
Armenian Journal of Mathematics

Volume 8, Number 2, 2016, 86–95

Characterizing trees in property-oriented

concept lattices

H. Mao

Abstract. Property-oriented concept lattices are systems of
conceptual clusters called property-oriented concepts, which are
partially ordered by the subconcept/superconcept relationships.
Property-oriented concept lattices are basic structures used in
formal concept analysis. In general, a property-oriented con-
cept lattice may contain overlapping clusters and is not to be a
tree construction. Additionally, tree-like classification schemes
are appealing and are produced by several clustering methods.
In this paper, we present necessary and sufficient conditions on
input data for the output property-oriented concept lattice to
form a tree after one removes its greatest element. After ap-
plying to input data for which the associated property-oriented
concept lattice is a tree, we present an algorithm for computing
property-oriented concept lattices.

Key Words: Property-Oriented Concept Lattice, Tree, Property-Oriented
Concept
Mathematics Subject Classification 2000: 68R10, 05C05, 68P05

Introduction

As pointed in [3, 4, 5], huge data sets and various data types lead to new
problems and require the development of new types of techniques for modern
intelligent data analysis. An important objective of intelligent data analy-
sis is to reveal and indicate diverse non-trivial features or views of a large
amount of data. Many techniques in data mining and other fields have been
proposed. Each technique focuses on one particular view of the data and
discovers a specific domain of knowledge embedded in data.

According to the authors in [1], generating collections of clusters from
data is a challenging part of knowledge discovery. Among many methods for
performing this task, formal concept analysis (FCA) is becoming increasingly

86

http://www.flib.sci.am/eng/journal/Math/

CHARACTERIZING TREES IN PROPERTY-ORIENTED CONCEPT LATTICES 87

popular. The main aim of FCA is to extract interesting clusters from tabular
data along with a partial order of these clusters. FCA yields diagrams
of hierarchically ordered clusters which are lattices and termed as concept
lattices.

Lattice theory provides a vocabulary for hierarchical structures and is
applied to construct concept lattices (see [3, 4, 5, 6]). There are several
types of concept lattices which are derived from a same formal context and
reflect various features of the data [3, 6]. Though the results on formal
concept lattices introduced by R.Wille in 1982 [11] are much more used
and noticed by researchers than that of other concept lattices, the other
clustering classification techniques such as property-oriented concept lattice
first introduced by Gediga and Düntsch [6] are also important and crucial
in the theoretical development FCA.

S. Radelezcki proposed a problem [9] about tree-order for formal concept
lattices. It is one of the problems to seek out possible relationships between
FCA and the other methods of clustering and classification. Needless to say,
this goal requires a long-term effort. In this respect, the author [9] highlights
certain important implications of tree construction in FCA. Along this direc-
tion, we consider a particular problem in this paper. We present conditions
for input data which are necessary and sufficient for the output property-
oriented concept lattice to form a tree after removing its greatest element.
Similar consequences have already appeared in [1] for characterizing formal
concept lattices, but the aforementioned goal has not yet been achieved. We
hope our results here help partially to achieve the goal.

It is more important as [1] shows to think about the purposes of clus-
tering, about the types of clusters we wish to construct. We must seek
sufficiently rich class of structures for the research on FCA. Hence, looking
for algorithms and properties for property-oriented concept lattices is also
an important duty for the study of FCA.

We see as [1, 4, 5] that characterizations of trees in formal concept lattices
are good to some algorithms in formal concept lattices. We find from [3, 6,
10] that property-oriented concept lattices are equally essential in FCA as
formal concept lattices. The notion of property-oriented concept has first
been proposed in [6], but without exploring its category-theoretical content.
As [3, 6, 10], researches have not searched out an algorithm to construct the
property-oriented concept lattices. Hence, our another duty is to find an
algorithm to search out all the property-oriented concepts and its property-
oriented concept lattice after a formal context generates a tree.

Since there are the intimate relationships between formal concept lattices
and property-oriented concept lattices (see [3, 6]), some discussions in this
paper are seemly similar to those in [1] for formal concept lattices. In spite of
this, we may be assured as [3, 6] that the independent conceptual structures
of property-oriented concepts are different from that of formal concepts for

88 H. Mao

a same formal context. Hence, all the ideas and algorithms in this paper are
independent and own their values to exist in FCA.

1 Preliminaries

A very preliminary report on some of the results and notions in this paper
has appeared as [3, 4, 5, 6]. In this section, we summarize basic notions of
FCA. For detailed information on FCA, we refer to [3, 4, 5, 6]. More details
for lattice theory, please see [4, 5, 7].

