\Gamma a$ (resp. $a \in a\Gamma a\Gamma M$) every $A \subseteq M$. An ordered Γ -semigroup M is called *intra-regular* if for every $a \in M$ we have $a \in (M\Gamma a\Gamma a\Gamma M]$, equivalently if for every $A \subseteq M$ we have $A \subseteq (M\Gamma A\Gamma A\Gamma M]$. It is called *left* (resp. *right*) *regular* if $a \in (M\Gamma a\Gamma a]$ (resp. $(a \in (a\Gamma a\Gamma M))$ for every $a \in M$, equivalently if $A \subseteq (M\Gamma A\Gamma A)$ (resp. $A \subseteq (A\Gamma A\Gamma M]$ for every $A \subseteq M$. Although some interesting results on Γ -semigroups are obtained using the definition of left (resp. right) regular or the definition of intra-regular ordered Γ -semigroup mentioned above, with these definitions one fails to prove basic results of Γ -semigroups, such as to describe the filter of M generated by an element a of M, for example, which plays an essential role in the investigation. To overcome this difficulty, a new definition of intra-regular and a new definition of left regular Γ -semigroups has been introduced in [5]. The intra-regular Γ -semigroup has been defined as a Γ -semigroup M such that $a \in M \Gamma a \gamma a \Gamma M$ for each $a \in M$ and each $\gamma \in \Gamma$ and the left (resp. right) regular Γ -semigroup as a Γ -semigroup in which $a \in M \Gamma a \gamma a$ (resp. $a \in a \gamma a \Gamma M$) for each $a \in M$ and each $\gamma \in \Gamma$ and it is proved that a Γ -semigroup M is left regular (in that new sense) if and only if it is a union of a family of left simple subsemigroups on M. And in [6] we gave some further structure theorems of this type of Γ -semigroups using that new definition and the form of their principal filters. But what happens in case of intra-regular or in case of left regular or for right regular po- Γ -semigroups? Can we describe the form of their principal filters using some new definitions similar to the unordered case? The present paper gives the related answer.

2 On intra-regular ordered *po*-Γ-semigroups

We characterize here the intra-regular po- Γ -semigroups in terms of filters, and we prove that a po- Γ -semigroup M is intra-regular if and only if the ideals of M are semiprime.

Definition 1. An ordered Γ -semigroup M is called *intra-regular* if

$$x \in (M\Gamma x \gamma x \Gamma M]$$

for every $x \in M$ and every $\gamma \in \Gamma$.

Definition 2. (cf. also [5]) If M is an ordered Γ -semigroup, a subset A of M is called *semiprime* if

 $a \in M$ and $\gamma \in \Gamma$ such that $a\gamma a \in A$ implies $a \in A$.

Theorem 3. An ordered Γ -semigroup M is intra-regular if and only if, for every $x \in M$, we have

$$N(x) = \{ y \in M \mid x \in (M\Gamma y \Gamma M] \}.$$

Proof. \Longrightarrow . Let $x \in M$ and $T := \{y \in M \mid x \in (M\Gamma y\Gamma M]\}$. Then we have the following:

(1) T is a nonempty subset of M. Indeed: Take an element $\gamma \in \Gamma$ ($\Gamma \neq \emptyset$). Since M is intra-regular, we have

$$x \in (M\Gamma x \gamma x \Gamma M] = \left((M\Gamma x) \gamma x \Gamma M \right] \subseteq \left((M\Gamma M) \Gamma x \Gamma M \right] \subseteq (M\Gamma x \Gamma M],$$

so $x \in T$.

(2) Let $a, b \in T$ and $\gamma \in \Gamma$. Then $a\gamma b \in T$. Indeed: Since $a \in T$, we have $x \in (M\Gamma a\Gamma M]$. Since $b \in T$, we have $x \in (M\Gamma b\Gamma M]$. Since M is intra-regular, $x \in M$ and $\gamma \in \Gamma$, we have $x \in (M\Gamma x\gamma x\Gamma M]$. Then we have

$$x \in (M\Gamma x \gamma x \Gamma M] \subseteq \left(M\Gamma (M\Gamma b \Gamma M] \gamma (M\Gamma a \Gamma M] \Gamma M \right]$$
$$= \left(M\Gamma (M\Gamma b \Gamma M) \gamma (M\Gamma a \Gamma M) \Gamma M \right]$$
$$= \left((M\Gamma M) \Gamma (b\Gamma M \gamma M \Gamma a) \Gamma (M\Gamma M) \right]$$
$$\subseteq \left(M\Gamma (b\Gamma M \gamma M \Gamma a) \Gamma M \right].$$

We prove that $b\Gamma M\gamma M\Gamma a \subseteq (M\Gamma(a\gamma b)\Gamma M]$. Then we have

$$x \in \left(M\Gamma\left(M\Gamma(a\gamma b)\Gamma M\right]\Gamma M\right] = \left(M\Gamma\left(M\Gamma(a\gamma b)\Gamma M\right)\Gamma M\right]$$
$$= \left((M\Gamma M)\Gamma(a\gamma b)\Gamma(M\Gamma M)\right] \subseteq \left(M\Gamma(a\gamma b)\Gamma M\right],$$

so $a\gamma b \in T$. Let now $b\lambda u\gamma v\delta a \in b\Gamma M\gamma M\Gamma a$ for some $u, v \in M, \lambda, \delta \in \Gamma$. Since M is intra-regular, for the elements $b\lambda u\gamma v\delta a \in M$ and $\gamma \in \Gamma$, we have

$$b\lambda u\gamma v\delta a \in \left(M\Gamma(b\lambda u\gamma v\delta a)\gamma(b\lambda u\gamma v\delta a)\Gamma M\right]$$

= $\left((M\Gamma b\lambda u\gamma v)\delta(a\gamma b)\lambda(u\gamma v\delta a\Gamma M)\right]$
 $\subseteq \left(M\Gamma(a\gamma b)\Gamma M\right].$

(3) Let $a, b \in M$ and $\gamma \in \Gamma$ such that $a\gamma b \in T$. Then $a, b \in T$. Indeed: Since $a\gamma b \in T$, we have $x \in (M\Gamma(a\gamma b)\Gamma M] \subseteq (M\Gamma a\gamma(M\Gamma M)] \subseteq (M\Gamma a\Gamma M]$, so $a \in T$. Since $x \in (M\Gamma(a\gamma b)\Gamma M] \subseteq ((M\Gamma M)\gamma b\Gamma M] \subseteq (M\Gamma b\Gamma M]$, we have $b \in T$.

(4) Let $a \in T$ and $M \ni b \ge a$. Then $b \in T$. Indeed: Since $a \in T$, we have $x \in (M\Gamma a\Gamma M]$. Since $a \le b$, we have $M\Gamma a\Gamma M \subseteq (M\Gamma b\Gamma M]$, then $(M\Gamma a\Gamma M] \subseteq ((M\Gamma b\Gamma M)] = (M\Gamma b\Gamma M)$. Then we have $x \in (M\Gamma b\Gamma M)$, and $b \in T$.

(5) Let F be a filter of M such that $x \in F$. Then $T \subseteq F$. Indeed: Let $a \in T$. Then $x \in (M\Gamma a\Gamma M]$, so $F \ni x \leq u\lambda(a\mu v)$ for some $u, v \in M$, $\lambda, \mu \in \Gamma$. Since F is a filter of $M, x \in F$ and $M \ni u\lambda(a\mu v) \geq x$, we have $u\lambda(a\mu v) \in F$. Since F is a filter of $M, u, a\mu v \in M, \lambda \in \Gamma$ and $u\lambda(a\mu v) \in F$, we have $a\mu v \in F$, again since F is a filter of $M, a, v \in M$ and $\mu \in \Gamma$, we have $a \in F$.

Theorem 4. An ordered Γ -semigroup M is intra-regular if and only if the ideals of M are semiprime.

Proof. \Longrightarrow . Let A be an ideal of $M, x \in M$ and $\gamma \in \Gamma$ such that $x\gamma x \in A$. Since M is intra-regular, we have

$$x \in \left(M\Gamma(x\gamma x)\Gamma M\right] \subseteq \left((M\Gamma A)\Gamma M\right] \subseteq (A\Gamma M] \subseteq (A] = A$$

then $x \in A$, and A is semiprime.

$$(x\gamma x)\gamma(x\gamma x) = x\gamma(x\gamma x)\gamma x \in M\Gamma x\gamma x\Gamma M \subseteq (M\Gamma x\gamma x\Gamma M]_{\mathcal{H}}$$

we have $x\gamma x \in (M\Gamma x\gamma x\Gamma M]$. Then, since $x \in M$, $\gamma \in \Gamma$ and $(M\Gamma x\gamma x\Gamma M]$ is semiprime, we have $x \in (M\Gamma x\gamma x\Gamma M]$, so M is intra-regular.