1.1 Formal context

This subsection summarizes basic notions of formal contexts.
An object-attribute data table describing which objects have what at-

tributes can be identified with a triplet (U, V,R) where U is a non-empty
set (of objects), V is a non-empty set (of attributes), and R ⊆ U × V is
an (object-attribute) relation. (U, V,R) is called a formal context (simply,
context). For x ∈ U and y ∈ V , if (x, y) ∈ R, written as xRy, we say that x
has the attribute y, or the attribute y is possessed by an object x.

A context can be easily represented by a cross table, i.e., by a rectangular
table the rows of which are headed by the object names and the columns
headed by the attribute names. A cross in row g and column m means that
the object g has the attribute m.

Based on the binary relation R, we can associate a set of attributes with
an object. An object x ∈ U has the set of attributes, xR = {y ∈ V |
xRy} ⊆ V . The set of attributes xR can be viewed as a description of the
object x. In other words, object x is described or characterized by the set
of attributes xR. Similarly, an attribute y is possessed by the set of objects,
Ry = {x ∈ U | xRy} ⊆ U .

1.2 Property-oriented concept lattice

This subsection presents some notations and properties for property-oriented
concept lattices from [3].

For a set of objects A ⊆ U and a set of attributes B ⊆ V , we can
define a pair data operators, � : 2U → 2V and � : 2V → 2U as follows:
A� = {y ∈ V | Ry ⊆ A}, B� = {x ∈ U | xR ⊆ B}.

The same symbol is again used for both operators.
We can define a pair data operators, � : 2U → 2V and � : 2V → 2U as

follows:
A� = {y ∈ V | Ry ∩ A 6= ∅} =

⋃
x∈A

xR, B� = {x ∈ Y | xR ∩ B 6= ∅} =⋃
y∈B

Ry.

CHARACTERIZING TREES IN PROPERTY-ORIENTED CONCEPT LATTICES 89

Again, the same symbol is used for both operators.
A pair (A,B), A ⊆ U,B ⊆ V , is called a property-oriented formal concept

if A = B� and B = A�. The set of objects A is referred to as the extension of
the concept (A,B), and the set of attributes B is referred to as the intension.
If an attribute is possessed by an object in A, then the attribute must be in
B. Moreover, only attributes in B are possessed by objects in A.

For two property-oriented formal concepts (A1, B1) and (A2, B2), we say
that (A1, B1) is a sub-concept of (A2, B2), and (A2, B2) is super-concept of
(A1, B1), in notation, (A1, B1) ≤ (A2, B2), if and only if A1 ⊆ A2, or equiv-
alently, if and only if B1 ⊆ B2.

The family of all property-oriented formal concepts P(U, V,R) is a com-
plete lattice, termed as property-oriented formal concept lattice (see [12]).
The meet ∧ and the join ∨ of the property-oriented formal concept lattice
are defined by

(A1, B1) ∧ (A2, B2) = ((A1 ∩ A2), (B1 ∩B2)
��),

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2)
��, (B1 ∪B2)).

For simplicity, a property-oriented formal concept lattice and a property-
oriented formal concept in this paper is called a property-oriented concept
lattice and a property-oriented concept respectively.

Consider the operator �� : 2U → 2U , which is a closure operator on 2U

[1, 3]. The properties of this operator are: for A,A1, A2 ⊆ U ,

(p1) U�� = U ,

(p2) A ⊆ A��,

(p3) A�� = A����,

(p4) A1 ⊆ A2 ⇒ A��1 ⊆ A��2 .

Let (U,��) = {A�� | A ⊆ U}. Then (U,��) is a closure system with the
following properties:

(pi) ∅ ∈ (U,��),

(pii) for a non-empty set A ∈ (U,��), we have: (A,A�) =
∨
{({x}��, {x}�) |

x ∈ A}.

The property (pii) shows that the pair ({x}��, {x}�) is a property-orien-
ted concept to generate other property-oriented formal concepts in the lat-
tice.

Since property-oriented concept lattices are complete lattices, we find
that each property-oriented concept lattice P(U, V,R) has both the greatest
(U, V) and the least (∅, ∅).

90 H. Mao

2 Trees in property-oriented concept lattices

This section interests in property-oriented concept lattices corresponding to
trees. Trees are usually defined as undirected graphs that are acyclic and
connected (cf. [2, 8]). Since we are going to identify trees in particular
ordered sets, we deal with trees as follows. A finite partially ordered set
(P,�) will be called a tree if for each a, b ∈ P :

(Ti) there is an infimum of a and b in (P,�), and
(Tii) there is a supremum of a and b in (P,�) if and only if a and b are

comparable (i.e., if and only if a � b or b � a).
For easily comparing the relationships between our results and the al-

ready existed apprehensions in formal concept lattices, the definition of tree
here is similar to [1] and [2]. Hence, we can state that the definition of tree
here is much more direct and natural.