3 On left regular and left duo *po*-Γ-semigroups

First we notice that the left (and the right) regular po- Γ -semigroups are intra-regular. Then we characterize the po- Γ -semigroups which are both left regular and left duo in terms of filters and we prove that a po- Γ -semigroup M is left (resp. right) regular if and only if the left (resp. right) ideals of Mare semiprime.

Definition 5. An ordered Γ -semigroup M is called *left regular* (resp. *right regular*) if

 $x \in (M\Gamma x \gamma x]$ (resp. $x \in (x \gamma x \Gamma M]$)

for every $x \in M$ and every $\gamma \in \Gamma$.

Proposition 6. Let M be an ordered Γ -semigroup. If M is left (resp. right) regular, then M is intra-regular.

Proof. Let M be left regular, $x \in M$ and $\gamma \in \Gamma$. Then we have

$$x \in (M\Gamma x\gamma x] \subseteq \left(M\Gamma(M\Gamma x\gamma x]\gamma x\right] = \left(M\Gamma(M\Gamma x\gamma x)\gamma x\right]$$
$$\subseteq \left((M\Gamma M)\Gamma(x\gamma x)\Gamma M\right] \subseteq \left(M\Gamma x\gamma x\Gamma M\right],$$

thus M is intra-regular. Similarly, the right regular po- Γ -semigroups are intra-regular. \Box

Theorem 7. An ordered Γ -semigroup M is left regular and left duo if and only if, for every $x \in M$, we have

$$N(x) = \{ y \in M \mid x \in (M\Gamma y] \}.$$

Proof. \Longrightarrow . Let $x \in M$ and $T := \{y \in M \mid x \in (M\Gamma y)\}$. Since M is left regular, we have $x \in (M\Gamma x \gamma x] \subseteq ((M\Gamma M)\Gamma x] \subseteq (M\Gamma x)$, so $x \in T$, and T is a nonempty subset of M.

Let $a, b \in T$ and $\gamma \in \Gamma$. Since $x \in (M\Gamma a]$, $x \in (M\Gamma b]$ and M is left regular, we have

$$x \in (M\Gamma x \gamma x] \subseteq \left(M\Gamma(M\Gamma b)\gamma(M\Gamma a)\right] = \left(M\Gamma(M\Gamma b)\gamma(M\Gamma a)\right]$$
$$\subseteq \left(M\Gamma(b\gamma M\Gamma a)\right].$$

In addition, $b\gamma M\Gamma a \subseteq (M\Gamma a\gamma b]$. Indeed: Let $b\gamma u\mu a \in b\gamma M\Gamma a$, where $u \in M$ and $\mu \in \Gamma$. Since M is left regular, we have

$$b\gamma u\mu a \in \left(M\Gamma(b\gamma u\mu a)\gamma(b\gamma u\mu a)\right] \subseteq \left(M\Gamma(a\gamma b)\Gamma M\right] = \left((M\Gamma a\gamma b)\Gamma M\right].$$

Since $(M\Gamma a\gamma b]$ is a left ideal of M, it is a right ideal of M as well, so $(M\Gamma a\gamma b]\Gamma M \subseteq (M\Gamma a\gamma b]$, then $b\gamma u\mu a \in ((M\Gamma a\gamma b)] = (M\Gamma a\gamma b)$. Hence we obtain

$$x \in \left(M\Gamma(M\Gamma a\gamma b)\right] = \left(M\Gamma(M\Gamma a\gamma b)\right] \subseteq \left(M\Gamma(a\gamma b)\right],$$

from which $a\gamma b \in T$.

Let $a, b \in M$ and $\gamma \in \Gamma$ such that $a\gamma b \in T$. Since $x \in (M\Gamma a\gamma b] \subseteq (M\Gamma b]$, we have $b \in T$. Besides, $x \in (M\Gamma a\gamma b] \subseteq ((M\Gamma a]\Gamma M]$. The set $(M\Gamma a]$ as a left ideal of M, it is a right ideal of M as well, so $(M\Gamma a]\Gamma M \subseteq (M\Gamma a]$. Thus we have $x \in ((M\Gamma a)] = (M\Gamma a]$, and $a \in T$.

Let $a \in T$ and $M \ni b \ge a$. Then we have $x \in (M\Gamma a] \subseteq (M\Gamma b]$, so $b \in T$.

Let F be a filter of M such that $x \in F$ and let $a \in T$. Since $x \in (M\Gamma a]$, we have $F \ni x \leq u\mu a$ for some $u \in M$, $\mu \in \Gamma$. Since F is a filter of M, we have $u\mu a \in F$, and $a \in F$.

 \Leftarrow . Let $x \in M$ and $\gamma \in \Gamma$. Since $x \in N(x)$ and N(x) is a subsemigroup of M, we have $x\gamma x \in N(x)$. By hypothesis, we get $x \in (M\Gamma x\gamma x]$, so Mis left regular. Let now A be a left ideal of M, $a \in A$, $\gamma \in \Gamma$ and $u \in M$. Since $a\gamma u \in N(a\gamma u)$ and $N(a\gamma u)$ is a filter of M, we have $a \in N(a\gamma u)$. By hypothesis, we have $a\gamma u \in (M\Gamma a] \subseteq (M\Gamma A] \subseteq (A] = A$. Thus A is right ideal of M, and M is left duo.

The right analogue of Theorem 7 also holds, and we have

Theorem 8. An ordered Γ -semigroup M is right regular and right duo if and only if, for every $x \in M$, we have

$$N(x) = \{ y \in M \mid x \in (y \Gamma M] \}.$$

Theorem 9. An ordered Γ -semigroup M is left (resp. right) regular if and only if the left (resp. right) ideals of M are semiprime.

Proof. \Longrightarrow . Let M be left regular, A a left ideal of M, $x \in M$ and $\gamma \in \Gamma$ such that $x\gamma x \in A$. Then we have $x \in (M\Gamma(x\gamma x)] \subseteq (M\Gamma A] \subseteq (A] = A$, so M is semiprime.

 \Leftarrow . Suppose the left ideals of M are semiprime and let $x \in M$ and $\gamma \in \Gamma$. Since $(M\Gamma x\gamma x]$ is a left ideal of M, $x\gamma x \in M$, $\gamma \in \Gamma$ and $(x\gamma x)\gamma(x\gamma x) \in (M\Gamma x\gamma x]$, we have $x\gamma x \in (M\Gamma x\gamma x]$. Again since $(M\Gamma x\gamma x]$ is semiprime, $x \in M, \gamma \in \Gamma$ and $x\gamma x \in (M\Gamma x\gamma x]$, we have $x \in (M\Gamma x\gamma x]$, thus M is left regular. In a similar way we prove that M is right regular. \Box

References

- A. H. Clifford, G. B. Preston, *The Algebraic Theory of Semigroups*, Vol. I, Amer. Math. Soc. Math. Surveys 7, Providence, Rhode Island, 1961.
- [2] R. Croisot, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. École Norm. Supér. III, Sér. 70 (1953), 361–379.
- [3] N. Kehayopulu, On right regular and right duo ordered semigroups, Math. Japon. 36, no. 2 (1991), 201–206.
- [4] N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum 46, no. 3 (1993), 271–278.
- [5] N. Kehayopulu, On left regular Γ-semigroups, Int. J. Algebra 8, no. 8 (2014), 389–394.
- [6] N. Kehayopulu, M. Tsingelis, On intra-regular and some left regular Γsemigroups, Quasigroups and Related Systems 23, no. 2 (2015), 263–270.

- [7] M. Petrich, Introduction to Semigroups, Charles E. Merrill Publ. Comp., A Bell & Howell Comp. Columbus, Ohio 1973.
- [8] N. K. Saha, The maximum idempotent-separating congruence on an inverse Γ-semigroup, Kyungpook Math. J. 34, no. 1 (1994), 59–66.

Niovi Kehayopulu Department of Mathematics University of Athens 15784 Panepistimiopolis, Athens, Greece nkehayop@math.uoa.gr

Michael Tsingelis Hellenic Open University School of Science and Technology Studies in Natural Sciences, Greece mtsingelis@hol.gr

Please, cite to this paper as published in Armen. J. Math., V. 8, N. 2(2016), pp. 96–103