Following the above, we can express that the whole property-oriented
concept lattice is a tree if and only if it is linearly ordered, which is not
worthwhile observation because linear trees are a degenerate form of trees
and therefore not interesting. Now, we focus our attention on trees which
are important for property-oriented concept lattices. In what follows, we
explore the conditions to make Pf(U, V,R) a tree where Pf(U, V,R) denotes
P(U, V,R)− {(U, V)}.

2.1 Formal contexts generating trees

It is easily check the following statements:
(3.1.1) Pf(U, V,R) has the same partial order as P(U, V,R).
(3.1.2) A tree structure for Pf(U, V,R) is the simplest among all the

structures which Pf(U, V,R) can possibly possess.
(3.1.3) In a tree structure, we can not find redundant concepts. Hence,

if we search out a tree structure of Pf(U, V,R), then we find all the con-
cepts with no redundant elements so as to save time and spaces during our
searching process.

The following assertion characterizes Pf(U, V,R) to be a tree in terms
of intensions of property-oriented concepts.

Theorem 1 labelth.1 Let (U, V,R) be a formal context. Then Pf(U, V,R)
is a tree if and only if, for any concepts (A,B), (C,D) ∈ P(U, V,R), at least
one of the following is true:

(i) B ⊆ D or D ⊆ B,
(ii) B ∪D = V .

Proof. Let Pf(U, V,R) be a tree.
Suppose that (ii) is not satisfied. Then, by the definition of tree, it is

easily seen that (i) must be satisfied.

CHARACTERIZING TREES IN PROPERTY-ORIENTED CONCEPT LATTICES 91

Suppose that (i) is not satisfied for some (A,B), (C,D) ∈ P(U, V,R).
By the definition of ≤ in Section 1.2, we have (A,B) � (C,D) and (C,D) �
(A,B). Then both (A,B) and (C,D) belong to Pf(U, V,R). This implies
that (A,B) ∨ (C,D) is in P(U, V,R) = Pf(U, V,R) ∪ {(U, V)}. Combining
with Section 1.2, we obtain that P(U, V,R) is a complete lattice with (U, V)
as the greatest element. Therefore, we receive (A,B) ∨ (C,D) = ((A ∪
C)��, (B ∪ D)) = (U, V). So, B ∪ D = V holds. Thus, the item (ii) is
satisfied.

Conversely, if any two elements in P(U, V,R) are comparable, that is, any
two elements satisfy (i), then we obtain that P(U, V,R) is a chain. Thus,
the needed result is accepted.

Let (A,B), (C,D) ∈ Pf(U, V,R) such that (A,B) and (C,D) are incom-
parable. Such (A,B) and (C,D) cannot satisfy (i), i.e., we have B∪D = V .
That is to say, (A,B) and (C,D) satisfy the item (ii). Using the defi-
nition of P(U, V,R), we obtain that (A,B) ∨ (C,D) is the greatest ele-
ment in P(U, V,R). Thus, (A,B) and (C,D) do not have a supremum in
Pf(U, V,R) because Pf(U, V,R) is P(U, V,R) − {(U, V)}. Therefore, we
find that Pf(U, V,R) is a tree.�

Can we find Pf(U, V,R) to be a tree from (U, V,R) before computing
the set of all concepts? We will give a positive answer. For convenient, we
need the following notion.

Definition 1 Let (U, V,R) be a formal context. We say that (U, V,R) gen-
erates a tree if Pf(U, V,R) is a tree.

Theorem 2 Let (U, V,R) be a formal context. Then (U, V,R) generates a
tree if and only if, for any attributes y1, y2 ∈ U , at least one of the following
conditions is true:

(i) {y1}� ⊆ {y2}�,

(ii) {y2}� ⊆ {y1}�,

(iii) {y1}� ∪ {y2}� = V .

Proof. Suppose that (U, V,R) generates a tree, i.e. Pf(U, V,R) is a tree.
Each pair of the form ({x}��, {x}�) is a property-oriented concept in the
P(U, V,R) by Subsection 1.2. We find by virtue of Theorem 1 that the
items (i)-(iii) are special cases in Theorem 1. Therefore, the items (i)-(iii)
are accepted in light of Theorem 1.

Conversely, suppose that (U, V,R) does not generate a tree. Thus, there
are incomparable concepts (A,B), (C,D) ∈ P(U, V,R) such that (A,B) ∨
(C,D) in P(U, V,R) does not equal to (U, V). This implies that B * D,D *
B,B ∪ D ⊂ V (i.e. B ∪ D (V), and ((A ∪ C)��, B ∪ D) ∈ P(U, V,R).

92 H. Mao

Hence, we obtain A * C and C * A. However, A * C means the ex-
istence of y1 ∈ A \ C, and meanwhile, C * A means the existence of
y2 ∈ C \ A. Combining (p4) and y1 ∈ A, we receive {y1}�� ⊆ A��. In
addition, (A��, B) ∈ P(U, V,R) shows A�� = A. Furthermore, the con-
cept ({y1}��, {y1}�) satisfies ({y1}��, {y1}�) ≤ (A,B). Therefore, we at-
tain {y1}� ⊆ B. Similarly, we obtain {y2}� ⊆ D. In fact, we produce
{y1}� ∪ {y2}� ⊆ B ∪D ⊂ V . So {y1}� ∪ {y2}� 6= V holds.

Next we prove {y1}� * {y2}� and {y2}� * {y1}�.
y1 ∈ A \ C asks y1R * D. Otherwise, it follows y1 ∈ D� = C, a

contradiction to y1 ∈ A \ C. On the other hand, y2 ∈ C \ A ⊆ C = D�

makes y2R ⊆ D. Combining {y1}� = y1R and {y2}� = y2R with the above
two hands, we demonstrate {y1}� * {y2}�.

Analogously, we can demonstrate {y2}� * {y1}�.
Summing up, we may be assured that if (U, V,R) does not generate a

tree, then there are y1, y2 ∈ U such that none of (i)-(iii) is satisfied.�

2.2 Algorithms for trees in property-oriented concept
lattices

Trees in concept lattices, as they were introduced in Section 1, Subsection
2.1 and [1, 4, 5, 7], can be computed by algorithms. Currently, there have
been proposed several algorithms for computing formal concepts (see [4, 5]),
though seldom are for computing property-oriented concepts according to my
knowledge. In spite of this, all these algorithms can be referred to compute
any of concept lattices for FCA in view of [7]. R.Bělohlávek et al indicate [1]
that for some algorithms, the searching structure should be efficient because
the tests of presence of a concept between the found concepts influences
the overall efficiency of the procedure. The searching structure is usually
implemented as searching a tree. In fact, some of the algorithms for FCA
get simplified in the case of contexts generating tree constructions (see [1,
Algorithm 1]). This section is to present an algorithm to compute all the
property-oriented concepts for a formal context generating a tree.

The sketch of the algorithm for computing Pf(U, V,R) is shown in the
following if (U, V,R) generates a tree.

Let U = {y1, y2, . . . , yt}. After computing {yj}� (j = 1, 2, . . . , t), we set

B =

({
{yj}�

∣∣∣∣ j = 1, 2, . . . , t

}
,⊆
)
.

Evidently, B is a poset.
We assert that (B,⊆) is isomorphic to the poset Pf(U, V,R) \ {(∅, ∅)},

and Pf(U, V,R) \ {(∅, ∅)} is uniquely determined by (B,⊆). The reasons
are as follows.

CHARACTERIZING TREES IN PROPERTY-ORIENTED CONCEPT LATTICES 93

(α) By the definition of property-oriented concept, we only need to con-
sider the property of the intension D of a concept (C,D) if we detect
the property of (C,D).

(β) We find that for a non-empty set A ⊆ U, (A,A�) ∈ P(U, V,R) if and
only if

(A,A�) =
∨
{({x}��, {x}�) | x ∈ A} = ((

⋃
x∈A

{x}��)��,
⋃
x∈A

{x}�),

equivalently to say, if and only if A� =
⋃
x∈A
{x}�, and A = (

⋃
x∈A
{x}��)��.

(γ) According to Theorem 2 and the tree structure of Pf(U, V,R), we
obtain {yi}� ⊆ {yj}�, or {yj}� ⊆ {yi}�, or {yi}� ∪ {yj}� = V , for any
yi, yj ∈ U .

Assume (A,B) ∈ Pf(U, V,R) \ {(∅, ∅)} and B /∈ B. Then by the con-
struction of property-oriented concept lattice P(U, V,R), we attain A� =

B =
∨
a∈A
{a}�. It is no harm to suppose A = {y1, . . . , yn}. So, B =

n⋃
j=1

{yj}�

holds. If p, q ∈ {1, . . . , n} and {yp}� * {yq}� * {yp}�, then B = V . This
is a contrary to (A,B) ∈ Pf(U, V,R). Therefore, for any p, q ∈ {1, . . . , n},
we may be assured {yp}� ⊆ {yq}� or {yq}� ⊆ {yp}�. Considering with [6],

we can receive (

{
{yj}�

∣∣∣∣ j = 1, . . . , n

}
,⊆) to be a chain (or say, a linearly

order). Furthermore, we obtain ym ∈ A satisfying B = {ym}�.
(δ) Since the reason (γ) hints B ∈ B, for any (A,B) ∈ Pf(U, V,R) \

{(∅, ∅)}. In addition, ({yj}��, {yj}�) ∈ Pf(U, V,R) holds in light of (β)
where j = 1, 2, . . . , t. Moreover, B determines Pf(U, V,R) uniquely. Hence,
we may easily see that Pf(U, V,R) is isomorphic to (B,⊆).

Consequently, for Pf(U, V,R), we may obtain all of the nodes

{({yj}��, {yj}�) | j = 1, 2, . . . , t} ∪ {(∅, ∅)}

and its diagram. Furthermore, we produce P(U, V,R) because Pf(U, V,R)
is produced by removing the greatest element (U, V) from P(U, V,R).

Therefore, if (U, V,R) generates a tree, we only focus on the property of
{yj}� for every yj ∈ U (j = 1, 2, . . . , |U |) when we compute all the property-
oriented concepts for P(U, V,R)

Actually, {yj}� is easily obtained from the cross table of context (U, V,R).
This fact demonstrates that if a formal context generates a tree, then the
algorithm for FCA is designed faster and simpler to implement.

94 H. Mao

3 Conclusions

In this paper, we presented conditions for input data for FCA which are
necessary and sufficient for the output property-oriented concept lattice to
form a tree after one removes its greatest element. We present an algorithm
for FCA different from [1, Algorithm 1]. Since trees are the most common
structures which appear in traditional clustering and classification, our fu-
ture research will focus on establishing connections between FCA and other
clustering and classification methods.

Acknowledgment

This research is granted by NSF of China (61572011) and NSF of Hebei
Province (A2013201119).

References

[1] R. Bělohlávek, B.D. Baets, J. Outrata, and V. Vychodil, Characterizing
trees in concept lattices, International J. of Uncertainty, 16(2008), 1-15.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Elsevier
Science Publishing Co. Inc., New York, 1976.

[3] Y. Chen and Y. Yao,A multiview approach for intelligent data analysis
based on data operators, Information Sciences, 178(2008), 1-20.

[4] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, 2nd.
ed. Cambridge University Press, Cambridge, 2003.

[5] B. Ganter and R. Wille,Formal Concept Analysis: Mathematical Foun-
dations. Springer, Berlin, 1999.

[6] G. Gediga and I. Düntsch, Modal-style operators in qualitative data
analysis, Proceedings of the 2002 IEEE International Conference on
Data Mining, 2002, pp.155-162.

[7] G. Grätzer, General Lattice Theory, 2nd. ed. Birkhäuser-Verlag, Basel,
1998.

[8] D. König, Theory of finite and infinite graphs, translated by R.McCoart
with commentary by W.T.Tutte, Birkhäuser, Boston, 1990.

CHARACTERIZING TREES IN PROPERTY-ORIENTED CONCEPT LATTICES 95

[9] S. Radelezcki, Problem 14, in: Some open problems in formal concept
analysis, Problems Presented at ICFCA 2006 in Dresden. http://www.
upriss.org.uk/fca/problems06.pdf

[10] X. Wang and W. Zhang, Relations of attribute reduction between ob-
ject and property oriented concept lattices, Knowledge-Based Systems,
21(2008), 398-403.

[11] R. Wille,Restructuring lattice theory: an approach based on hierarchies
of concepts, in: Ivan Rival(ed.), Ordered Sets. Dordecht-Boston, Reidel,
1982, 445-470.

[12] Y. Yao,Concept lattices in rough set theory, in Proceedings of Annual
Meeting of the North American Fuzzy Information Processing Soci-
ety(NAFIPS’04), 2004, 796-801.

Hua Mao
Department of Mathematics, Hebei University,
Baoding 071002, China.
yushengmao@263.net

Please, cite to this paper as published in
Armen. J. Math., V. 8, N. 2(2016), pp. 86–95

http://www.upriss.org.uk/fca/problems06.pdf
http://www.upriss.org.uk/fca/problems06.pdf
mailto: yushengmao@263.net

